首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to establish whether p.m.r. spectroscopy is useful for identifying Amadori- and Heyns-rearrangement products, the p.m.r. spectra at 220 MHz of 16 rearrangement products derived from d-glucose or d-fructose and amino acids have been investigated. At pH 3, the protons of the NCH2 group of N-substituted 1-amino-1-deoxy-d-fructose (Amadori-rearrangement products) resonate at δ 3.25–3.60 in D2O and are shifted upfield by 0.3–0.6 p.p.m. at pH 9. These protons exchange with deuterium. Also, in D2O there is an equilibrium of the acyclic, furanose, and pyranose structures, the last being favoured. At pH ? 7, the equilibrium is completely shifted to the β-pyranose form, which adopts exclusively the 2C5 conformation. At pH 3, the equilibrium favours the β-furanose form. At pH 3, H-1e and H-1a of N-substituted 2-amino-2-deoxy-d-glucoses (Heyns-rearrangement products) resonate at δ 5.55 and 5.04, respectively. At pH 9, the signal for H-2 is shifted upfield by 0.2–0.7 p.p.m. In D2O solution, these compounds exist as an equilibrium of α- and β-pyranose forms in the 4C1 conformation. The α anomer is stabilised by the amino acid group at position 2. At pH 3, the αβ-ratio is 2–4:1, and, at pH 9, 1.0–1.1:1.  相似文献   

2.
Starch suspensions have been treated with dilute, aqueous bromine at 30° in the pH range 6–8; no adsorption of oxidant occurred. The oxidation kinetics were first-order in bromine and in accordance with the rate law d [bromine]/dtk [starch] [bromine], except for a minor, initial rapid-phase in the oxidation of cereal starches, which is attributed to an enhanced reactivity of the granule surface. The apparent first-order rate-constants were 2.0–2.8 x 10?3 min?1, except for retrograded amylose oxidised at pH 8 when the value was 5.6 x 10?3 min?1. The i.r. spectra of the products indicated the presence of carboxylate and aldehyde groups. The functional group contents were determined quantitatively. Oxidation of the amylose at pH 6–7 introduced carbonyl groups, whereas at pH 8 carbonyl and carboxylate were found in equal amounts. For waxy-maize starch oxidised at pH 6–8, the carbonyl content was twice that of carboxylate. Acid hydrolysis of the product obtained by oxidation of amylose proceeded at pH 8 according to first-order kinetics. Chromatographic analysis of the anionic components of the hydrolysate indicated the presence of D-glucurono-6,3-lactone, D-gluconic acid, and an unidentified acidic ketose.  相似文献   

3.
Benzothiazole-2-sulfonate (BTSO3) is one of the side products occurring in 2-mercaptobenzothiazole (MBT) production wastewater. We are the first to isolate an axenic culture capable of BTSO3 degradation. The isolate was identified as a Rhodococcus erythropolis strain and also degraded 2-hydroxybenzothiazole (OBT) and benzothiazole (BT), but not MBT, which was found to inhibit the biodegradation of OBT, BT, and BTSO3. In anaerobic resting cell assays, BTSO3 was transformed into OBT in stoichiometric amounts. Under aerobic conditions, OBT was observed as an intermediate in BT breakdown and an unknown compound transiently accumulated in several assays. This product was identified as a dihydroxybenzothiazole. Benzothiazole degradation pathways seem to converge into OBT, which is then transformed further into the dihydroxy derivative.  相似文献   

4.
On incubation of resident mouse peritoneal macrophages with arachidonic acid several hydroxyacyl derivatives detectable in cellular supernatants are formed. As main products monohydroxyarachidonic acids (monoHETE's) were identified. In addition, smaller amounts of dihydroxyarachidonic acids (diHETE's) supernatants by reversed phase HPLC, normal phase HPLC in combination with UV-spectroscopy and combined gas-chromatography / masspectrometry revealed the presence of 5-, 8-, 12- and 15 - mono-HETE's, two distinct 5, 12-diHETE's, several 8, 15-diHETE's and 14, 15-diHETE. Among the 5, 12-diHETE's, only small amounts of a compound with the characteristics of LTB, were detected. Under the conditions employed, the cycloxygenase products PGE2 and PGI2 (as 6-keto-PGF1g) were only minor metabolites. In contrast, when macrophage cultures were stimulated with the phagocytic stimulus zymosan, PGI2, PGE2 and LTC4 were found as the major conversion products of arachidonic acid, whereas mono- and diHETE's were not formed in detectable amounts.  相似文献   

5.
ACTH-(1–24) was rapidly degraded to its constituent amino acids upon incubation with soluble mouse brain preparations. Breakdown had a pH optimum near neutrality, a Km of 1 × 10?4m, and a Vmax of 63 nmol/mg protein/h. Initially a preferential liberation of the amino acids of the N-terminal region of the hormone was observed, followed shortly by a relatively uniform release of amino acids originating throughout the ACTH-(1–24) sequence. Enzymes cleaving internal bonds appear to play a major role in the degradation. The short lag period between hormone disappearance and amino acid formation indicated that few if any large peptides were accumulated during incubation. Pepstatin, chymostatin, antipain, leupeptin, bacitracin, l-1-tosylamide-2-phenylethylchloromethyl ketone, soybean trypsin inhibitor, and diisopropyl-fluorophosphate had little or no effect on amino acid release. Puromycin, bestatin, and EDTA partially inhibited amino acid formation, affecting mainly the residues in the central and carboxyl portions of ACTH-(1–24). N-Ethylmaleimide strongly inhibited the release of all amino acids, indicating extensive involvement of sulfhydryl peptidases in ACTH-(1–24) breakdown.  相似文献   

6.
Petronijevic T. and Rogers W. P. 1987. Undissociated bases as the stimulus for the development of early parasitic stages of nematodes. International Journal for Parasitology 17 :911–915. The effects of NH4Cl and NH2CH3 on infective stages of Haemonchus contortus, Nematospiroides dubius and Ascaris suum have been compared with the action of H2CO3. Detailed experiments were carried out with H. contortus. NH4Cl at pH 8 under air was less toxic to infective stages than it was to free-living juveniles of Panagrellus redivivus. The induction of exsheathment or hatching by bases was slow (20–30 h) though the time of development of 4th stage H. contortus was not proportionally increased. Activity at pH 6 was less than that at pH 8. In contrast to the action of H2CO3 as the stimulus, NH4Cl was not Ca2+-dependent. Prolonged exposure to anoxia at pH 8 was toxic, but in the presence of NH4Cl or H2CO3 toxicity was decreased. The inhibition of exsheathment due to Dnp at pH 7 was greater when NH4Cl was the stimulus.The process whereby host signals induce development of parasitic stages is discussed.  相似文献   

7.
《BBA》2020,1861(9):148237
Cytochrome a was suggested as the key redox center in the proton pumping process of bovine cytochrome c oxidase (CcO). Recent studies showed that both the structure of heme a and its immediate vicinity are sensitive to the ligation and the redox state of the distant catalytic center composed of iron of cytochrome a3 (Fea3) and copper (CuB). Here, the influence of the ligation at the oxidized Fea33+–CuB2+ center on the electron–proton coupling at heme a was examined in the wide pH range (6.5-11). The strength of the coupling was evaluated by the determination of pH dependence of the midpoint potential of heme a (Em(a)) for the cyanide (the low-spin Fea33+) and the formate-ligated CcO (the high-spin Fea33+). The measurements were performed under experimental conditions when other three redox centers of CcO are oxidized. Two slightly differing linear pH dependencies of Em(a) were found for the CN– and the formate–ligated CcO with slopes of −13 mV/pH unit and −23 mV/pH unit, respectively. These linear dependencies indicate only a weak and unspecific electron–proton coupling at cytochrome a in both forms of CcO. The lack of the strong electron–proton coupling at the physiological pH values is also substantiated by the UV–Vis absorption and electron–paramagnetic resonance spectroscopy investigations of the cyanide–ligated oxidized CcO. It is shown that the ligand exchange at Fea3+ between His–Fea3+–His and His–Fea3+–OH occurs only at pH above 9.5 with the estimated pK >11.0.  相似文献   

8.
(1 → 4)-α-d-Glucan 4-glucosyltransferase (EC2.4.1.19) of klebsiella pneumoniae transforms maltose (G2) into d-glucose (G1) and a mixture of malto-oligosaccharides (G2—G9), and maltotriose (G3) into Gl—Gll in addition to cyclo-hexa-, -hepta-, and -octa-amyloses (cG6—8). It produces a similar mixture, but with higher amounts of G2—G11, by transfer from cyclohexaamylose to G1. By using p-nitrophenyl α- and β-d-glucosides, 4 methylumbelliferyl α-d-glucoside, and strophanthyl α-d-glucoside as acceptors and cyclohexaamylose as donor, a homologous series of substituted malto-oligosaccharides having chain lengths of up to 12 d-glucose residues was produced. High-pressure liquid chromatography on Bio-Gel P2 permitted separation of these products of transferase activity on analytical and preparative scales. By the same technique, the nitration product of phenyl hepta-O-acetyl-α-maltoside, after deacetylation, was separated into about equal amounts of the o- and p-isomers. The synthetic p-nitrophenyl α-maltoside (pNPG2) was used to identify the first member of the series of biochemical transfer-products. p-Nitrophenyl maltotrioside (pNPG3) and maltotetraoside (pNPG4) were shown to be the higher homologues. They are very good substrates for human and pig-pancreatic alpha amylase. This substrate behavior may be measured conveniently in the case ofpNPG3 by the rapid liberation of nitrophenolate; the enzyme used pNPG4 only on addition of α-d-glucosidase. Human-parotis amylase of equal starch-splitting activity as the pancreatic enzyme acts upon pNPG3 and pNPG4 but about 100 times more slowly.  相似文献   

9.
Carbonic anhydrase activity (hydration of CO2 was found in homogenates of leaves (116–500 units.mg?1 protein) and root nodules (27–255 units.mg?1 protein) from 8 legume genera inoculated in each case with a host specific Rhizobium. No enzyme, or only trace amounts (2–7 units.mg?1 protein), were detected in root extracts, The enzymatic activity was inhibited in all cases by azide and acetazolamide. The sizes of nodule and leaf carbonic anhydrases, estimated by gel filtration of partially purified preparations from Phaseolus vulgaris, were around 45 000 and 205 000 respectively. These enzymes also differed in sensitivity to inhibitors. More than 99% of the activity present in Vicia faba nodules was recovered as a soluble enzyme and only a trace was located in the isolated bacteroids.  相似文献   

10.
Considerable information has been obtained about the primary structures of suspension-cultured sycamore (Acer pseudoplatanus) cell-wall pectic polysaccharides, i.e. rhamnogalacturonan I, rhamnogalacturonan II, and homogalacturonan. However, these polysaccharides, which are solubilized from the walls by endo-α-1,4-polygalacturonase, account for only about half of the pectic polysaccharides known to be present in sycamore cell walls. We now report that, after exhaustive treatment with endo-α-1,4-polygalacturonase, additional pectic polysaccharides were extracted from sycamore cell walls by treatment with Na2CO3 at 1 and 22°C. These previously uncharacterized polysaccharides accounted for ~4% of the cell wall. Based on the glycosyl and glycosyl-linkage compositions and the nature of the products obtained by treating the quantitatively predominant NaCO3-extracted polysaccharides with lithium metal dissolved in ethylenediamine, the polysaccharides were found to strongly resemble rhamnogalacturonan I. However, unlike rhamnogalacturonan I that characteristically had equal amounts of 2- and 2,4-linked rhamnosyl residues in its backbone, the polysaccharides extracted in Na2CO3 at 1°C had markedly disparate ratios of 2- to 2,4-linked rhamnosyl residues. We concluded that polysaccharides similar to rhamnogalacturonan I but with different degrees of branching are present in the walls of suspension-cultured sycamore cells.  相似文献   

11.
Experiments to determine the early labeled photosynthetic products in Elodea canadensis show that after 2 seconds of exposure to NaH14CO3, 45% of the 14C incorporated is located in malate and aspartate. Phosphoglyceric acid and sugars account for 27% of the label during similar exposures. Equivalent amounts of organic acids and C3 cycle products are present after 8 seconds. Four-carbon acids remain relatively unchanged throughout the first 45 seconds of exposure, while sugars increase in a linear fashion. Enzyme assays indicate that ribulose diphosphate and phosphoenolpyruvate carboxylase enzymes are present in a ratio of approximately 2:1. It appears that E. canadensis is able to synthesize significant amounts of four-carbon acids via β-carboxylation and this may play a role in maintaining a pH favorable for carboxylation in aquatic plants.  相似文献   

12.
1. Bovine pancreatic ribonuclease is not reduced by GSH at near-physiological concentrations and pH. 2. Disruption of the structure of ribonuclease by proteolytic enzymes leads to products that can be reduced by GSH. 3. At higher temperatures the disulphide bonds of ribonuclease are completely reduced by GSH in a coupled system. The Ttr is 51° and this has been found to be lower than the Ttr for the abnormal tyrosine residues under the same conditions.  相似文献   

13.
Formation constants of ternary complexes MAL, where M = Cu(II) or Ni(II). A = 2.2′bipyridyl. 1, 10-phenanthroline, and L = 3.4-dihydroxyphenylalanine (dopa), tyrosine, or phenylalanine have been determined by using the computer program SCOGS. It is observed that dopa coordinates with Cu(II)-A and Ni(II)-A through the aminocarboxylate and only over the pH range 3–8, though the ligand coordinates with free Cu(II) ion from the amino carboxylate end in the lower pH range (pH 2–4) and from the catechol end at the higher pH range (pH > 5). The visible spectrum of Cu-A-dopa is similar to that of Cu-A-phenylalanine or Cu-A-tyrosine over the entire pH range, confirming amino carboxylate coordination. Δ log K (KMAL - logKML) is found to be positive in all the six Cu(II) complexes. whereas it is negative in Ni(II) complexes. Release in the ternary complexes of the repulsion between the Cu(II) dπ electron and electrons delocalized over the phenyl ring has been proposed as a probable reason for the positive Δ log K.  相似文献   

14.
Di(nucleosid-5′-yl) polyphosphates (NPnN) are involved in various biological processes, and constitute signaling molecules in the intermolecular purinergic systems. They exert tumor suppression function and are substrates for specific hydrolases (e.g., HIT proteins). Their structural analogs may serve as molecular probes and potential therapeutic agents. Three P1,P3-bis-thio-analogs of symmetrical di(nucleosid-5′-yl) triphosphates (NP3N) bearing adenosine, guanosine or ribavirin residues (6, 7 and 8, respectively), were obtained by direct condensation of corresponding base-protected nucleoside-5′-O-(2-thio-1,3,2-oxathiaphospholane) with anhydrous phosphoric acid in the presence of DBU. Deprotected products 6 and 8 were separated into individual P-diastereoisomers, whereas 7 was partially separated to yield diastereomerically enriched fractions. The absolute configuration at P-stereogenic centers in the separated diastereoisomers was assigned by RP-HPLC analysis of the products of enzymatic digestion with snake venom phosphodiesterase. The Fhit-assisted hydrolysis rates for 6 and 7 are by 2–3 orders of magnitude lower than that for the reference AP3A, and depend on the configuration of the stereogenic phosphorus atoms, while 8 occurred to be resistant to this cleavage.  相似文献   

15.
The products of hydrolytic action of 18 enzyme preparations at pH 3·5 and 5·5 on pectate were analyzed by gel-filtration chromatography early in the course of reaction (8–15% hydrolysis), and at a time 10 times that required for 10% hydrolysis. The degree of hydrolysis at the latter time varied from 25 to 74%. Three patterns of oligosaccharide production could be distinguished: endo-hydrolysis, exo-hydrolysis, and that due to S-polygalacturonase. The initial products of endo-hydrolysis were mixed oligosaccharides 5–30 units long; monomer and dimer appeared early but represented less than 2% of the products until late in the reaction. exo-Polygalacturonase (not entirely free of endo-) showed predominant production of the monomer and was clearly evident when mixed with four parts of endo-polygalacturonase. The time course of reducing group production by highly purified S-polygalacturonase could be reproduced by the above mixture of exo- and endo-polygalacturonases, but the pattern of products and the pH relations could not. The initial products of S-polygalacturonase were monomer, dimer and pentamer with lesser amounts of trimer and tetramer. After the hydolysis of the polymer and large oligomers, the pentamer was attacked by S-polygalacturonase, in the same way that the accumulated hexamer, etc. were finally hydrolysed by the endo-polygalacturonase.  相似文献   

16.
A class V chitinase from Nicotiana tabacum (NtChiV) with amino acid sequence similar to that of Serratia marcescens chitinase B (SmChiB) was expressed in E. coli and purified to homogeneity. When N-acetylglucosamine oligosaccharides [(NAG)n] were hydrolyzed by the purified NtChiV, the second glycosidic linkage from the non-reducing end was predominantly hydrolyzed in a manner similar to that of SmChiB. NtChiV was shown to hydrolyze partially N-acetylated chitosan non-processively, whereas SmChiB hydrolyzes the same substrate processively. The crystal structure of NtChiV was determined by the single-wavelength anomalous dispersion method at 1.2 Å resolution. The protein adopts a classical (β/α)8-barrel fold (residues 1–233 and 303–348) with an insertion of a small (α + β) domain (residues 234–302). This is the first crystal structure of a plant class V chitinase. The crystal structure of the inactive mutant NtChiV E115Q complexed with (NAG)4 was also solved and exhibited a linear conformation of the bound oligosaccharide occupying ?2, +1, +2, and +3 subsites. The complex structure corresponds to an initial state of (NAG)4 binding, which is proposed to be converted into a bent conformation through sliding of the +1, +2, and +3 sugar units to ?1, +1, and +2 subsites. Although NtChiV is similar to SmChiB, the chitin-binding domain is present in the C-terminus of the latter, but not in the former. Aromatic amino acid residues found in the substrate binding cleft of SmChiB, including Trp97, are substituted with aliphatic residues in NtChiV. These structural differences appear to be responsible for NtChiV being a non-processive enzyme.  相似文献   

17.
The interaction between unsaturated phosphatidylcholines and either exogenous or endogenous (produced by the enzyme system involving myeloperoxidase (MPO), H2 O2 ,and Cl) hypochlorite was studied in multilayer liposomes containing oleic, linoleic, and arachidonic acid residues using MALDI TOF mass spectrometry. At pH 7.4, hypochlorite reacts with the double bond of the oleic acid residue in 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine producing oleic acid chlorohydrin as the main product. Minor amounts of glycols and epoxides were also detected. The main products of the reaction of hypochlorite with 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine were mono and di chlorohydrins of linoleic acid. The signals of monoglycol, epoxide, and glycol or epoxide containing monochlorohydrin derivatives were also present in the mass spectrum. The main products of the reaction of hypochlorite with 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine were lysophosphatidylcholine (1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine) and mono-, di-, and trichlorohydrin. Monoglycol and its derivatives containing one or two chlorohydrin groups were also detected. Along with those, carbonyl compounds (aldehyde and acid) formed as a result of double bond breakage in fifth position of arachidonate were detected. Monochlorohydrin was also found when liposomes comprising 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine were incubated in the presence of enzymatic mixture, MPO +H2 O2 +Cl,at pH 6.0. In the absence of the enzyme or either of its substrates (H2 O2 or Cl) or in the presence of the MPO inhibitor (sodium azide) or hypochlorite scavengers (taurine or methionine), monochlorohydrin formation was not observed. These data confirm the suggestion that just the hypochlorite generated in MPO catalysis provides for chlorohydrin formation. Thus, the use of MALDI TOF mass spectrometry has shown, along with chlorohydrins, glycols and epoxides as the products of hypochlorite interaction with unsaturated phosphatidylcholines at physiological pH. It was first determined that hypochlorite breaks double bonds in polyunsaturated phosphatidylcholine and also causes lysophosphatidylcholine formation.  相似文献   

18.
Several factors which influence the speed of fermentation of quickly dried yeast are investigated. If the yeast is washed and the bulk of coenzymes and phosphate is removed, addition of 0.5 μmole diphosphopyridine nucleotide (DPN) and 0.5 μmole adenosine triphosphate (ATP) per cc. is necessary for maximal speed. In the optimal pH range, which lies between 6.6 and 6.2, and with optimal amounts of cofactors, there is no influence of nicotinamide mononucleotide (NMN), but with suboptimal amounts of DPN, the speed is raised by synthesis to DPN.The dialyzate of boiled juice contains factors which raise the speed of washed yeast by 20–30% of the maximum obtained in the presence of the usual cofactors. A phosphate concentration of 0.01–0.02 M is likewise necessary even if the phosphate is only partly esterified. At pH 6.0 to 5.9 the speed is less than half that at pH 6.5.Fermentation is completely absent without either K+ or NH4+ and without Mg. The optimal amount of the monovalent ions is 5 × 10?2M. Sodium alone is unable to allow fermentation but is only slightly harmful if enough K+ or NH4+ is present.Addition of small amounts of phosphoglycerate at optimal potassium phosphate concentration and pH increases the rate of sugar fermentation and gives rise to an extra CO2 formation during the time of phosphoglycerate decomposition of about 3 to 5 times the amount added.  相似文献   

19.
The subcellular distribution and relative amounts of the two isozymes, F1 and F2, of aldehyde dehydrogenase (EC 1.2.1.3) which were recently purified to homogeneity from horse liver (Eckfeldt, J., et al. (1976) J. Biol. Chem.251, 236–240) have been investigated. A fresh horse liver homogenate was fractionated on DEAE-cellulose. The results indicate that approximately 60% of the total pH 7.0 acetaldehyde dehydrogenase activity is due to the F1 isozyme and 40% is due to the F2 isozyme. Several horse livers were then fractionated into subcellular components using a differential centrifugation method. Based on the disulfiram (Antabuse) inhibition and the aldehyde concentration dependence of the enzymatic activity, it appears that the disulfiram-sensitive F1 isozyme (Km acetaldehyde ? 70 μm) is primarily cytosolic and the disulfiram-insensitive F2 isozyme (Km acetaldehyde ? 0.2 μm) is primarily mitochondrial. Fluorescence studies showed that the acetaldehyde dehydrogenase of the intact mitochondria could utilize only the endogenous pyridine nucleotide pool and not externally added NAD. Also, the ethanol dehydrogenase activity was found to be nearly 10 times the total acetaldehyde dehydrogenase activity when assaying a horse liver homogenate at pH 7.0 and with saturating substrates. The significant differences between this work and the results reported in rat liver are discussed with respect to the physiological importance of the cytosolic and mitochondrial aldehyde dehydrogenase during the ethanol oxidation in vivo.  相似文献   

20.
Hypobromous acid (HOBr) is formed by eosinophil peroxidase and myeloperoxidase in the presence of H2O2, Cl?, and Br? in the host defense system of humans, protecting against invading bacteria. However, the formed HOBr may cause damage to DNA and its components in the host. When a guanine nucleoside (3′,5′-di-O-acetyl-2′-deoxyguansoine) was treated with HOBr at pH 7.4, spiroiminodihydantoin, guanidinohydantoin/iminoallantoin, dehydro-iminoallantoin, diimino-imidazole, amino-imidazolone, and diamino-oxazolone nucleosides were generated in addition to an 8-bromoguanine nucleoside. The major products were spiroiminodihydantoin under neutral conditions and guanidinohydantoin/iminoallantoin under mildly acidic conditions. All the products were formed in the reaction with HOCl in the presence of Br?. These products were also produced by eosinophil peroxidase or myeloperoxidase in the presence of H2O2, Cl?, and Br?. The results suggest that the products other than 8-bromoguanine may also have importance for mutagenesis by the reaction of HOBr with guanine residues in nucleotides and DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号