首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The density of lipophorin was determined in individual Manduca sexta during development from the second day of the fifth larval instar to the second day of the pupal stage. Lipophorin formed defined bands when subjected to density gradient ultracentrifugation. All lipophorin observed was high density lipophorin; however, the densities varied from 1.100 to 1.184 g/ml, and 40% of the animals had more than one density form of lipophorin. The lipophorins were divided into five density classes: class 1 from 1.100 to 1.113 g/ml, class 2 from 1.114 to 1.132 g/ml, class 3 from 1.133 to 1.145 g/ml, class 4 from 1.146 to 1.162 g/ml, and class 5 from 1.163 to 1.184 g/ml. In feeding larvae, classes 2 and 3 were the most abundant. Larvae of the first day of wandering had either lipophorin in class 2 or in classes 2 and 5. Later during wandering the variation increased, but on the third day most of the lipophorin was in class 2. In first day pupae, only lipophorins of classes 4 and 5 were detected, while on the second day of the pupal stage, classes 2 and 3 were predominant. Class 1 lipophorin was abundant in larvae injected with Manduca adipokinetic hormone (M-AKH), and rare in young feeding larvae. In no other stage was class 1 lipophorin observed. Our results show that the density of lipophorin is much more variable than previously reported which makes it difficult to ascribe any lipophorin density to a developmental stage. These results also show that adipokinetic hormone decreases the density of lipophorin in larvae. © 1996 Wiley-Liss, Inc.  相似文献   

2.
李毅平  龚和  朴镐用 《昆虫学报》2000,43(-1):77-84
采用KBr密度梯度超速离心并结合常规Sepharose CL-4B凝胶柱层析,从越冬松针瘿蚊Thecodiplosis japonensis(Uchida et Inouye) 幼虫整体中,分离并纯化了一种携脂蛋白。这是第二例从昆虫整体分离并纯化出携脂蛋白的报道。采用凝胶柱层析确定该携脂蛋白的相对分子质量为638 kD,它是由分别为240 kD和52 kD的两个亚基组成 。整体分子中含有52.8%的蛋白和47.2%的脂类 。苏丹黑B和希夫氏试剂染色显示阳性,说明它是一种糖脂复合蛋白。采用超速离心确定它的密度为1.11 g/mL,表明它是一种高密度的脂蛋白。  相似文献   

3.
《Insect Biochemistry》1990,20(1):73-82
Arylphorin (Ap) was isolated and partially characterized from larval serum of the gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae). Non-denaturing and SDS-polyacrylamide gel electrophoresis suggest a 440,000 Da hexamer composed of nonidentical subunits of Mr 73,000 and 80,000. Tyrosine and phenylalanine comprise 15.6% of the total protein amino acid. L. dispar Ap is immunologically related to Manduca sexta Ap. Hemolymph Ap concentrations throughout the larval stadia were determined using quantitative immunoelectrophoresis. Cyclic fluctuations in hemolymph concentrations are correlated with each molting cycle. A general increase in Ap concentration during each intermolt is followed by a sharp decline between apolysis and ecdysis. The last days of each instar were found to be the best time to sample protein titer with minimum variance. Hemolymph space, estimated by measuring the dilution of an injected foreign protein, is a constant 28% (v/w) of body weight. Total serum Ap per animal was calculated. A divergent allometric relationship between Ap accumulation and weight gain throughout the larval period results in the ultimate domination of the serum protein profile by Ap in the ultimate larval instar of the female in particular. An additional instar of Ap accumulation in the female gypsy moth is suggested to compensate for the lack of a predominantly female-specific storage protein in this species.  相似文献   

4.
《Insect Biochemistry》1988,18(2):211-214
Manduca sexta larvae were raised on diets containing either 1.2% fat (control diet), 5.9% fat (high-fat diet) or on a fat-free diet. Insects raised on the control and high-fat diets did not differ significantly in body weight, whereas animals raised on the fat-free diet were significantly smaller. The fat content of the diet had no effect on the hemolymph concentration of lipophorin. During the larval period, lipophorin isolated from animals on the high-fat diet contained more lipid, and lipophorin isolated from animals on the fat-free diet contained less lipid than lipophorin isolated from control animals. However, lipophorin isolated from animals during the prepupal period had the same composition regardless of diet. Compared to controls, animals on the high-fat diet had a larger mass of fat body which contained more stored triacylglycerol, while animals on the fat-free diet had a smaller mass of fat body which contained less stored triacylglycerol. As the fat content of the diet was increased, the fatty acid composition of fat body triacylglycerols reflected more closely that of the dietary lipid.  相似文献   

5.
《Insect Biochemistry》1988,18(1):117-126
Flight activity or injection of the death's-head hawkmoth Acherontia atropos with locust synthetic adipokinetic hormone (AKH I) results in a dramatic increase in the concentration of hemolymph diacylglycerol which is carried by specific lipophorins. In resting hawkmoths diacylglycerols are associated with a high-density lipophorin (HDLp, density ∼1.13 g/ml) consisting of two major apolipophorins (apoLp-I and -II, mol. wt ∼240,000 and 70,000, respectively). During flight or after AKH injection the formation of a new low-density lipophorin is induced (LDLp, density ∼1.03 g/ml), exhibiting a much higher lipid loading and consisting of HDLp subunits and an additional subunit (apoLp-III, mol. wt approx. 20,000). This subunit is a regular constitutent of hemolymph proteins in resting hawkmoths and consists of two protein components with slightly different molecular weights. The component with the lowest molecular weight seems to be preferentially incorporated into the newly generated LDLp. In the resting situation the HDLp already contains some apoLp-III.In spite of some minor differences, the overall mechanism of lipophorin rearrangements upon flight activity in the hawkmoth appears to be very similar to the known systems established for both Locusta migratoria and Manduca sexta.  相似文献   

6.
《Insect Biochemistry》1987,17(6):799-808
The response of fifth larval instar locusts to injected adipokinetic hormone (AKH) is only poor, as is reflected in both a very moderate elevation of the haemolymph lipid concentration and the slight occurrence of the haemolymph lipophorin interconversions characteristic for adult locusts, resulting in formation of only small quantities of the low density lipophorin (A+). However, an additional lipophorin fraction (A′) is induced, which is intermediate in density and size between high and low density lipophorin and which is not identified in adult haemolymph. As in adults, larval A+ formation includes association of the resting high density lipophorin with a non-lipid containing protein (C2), the haemolymph concentration of which is only one-fifth relative to adults. However, the larval haemolymph protein composition is not the primary cause of the incomplete adipokinetic response, as elevation of the concentration of protein C2 by injection of isolated adult C2, whether or not in combination with adult high density lipophorin, did not increase lipophorin conversions nor haemolymph lipid elevation.In vitro incubation of larval fat bodies in adult haemolymph showed that competency to both the AKH-induced lipid release and the haemolymph lipophorin conversions of the larval fat body are reduced compared to equal amounts of adult tissue. Reciprocal incubation of adult fat body in larval haemolymph resulted in only a very moderate adipokinetic response, demonstrating that larval haemolymph protein composition is restrictive for full development of hormone action.Both immunoblotting experiments and enzyme-linked immunosorbent assays (ELISA), using monoclonal antibodies specific for the adult lipophorin apoproteins, indicated that the larval lipophorins closely resemble the adult forms. Apparently the structure of locust lipophorins is remarkably constant throughout development despite changes in metabolic functions.  相似文献   

7.
《Insect Biochemistry》1990,20(5):517-522
The capacity of the fat body of nondiapause, prediapause and diapause larvae of the southwestern corn borer, Diatraea gradiosella, to synthesize and release lipophorin was examined in vitro using [3H]leucine as the radiotracer. Synthesis and release of [3H]lipophorin by the fat body peaked in 11–13 day-old fifth instar nondiapause larvae, which coincided with their feeding period. The rate of lipophorin synthesis in the fat body of newly ecdysed pupae was extremely low. Synthesis and release of [3H]lipophorin by the fat body of prediapause larvae occurred at the highest rates in 20–35 day-old fifth and sixth instars, and declined to virtually undetectable levels after larvae entered diapause around 40 days-of-age. Immunoprecipitation of [3H]lipophorin from fat body of 13 day-old nondiapause larvae that had been pulse-labeled with [3H]leucine showed that the half life of lipophorin synthesis and processing was about 40 minutes. Release of total protein and lipophorin from the fat body of 13 day-old nondiapause larvae into Grace's medium was inhibited by 56 and 60%, respectively, when 10 μg/ml tunicamycin was incorporated into medium.  相似文献   

8.
《Insect Biochemistry》1989,19(2):153-161
The lipophorin of adult females of Rhodnius prolixus was radioactively labelled with 32P exclusively in the phospholipid moiety and purified on a KBr ultracentrifugation gradient. The density of purified [32P]phospholipid labelled lipophorin on the fifth day after a blood meal was 1.1211 ± 0.0017 g/ml. By weight it contained 51.7% protein, 0.7% sugar and 47.6% lipid. The protein moiety was composed of three apoproteins of 226 ± 11, 86 ± 2 and 16 ± 1 kDa. Mannose and N-acetylglucosamine were the only sugars detected. Among the lipids, 66.3% were neutral lipids and 33.8% were phospholipids. Analysis by thin-layer chromatography showed that in the total phospholipids fraction 32P was distributed as follows: phosphatidylethanolamine (54.4%), phosphatidylcholine (44.7%), cardiolipin (2.1%), phosphatidylserine (0.7%), phosphatidylinositol (0.4%), sphingomyelin (0.3%) and phosphatidic acid (0.2%). The total phosphate content was 0.53 ± 0.03 nmol/μg of protein.  相似文献   

9.
《Insect Biochemistry》1987,17(7):1065-1069
Spatial and temporal distribution of insecticyanin was studied in the fourth and fifth larval instars of Manduca sexta. The protein was distributed between the epidermis (62%), the hemolymph (37%) and the pericardial cells (0.5%). Hemolymph insecticyanin (HINS) was highest (0.6 mg/ml) in the very early fourth instar, gradually declining to 0.3 mg/ml. Levels in the fifth instar decreased after ecdysis (0.15 mg/ml), began to rise at wandering, and nearly doubled by the time of pupation. Titers of epidermal insecticyanin (EINS) followed the general growth patterns during the fourth and early fifth instar. At 76 hr after fifth instar ecdysis, titers of EINS dropped precipitously and then rose again to peak just after the wandering stage. Levels of EINS again rapidly declined and could not be detected after 180 hr. Ecdysteroids appear to shut off synthesis of EINS but this response is quantitatively modified in the presence of JH. Endocrine manipulation of the last larval-larval molt indicated that juvenile hormone (JH) acts quantitatively on EINS to induce a dose-dependent increase. The JH-induced increase can be as much as 4-fold, depending upon the body region.  相似文献   

10.
During the transition from the last feeding larval stage to the pupal stage of the tobacco hornworm, Manduca sexta, significant changes occur in the properties of lipophorin, the major hemolymph lipoprotein. Within the first 24 h after cessation of feeding, the larval lipophorin (HDLp-L) is first converted to a higher density form (HDLp-W2) and then HDLp-W2 is converted to a lower density form (HDLp-W1). HDLp-W1 remains in the hemolymph until pupation, when another form, HDLp-P, with a density between HDLp-W1 and HDLp-L, is present. Although all the lipophorins contain identical apoproteins, they differ in lipid content and composition; the differences in density being primarily related to diacylglycerol content. The conversion of HDLp-L to HDLp-W1 is accompanied by a loss of hydrocarbon and uptake of carotenes. These latter changes in lipophorin composition reflect alterations in cuticular lipid composition. HDLp-L was radiolabeled in the apoproteins by injecting animals with 3H-amino acids early in the last larval stage. Subsequently HDLp-L was isolated at the end of the larval stage, HDLp-W2 and HDLp-W1 were isolated during the wandering stage, and HDLp-P was isolated after pupation. The specific activity of the apoproteins in the four lipophorins was not significantly different, suggesting that the observed alterations in lipophorin properties do not require synthesis of new apoproteins but result from retailoring the lipid composition of preexisting molecules. Examination of the hemolymph of individual animals during these transitions showed that only one species of lipoprotein was present, never a mixture of two or more species. These observations suggest that the lipoprotein conversions are precisely timed and that lipoprotein metabolism during larval development and pupation cannot be considered a static process. The unique finding of these studies was that synthesis of lipophorin apoproteins proceeds actively during the first part of the fifth instar but then ceases and does not recommence during the wandering or early pupal stages.  相似文献   

11.
The hemolymph lipoprotein lipophorin has been isolated from third-instar Drosophila melanogaster larvae by a technique that involves homogenization of whole larvae in a medium containing protease inhibitors and purification of the lipoprotein by density gradient centrifugation. Drosophila lipophorin has a density of 1.16 g/ml and is composed of 62.5% protein, 23.1% phospholipid, 7.4% diacylglycerol, 5.4% triacylglycerol, 0.9% hydrocarbon, and 0.7% sterol. As is the case with other insect lipophorins, Drosophila lipophorin contains two apolipoproteins, apolipophorin-I (Mr ≈ 275,000) and apolipophorin-II (Mr ≈ 76,000). Drosophila apolipophorin-I does not crossreact with antibodies prepared against apolipophorin-I from Manduca sexta.  相似文献   

12.
Midgut and fatbody mitochondria from fifth larval instar Manduca sexta display a membrane-associated transhydrogenase that catalyzes a reversible hydride ion transfer between NADP(H) and NAD(H). The NADPH-forming activity occurs as a nonenergy- or energy-linked activity with energy for the latter derived from either electron transport-dependent NADH or succinate utilization, or ATP hydrolysis by Mg++-dependent ATPase. During the ten-day developmental period preceding the larval-pupal molt (fifth larval instar), significant peaks in the mitochondrial transhydrogenase activities of midgut and fatbody tissues were noted and these peaks were coincident with the onset of wandering behavior and with the fifty-fold increase in ecdysone 20-monooxygenase (E20-M) activity previously reported for M. sexta midgut. Since E20-M preferentially uses NADPH in catalyzing ecdysone conversion to the physiologically active molting hormone, 20-hydroxyecdysone, the physiological and developmental significance of the mitochondrial, NADPH-forming energy-linked transhydrogenations were made apparent. Moreover, that the increases in all transhydrogenase activities resulted from de novo enzyme synthesis were indicated by the cycloheximide-dependent reductions in these activities.  相似文献   

13.
Lipid transport in the hemolymph of Manduca sexta is facilitated by a high density lipophorin in the resting adult insect (HDLp-A, d approximately 1.109 g/ml) and by a low density lipophorin during flight (LDLp, d approximately 1.060 g/ml). Lipophorin presumably shuttles different lipids between sites of uptake or storage, and sites of utilization. In order to shuttle lipid, a lipid-depleted lipophorin should be able to reload with lipid. To test this hypothesis, we used HDLp-A particles that were artificially depleted of either phospholipid (d approximately 1.118 g/ml) or diacylglycerol (d approximately 1.187 g/ml) and subsequently radiolabeled in their protein moiety. Upon injection into adult moths, both particles shifted their density to that of native HDLp-A, indicating lipid loading. Also, upon subsequent injection of adipokinetic hormone, both particles shifted to a lower density (d approximately 1.060 g/ml) indicating diacylglycerol loading and conversion to LDLp. Both phospholipid and diacylglycerol loading were also studied using an in vitro system. The lipid-depleted particles were incubated with fat body that had been radiolabeled in either the phospholipid or the triacylglycerol fraction. Transfer of radiolabeled phospholipid and diacylglycerol from fat body to lipophorin was observed. During diacylglycerol loading, apoLp-III associated with lipophorin, whereas phospholipid loading occurred in the absence of apoLp-III. The results show the ability of lipid-depleted lipophorins to reload with lipid and therefore reaffirm the role of lipophorin as a reusable lipid shuttle.  相似文献   

14.
Adipokinetic hormone, a decapeptide isolated from the locust, stimulates mobilization of diacylglycerols from the locust fat body and loading of the lipid transport protein, lipophorin. Injection of the synthetic locust adipokinetic hormone into a sphinx moth, Manduca sexta, causes lipid loading of lipophorin. The lipophorin decreases in density from 1.11 to 1.06 g/ml, and a soluble protein from the hemolymph (apolipophorin III) associates with the lipophorin particle. Administration of intermediate doses of hormone indicates that lipophorin is converted directly to the low density form; no appreciable amounts of intermediate density particles are formed.  相似文献   

15.
The yellow color of Bombyx mori hemolymph is due to the presence of carotenoids, which are primarily associated with lipophorin particles. Carotenoids were extracted from high density lipophorin (HDLp) of B. mori and analyzed by HPLC. HDLp contained 33 μg of carotenoids per mg protein. Over 90% of carotenoids were lutein while -carotene and β-carotene were minor components. When larval hemolymph was subjected to density gradient ultracentrifugation, a second minor yellow band was present, which was identified as B. mori lipid transfer particle (LTP). During other life stages examined however, this second band was not visible. To determine if coloration of LTP may fluctuate during development, we determined its concentration in hemolymph and compared it to that of lipophorin. Both proteins were present during all life stages and their concentrations gradually increased. The ratio of lipophorin: LTP was 1015:1 during the fourth and fifth instar larval stages, and 2030:1 during the pupal and adult stages. Thus, there was no correlation between the yellow color attributed to LTP and its hemolymph concentration. It is possible that yellow coloration of the LTP fraction corresponds to developmental stages when the particle is active in carotene transport. To determine if LTP is capable of facilitating carotene transfer, we took advantage of a white hemolymph B. mori strain which, when fed artificial diet containing a low carotene content, gives rise to a lipophorin that is nearly colorless. A spectrophotometric, carotene specific, transfer assay was developed which employed wild type, carotene-rich HDLp as donor particle and colorless low density lipophorin, derived from the white hemolymph strain animals, as acceptor particle. In incubations lacking LTP carotenes remained associated with HDLp while inclusion of LTP induced a redistribution of carotenes between the donor and acceptor in a time and concentration dependent manner. Time course studies suggested the rate of LTP-mediated carotene transfer was relatively slow, requiring up to 4 h to reach equilibrium. By contrast, studies employing 3H-diacylglycerol labeled HDLp as donor particle in lipid transfer assays revealed a rapid equilibration of label between the particles. Thus, it is plausible that the slower rate of LTP-mediated carotene transfer is due to its probable sequestration in the core of HDLp.  相似文献   

16.
《Insect Biochemistry》1986,16(2):353-358
The levels of a biliverdin-associated protein in the hemolymph of larvae, pupae and adults, and in egg homogenates, of Manduca sexta were determined by radial immunodiffusion. The concentration of the protein fluctuates dramatically during development and displays an ontogenetic pattern different from that of the total hemolymph protein concentration. During the larval stages studied, the very early fourth instar displayed the highest concentration of insecticyanin (0.6 mg/ml), which dropped precipitously afterwards (0.3 mg/ml). During fifth instar development, the levels decreased after ecdysis (0.15 mg/ml), began to rise at wandering, and nearly doubled (0.3 mg/ml) by the time of pupation. Pupal titers of the protein remained fairly constant until the day before adult eclosion, when titers increased. The highest levels of any stage were recorded for adults 12 hr post eclosion (0.80 mg/ml).  相似文献   

17.
The density of lipophorin was determined in adult females of Rhodnius prolixus on different days after a meal. Several populations of lipophorins, differing in density but always in the range of HDL, were found in the hemolymph. The density of the major population was analyzed and a complex profile of density variation was found associated with the principal metabolic events in these insects digestion and oogenesis. During the initial three days after the blood meal, with the onset of the digestive process, the density of lipophorin decreased from 1.1185 g/l to 1.1095 g/l, associated with the transfer of lipids from midgut to the lipophorin particles. During the period of intense vitellogenesis and lipid uptake by the ovary, the lipophorin density started to increase and reached the value, 1.1322 g/l, and remained stable up to the end of oogenesis. As soon as the requirement of lipids to build up the oocytes ceased, the density of lipophorin decreased to its initial value associated with the transfer of lipids from fat body to lipophorin. Soon after the blood meal the midgut was the main source of lipids capable of replenishing the lipophorin particles, while the fat body assumed this function during the succeeding days and reached its maximum capacity around day 10, as estimated by the rate of lipid transfer. The principal lipids transferred were phospholipids and diacylglycerols. Except in the protein/lipid ratio no major changes were observed among different lipids isolated from lipophoin of different densities. Arch. Insect Biochem. Physiol. 35:301-313, 1997.© 1997 Wiley-Liss, Inc.  相似文献   

18.
Three major hemolymph proteins of Papilio polyxenes larvae were isolated and characterized. Density gradient ultracentrifugation of hemolymph resulted in flotation of the major lipoprotein, lipophorin. P. polyxenes larval lipophorin is composed of two apoproteins, apolipophorin-I and apolipophorin-II, plus a mixture of lipids, to give a density of 1.13 g/ml. Immunoblotting experiments using antisera directed against Manduca sexta apolipophorin-I and apolipophorin-II, respectively, revealed cross-reactivity of apoLp-I with Manduca sexta apoLp-I, and apoLp-II with M. sexta apoLp-II. Gel permeation chromatography of the subnatant obtained following density gradient ultracentrifugation revealed the presence of a major protein peak which was shown to contain three major serum proteins, two of which were isolated and characterized. One of these proteins was purified by lectin affinity chromatography. Both proteins have native molecular weights in the range of 450,000 and appear to be hexamers of a single subunit type. Major serum protein-1 is nonglycosylated and has a subunit molecular weight of 75,000. Major serum protein-2 is glycosylated and has a subunit molecular weight of 74,000. Amino acid analysis of this protein revealed a tyrosine plus phenylalanine content of 20 mole percent, characteristic of the arylphorin class of insect storage proteins. Using antibodies against M. sexta larval hemolymph proteins, both the P. polyxenes major serum proteins were shown to be immunologically related to serum proteins of other lepidopteran species.  相似文献   

19.
Lipid transfer particle (LTP) is present in hemolymph of the tobacco hornworm Manduca sexta. Biosynthesis of LTP, occurrence in hemolymph, and the role of LTP-apoproteins in the lipid transfer reaction were investigated using antibodies specific for LTP or for each of the apoproteins. In vitro protein synthesis followed by immunoprecipitation demonstrated that LTP is synthesized by the fat body and secreted into the medium. In contrast to apolipophorin III, an exchangeable apoprotein of lipophorin (the major lipid transport protein in hemolymph), apoLTP-III could not be detected free in hemolymph. LTP concentrations in the hemolymph were measured by a sandwich ELISA using a mouse monoclonal antibody against apoLTP-III as capturing antibody and rabbit polyclonal antibody against apoLTP-I as detecting antibody. LTP concentration increased during the late fifth instar larval stage, followed by a decrease in the wandering stage. Subsequently, LTP concentrations were strongly increased in hemolymph of adult moths. The role of the three apoproteins of LTP in the lipid transfer reaction was analyzed using apoprotein-specific antibodies. All three, apoLTP-I, -II, and -III, appeared to be important for lipid transfer activity, as shown by inhibition of lipid transfer by antibodies specific for each of the three apoproteins. © 1996 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号