首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • 1.1. Uptake of [14C]-labelled d-glucose, l-arabinose and d-fructose by intestinal and renal brush border and basolateral membrane vesicles was studied in the absence of Na+ .
  • 2.2. The Na+-independent d-glucose transport system in these membrane vesicles was saturable, sensitive to phloretin, stereospecific and accessible only to d-glucose and d-galactose.
  • 3.3. Na+-independent l-arabinose transport was not saturable even when its concentration was raised to 300 mM and it was insensitive to phloretin.
  • 4.4. Na+-independent d-fructose transport demonstrated saturation kinetics with only renal brush border membrane vesicles, but it was not inhibited by either phloretin or phlorizin.
  • 5.5. These studies indicated that the Na+-independent carrier-mediated d-glucose/d-galactose transport system of intestinal and renal brush border and basolateral membranes is clearly not shared by other monosaccharides.
  相似文献   

2.
Summary The recent demonstration that the human colon adenocarcinoma cell line Caco-2 was susceptible to spontaneous enterocytic differentiation led us to consider the question as to whether Caco-2 cells would exhibit sodium-coupled transport of sugars. This problem was investigated using isotopic tracer flux measurements of the nonmetabolizable sugar analog -methylglucoside (AMG). AMG accumulation in confluent monolayers was inhibited to the same extent by sodium replacement, 200 m phlorizin, 1mm phloretin, and 25mm d-glucose, but was not inhibited further in the presence of both phlorizin and phloretin. Kinetic studies were compatible with the presence of both a simple diffusive process and a single, Na+-dependent, phlorizin-and phloretin-sensitive AMG transport system. These results also ruled out any interaction between AMG and a Na+-independent, phloretin-sensitive, facilitated diffusion pathway. The brush-border membrane localization of the Na+-dependent system was inferred from the observations that its functional differentiation was synchronous with the development of brush-border membrane enzyme activities and that phlorizin and phloretin addition 1 hr after initiating sugar transport produced immediate inhibition of AMG uptake as compared to ouabain. Finally, it was shown that brush-border membrane vesicles isolated from the human fetal colonic mucosa do possess a Na+-dependent transport pathway(s) ford-glucose which was inhibited by AMG and both phlorizin and phloretin. Caco-2 cells thus appear as a valuable cell culture model to study the mechanisms involved in the differentiation and regulation of intestinal transport functions.  相似文献   

3.
Sodium transport through the molluscan erythrocyte membrane was examined using 22Na as a tracer. Incubation of the red cells in standard saline resulted in a rapid 22Na uptake reaching steady state concentration (about 21.5 mmol/l cells) in the first 60 min. A similar pattern in the time course of 22Na uptake was seen in the erythrocytes incubated in mantle fluid. The average value of unidirectional Na+ influx, measured as a 5-min 22Na uptake, was 7.76 ± 0.36 mmol/1 cells/5 min or 93 ± 4.3 mmol/1 cells/hr. The initial rate of Na+ influx increased in a saturable fashion as a function of external Na+ concentration with apparent AT., of 380±12mM and Vmax of 14.3 ± 2.4 mmol/1 cells/5 min. Amiloride (1 mM), furosemide (1 mM), and DIDS (0.1 mM) had no effect on either initial Na+ influx (5 min 22Na uptake) or equilibrium Na+ concentration (60 min and 120min 22Na uptake) in the molluscan red cells exposed to standard saline. Quinine (1 mM) caused a significant fall in the initial Na+ influx (by 48%) and in 60-min 22Na uptake (by 32%) as compared with control levels. In the presence of 0.1 mM ouabain, 22Na uptake into the red cells was enhanced by an average 27% and 44% during 60 min and 120 min of cell incubation, respectively. The ouabain-sensitive Na+ accumulation in the red cells reflected a contribution of the Na, K-pump to Na+ transport and the mean value was 5.6 ± 1.0 mmol/1 cells/hr.  相似文献   

4.
The properties of the α1 Na+-K+ pump were compared in Dahl salt-sensitive (DS) and salt-resistant (DR) strains by measuring ouabain-sensitive luxes (mmol/liter cell x hr = FU, Mean ± se) in red blood cells (RBCs) and varying internal ( i ) and external ( o ) Na+ and K+ concentrations. Kinetic parameters of several modes of operation, i.e., Na+/ K+, K+/K+, Na+/Na+ exchanges, were characterized and analyzed for curve-fitting using the Enzfitter computer program. In unidirectional flux studies (n=12 rats of each strain) into fresh cells incubated in 140 mm Na+ + 5 mm K+, ouabain-sensitive K+ influx was substantially lower in the DS than in DR RBCs, while ouabain-sensitive Na+ efflux and Na i were similar in both strains. Thus, the coupling ratio between unidirectional Na+∶K+ fluxes was significantly higher in DS than in DR cells at similar RBC Na+ content. In the presence of 140 mm Na o , activation of ouabain-sensitive K+ influx by K o had a lower K m and V max in DS as estimated by the Garay equation (N=2.70 ± 0.33, K m 0.74 ± 0.09 mm; V max 2.87 ± 0.09 FU) than in DR rats (N=1.23 ± 0.36, K m 2.31 ± 0.16 mm; v max 5.70 ± 0.52 FU). However, the two kinetic parameters were similar following Na o removal. The activation of ouabain-sensitive K+ influx by Na i had significantly lower V max in DS (9.3 ± 0.4 FU) than in DR (14.5 ± 0.6 FU) RBCs but similar K m. These data suggest that the low K+ influx in DS cells is caused by a defect in modulation by Na o and Na i . Na+ efflux showed no differences in Na i activation or trans effects by Na o and K o , thus accounting for the different Na+∶K+ coupling ratio in the Dahl strains. Further evidence for the differences in the coupling of ouabain-sensitive fluxes was found in studies of net Na+ and K+ fluxes, where the net ouabain-sensitive Na+ losses showed similar magnitudes in the two Dahl strains while the net ouabainsensitive K+ gains were significantly greater in the DR than the DS RBCs. Ouabain-sensitive Na+ influx and K+ efflux were also measured in these rat RBCs. The inhibition of ouabain-sensitive Na+ influx by K o was fully competitive for the DS but not for the DR pumps. Thus, for DR pumps, K o could activate higher K+ influx in DR pumps without a complete inhibition of ouabain-sensitive Na+ influx. This behavior is consistent with K o interaction with distinct Na+ and K+ transport sites. In addition, the inhibition of K+ efflux by Na, was different between Dahl strains. Ouabain-sensitive K+ efflux at Na i level of 4.6 mmol/liter cell, was significantly higher in DS (3.86 ± 0.67 FU) than in DR (0.86 ± 0.14 FU) due to a threefold higher K50 for Na i -inhibition 9.66 ± 0.41 vs. 3.09 ± 0.11 mmol/liter cell. This finding indicates that Na+ modulation of K+ transport is altered at both sides of the membrane. The dissociation of Na+ modulatory sites of K+ transport from Na+ transport sites observed in RBCs of Dahl strains suggests that K+ transport by the Na+-K+ pump is controlled by Na+ allosteric sites different from the Na+ transport sites. The alterations in K+ transport may be related to the amino acid substitution (Leu/Gln276) reported for the cDNA of the α1 subunit of the Na+-K+ pump in the DS strain or to post-translational modifications during RBC maturation. These studies were supported by the following grants: NIH (HL-35664, HL-42120, HL-18318, HL-39267, HL-01967). J.R.R. is a Ford Foundation Predoctoral Fellow. A preliminary report of this work was presented at the International Conference on the Na+-K+ pump and 44th Annual Meeting of the Society of General Physiologists held at Woods Hole, MA, September 5–9, 1990, and published as an abstract in the J. Gen. Physiol. 96:70a, 1990.  相似文献   

5.
Intramuscular glutamine falls with injury and disease in circumstances associated with increases in blood corticosteroids. We have investigated the effects of corticosteroid administration (0.44 mg/kg dexamethasone daily for 8 days, 200 g female rats) on intramuscular glutamine and Na+, muscle glutamine metabolism and sarcolemmal glutamine transport in the perfused hindlimb. After dexamethasone treatment intramuscular glutamine fell by 45% and Na+ rose by 25% (the respective muscle/plasma distribution ratios changed from 8.6 to 4.5 and 0.12 to 0.15); glutamine synthetase and glutaminase activities were unchanged at 475 ± 75 and 60 ± 19 nmol/g muscle per min. Glutamine output by the hindlimb of anaesthetized rats was increased from 31 to 85 nmol/g per min. Sarcolemmal glutamine transport was studied by paired-tracer dilution in the perfused hindlimb: the maximal capacity (Vmax) for glutamine transport into muscle (by Na+-glutamine symport) fell from 1058 ± 310 to 395 ± 110 nmol/g muscle per min after dexamethasone treatment, accompanied by a decrease in the Km (from 8.1 ± 1.9 to 2.1 ± 0.4 mM glutamine). At physiological plasma glutamine concentration (0.75 mM) dexamethasone appeared to cause a proportional increase in sarcolemmal glutamine efflux over influx. Addition of dexamethasone (200 nM) to the perfusate of control rat hindlimbs caused acute changes in Vmax and Km of glutamine transport similar to those resulting from 8-day dexamethasone treatment. The reduction in muscle glutamine concentration after dexamethasone treatment may be primarily due to a reduction in the driving force for intramuscular glutamine accumulation, i.e., in the Na+ electrochemical gradient. The prolonged increase in muscle glutamine output after dexamethasone treatment (which occurs despite a reduction in the size of the intramuscular glutamine pool) appears to be due to a combination of (a) accelerated sarcolemmal glutamine efflux and (b) increased intramuscular synthesis of glutamine.  相似文献   

6.
We wished to examine the effects of diabetes on muscle glutamine kinetics. Accordingly, female Wistar rats (200 g) were made diabetic by a single injection of streptozotocin (85 mg/kg) and studied 4 days later; control rats received saline. In diabetic rats, glutamine concentration of gastrocnemius muscle was 33% less than in control rats: 2.60 ± 0.06 μmol/g vs. 3.84 ± 0.13 μmol/g (P < 0.001). In gastrocnemius muscle, glutamine synthetase activity (Vmax) was unaltered by diabetes (approx. 235 nmol/min per g) but glutaminase Vmax increased from 146 ± 29 to 401 ± 94 nmol/min per g; substrate Km values of neither enzyme were affected by diabetes. Net glutamine efflux (AZ concentration difference × blood flow) from hindlimbs of diabetic rats in vivo was greater than control values (?30.0 ± 3.2 vs. ?1.9 ± 2.6 nmol/min per g (P < 0.001) and hindlimb NH3 uptake was concomitantly greater (about 27 nmol/min per g). The glutamine transport capacity (Vmax) of the Na-dependent System Nm in perfused hindlimb muscle was 29% lower in diabetic rats than in controls (820 ± 50 vs. 1160 ± 80 nmol/min per g (P < 0.01)), but transporter Km was the same in both groups (9.2 ± 0.5 nM). The difference between inward and net glutamine fluxes indicated that glutamine efflux in perfused hindlimbs was stimulated in diabetes at physiological perfusate glutamine (0.5 mM); ammonia (1 mM in perfusate) had little effect on net glutamine flux in control and diabetic muscles. In Intramuscular Na+ was 26% greater in diabetic (13.2 μmol/g) than control muscle, but muscle K+ (100 μmol/g) was similar. The accelerated rate of glutamine release from skeletal muscle and the lower muscle free glutamine concentration observed in diabetes may result from a combination of; (i), a diminished Na+ electrochemical gradient (i.e., the net driving force for glutamine accrual in muscle falls); (ii), a faster turnover of glutamine in muscle and (iii), an increased Vmax/Km for sarcolemmal glutamine efflux.  相似文献   

7.
Isolated Malpighian tubules of Locusta reabsorb significant levels of glucose from their lumen back into the bathing fluid (haemolymph). This reabsorption is inhibited by phlorizin, phloretin and ouabain. Both phlorizin and phloretin are found to accumulate in the secreted fluid of the tubules against concentration gradients. Ouabain inhibition is explained in terms of its effect on intracellular Na+ concentrations. A hypothetical model of the role that Na+ may play in glucose reabsorption is presented as a possible explanation of these observations.  相似文献   

8.
  • 1.1. Uptake of l-leucine, l-phenylalanine, l-proline and l-lysine into brush border membrane vesicles from rats fed either a medium-chain triglyceride (MCT) or a long-chain triglyceride (LCT) diet was studied under conditions of the presence or absence of a Na+ gradient.
  • 2.2. From the results of initial rate, Na+-dependent transport in LCT feeding were lower than in feeding MCT. The Na+-independent transport did not vary in either group except for l-lysine uptake.
  • 3.3. For l-leucine, l-phenylalanine and l-proline in Na+ dependence, kinetic analysis revealed 4–6-fold smaller Vmax values in LCT group than in MCT group. l-Lysine in Na+-independent transport was 10-fold lower in LCT group than in MCT group. The Km values were not affected by feeding the LCT or MCT diet.
  • 4.4. It is clear that amino acid transport is regulated by different types of dietary fat. We consider that the alteration of transport activity is attributable to the changes in number of membrane-bound transport carriers but not to their affinity.
  相似文献   

9.
The uptake of l-methionine-methyl-3H and l-leucine-3H from completely defined medium into acid-soluble fractions of preimplantation mouse embryos has been studied. Late four-cell embryos and early blastocysts raised in vitro can concentrate both amino acids by processes which exhibit saturable, Michaelis-Menten type kinetics, characteristic of carrier-mediated active transport systems. This uptake is temperature-sensitive and inhibited by certain amino acids which compete for the same uptake sites. Methionine uptake seems to be mediated by a single transport system (Km = 6.25 × 10?5M) at the four-cell stage. Complex kinetics suggest that two distinct transport systems exist at the early blastocyst stage (Km = 6.25 × 10?5M; 8.9 × 10?4M). Vmax values (mg/embryo/15 min) for methionine and leucine transport increase significantly from the late four-cell stage to the blastocyst stage, suggesting that additional carriers are produced or activated during development.Most importantly, leucine and methionine transport is Na+-independent at the four-cell stage, methionine transport is partially dependent at the morula stage, and both amino acids are completely Na+-dependent at the blastocyst stage. The cumulative results suggest that preimplantation embryos accumulate leucine and methionine by specific, chemically mediated, active transport systems. The qualitative and quantitative developmental changes in cell membrane function may represent preparatory steps for subsequent growth of embryonic and/or trophoblastic cells.  相似文献   

10.
《Molecular membrane biology》2013,30(3-4):221-237
Flavanones and flavones are structural analogues of phloretin. Like phloretin they inhibit the non-Na+-dependent, facilitated diffusion transport system for sugars associated with the lateral serosal boundary of intestinal epithelial cells. The degree of inhibition varies with the extent and position of hydroxylation of the flavonoid nucleus. Flavones are more potent than corresponding flavanones. Tri- and tetrahydroxylated forms are more inhibitory than similar penta- and hexahydroxylated molecules. With one exception, none of the 18 flavonoids tested has secondary effects as metabolic inhibitors, as does phloretin. Inhibition of the passive sugar transport system with flavonoids allows the concentrative Na+-dependent sugar transport system to establish a better concentration gradient than is observed in untreated cells. The degree of gradient enhancement is proportional to the degree of inhibition of the sugar “leak.” The flavonoid glycosides, which can be considered as phlorizin analogues, also inhibit the non-Na+-dependent sugar carrier, but less well than corresponding nonglycosylated agents. Only one of the glycosides inhibits the Na+-dependent transport system, and much less potently than phlorizin.  相似文献   

11.
Previous studies showed that adverse effect of ionizing radiation on the cardiovascular system is beside other factors mostly mediated by reactive oxygen and nitrogen species, which deplete antioxidant stores. One of the structures highly sensitive to radicals is the Na,K-ATPase the main system responsible for extrusion of superfluous Na+ out of the cell which utilizes the energy derived from ATP. The aim of present study was the investigation of functional properties of cardiac Na,K-ATPase in 20-week-old male rats 6 weeks after γ-irradiation by a dose 25 Gy (IR). Irradiation induced decrease of systolic blood pressure from 133 in controls to 85 mmHg in IR group together with hypertrophy of right ventricle (RV) and hypotrophy of left ventricle (LV). When activating the cardiac Na,K-ATPase with substrate, its activity was lower in IR in the whole concentration range of ATP. Evaluation of kinetic parameters revealed a decrease of the maximum velocity (V max) by 40 % with no changes in the value of Michaelis–Menten constant (K m). During activation with Na+, we observed a decrease of the enzyme activity in hearts from IR at all tested Na+ concentrations. The value of V max decreased by 38 %, and the concentration of Na+ that gives half maximal reaction velocity (K Na) increased by 62 %. This impairment in the affinity of the Na+-binding site together with decreased number of active Na,K-ATPase molecules, as indicated by lowered V max values, are probably responsible for the deteriorated efflux of the excessive Na+ from the intracellular space in hearts of irradiated rats.  相似文献   

12.
Ehrlich ascites tumor cell membrane potential (Vm) and intracellular Na+, K+ and Cl activities were measured under steady-state conditions in normal saline medium (Na+ = 154, K+ = 6, Cl = 150 mequiv./l). Membrane potential was estimated to be −23.3 ± 0.8 mV using glass microelectrodes. Intracellular ion activities were estimated with similar glass electrodes rendered ion-selective by incorporation of ion-specific ionophores. Measurements of Vm and ion-activity differences were made in the same populations of cells. Under these conditions the intracellular Na+, K+ and Cl activities are 4.6 ± 0.5; 68.3 ± 8.0; and 43.6 ± 2.1 mequiv./l, respectively. The apparent activity coefficients for Na+ and K+ are 0.18 ± 0.02 and 0.41 ± 0.05 respectively. These are significantly lower than the activity coefficients expected for the ions in physiological salt solutions (0.71 and 0.73, respectively). The activity coefficient for intracellular Cl (0.67 ± 0.03), however, is close to that of the medium (0.73), and the transmembrane electrochemical potential difference for Cl is not different from zero. The results establish that the energy available from the Na+ electrochemical gradient is much greater than previously estimated from chemical measurements.  相似文献   

13.
Human glioma cells (138 MG) were found to take up 3-O-methyl-d -glucose (3-OMG) by a saturable low affinity transport system with a Km of 20 mm and a Vmax of 500 nmol/mg protein/min. About 20 per cent of the total uptake was due to passive diffusion. d -Glucose was a competitive inhibitor with a Ki of 10 mm . Follow-up experiments indicated that the same transport mechanism is involved in the uptake of n-glucose and 3-OMG. Phloretin (0·02 mm ) and cytochalasin B (0·002 mm ) strongly inhibited the uptake of 3-OMG, whereas phlorizin (0·02 mm ), ouabain (0·1 mm ), NaCN (0·5 mm ) and iodoacetic acid (1·0 mm ) had no effect. The data suggest that 3-OMG and d -glucose enter 138 MG cells mainly by a Na+-independent passive carrier-mediated transport system. Serum-deprivation doubled the population doubling time (Td) without affecting the total uptake of 3-OMG. An increase in the non-specific (diffusional) uptake was balanced by a decrease in the specific (carrier-medíated) uptake. After addition of dibutyryl cyclic AMP (dbcAMP, 0·25 mm ) the cells attained a morphology characteristic of differentiated glia cells. Td was maintained unchanged. The non-specific uptake of 3-OMG was not affected in cells grown in serum-containing medium plus dbcAMP, whereas the specific uptake increased by 40 per cent and there-fore also the total uptake. Similar, but more pronounced, changes were observed if serum-deprived cells were treated with dbcAMP.  相似文献   

14.
Developmental changes in mechanisms of synaptosomal amino acid transport have been studied in rat cerebral cortex. Well-defined changes over an age continuum could be observed in both the rates of amino acid accumulation and the effects of Na+ on the accumulation. The uptakes of five amino acids (threonine, serine and valine in Na+-free medium, aspartic acid and proline in Na+-containing medium) increased progressively with the age of the animal, whereas the uptakes of leucine and arginine (in Na+-free medium) decreased steadily. The uptake of serine or threonine by synaptosomal fractions prepared from newborn rats was markedly dependent on the presence of Na+in the incubation media. Na+exerted progressively less effect on the accumulation process with continuing postnatal development and to some extent inhibited uptake by fractions obtained from rats older than about 15 days. Na+significantly enhanced the accumulation of glycine in fractions from newborn and adult rats, but had only a slight effect in fractions prepared from 12 to 17-day old rats. A detailed study of the accumulation of glycine indicated that the synaptosomal transport of this amino acid proceeded by two independent systems, one of which was totally dependent on external Na+and the and adult animals than in fractions from 12 to 17-day-old rats, wheras the Na+-independent system was most active during this latter period of development. The decline in the Na+-independent accumulation of glycine from about the 15th day to adulthood was characterized by a decrease in the Vmax. and an increase in the Km.  相似文献   

15.
The melibiose permease of Salmonella enterica serovar Typhimurium (MelBSt) catalyzes symport of melibiose with Na+, Li+, or H+. Bioinformatics and mutational analyses indicate that a conserved Gly117 (helix IV) is a component of the Na+-binding site. In this study, Gly117 was mutated to Ser, Asn, or Cys. All three mutations increase the maximum rate (Vmax) for melibiose transport in Escherichia coli DW2 and greatly decrease Na+ affinity, indicating that intracellular release of Na+ is facilitated. Rapid melibiose transport, particularly by the G117N mutant, triggers osmotic lysis in the lag phase of growth. The findings support the previous conclusion that Gly117 plays an important role in cation binding and translocation. Furthermore, a spontaneous second-site mutation (P148L between loop4-5 and helix V) in the G117C mutant prevents cell lysis. This mutation significantly decreases Vmax with little effect on cosubstrate binding in G117C, G117S, and G117N mutants. Thus, the P148L mutation specifically inhibits transport velocity and thereby blocks the lethal effect of elevated melibiose transport in the Gly117 mutants.  相似文献   

16.
Neuronal-enriched cultures were prepared from 8-day-old chick embryo cerebral hemispheres and exposed to ethanol (50 mM) from day 4 to 8 in culture. At day 8, both control and ethanol-treated cultures were processed for [3H]choline uptake in situ. Uptake was performed on cultures containing either Na+-plus or Na+-free (Li+) HEPES buffer. Total choline uptake as well as Na+-dependent and Na+-independent choline uptake were calculated. The Km and Vmax were calculated using the Lineweaver-Burke analysis. Our analysis of the data revealed that ethanol-treated cultures exhibited two values for Vmax, one similar to that found in control cultures and one significantly lower than controls. No differences were observed in Km values between control and ethanol-treated cultures. We interpret the low Vmax to represent a population of cholinergic neurons which have been arrested at an immature stage as a result of ethanol insult.  相似文献   

17.
L-lactate transport mechanism across rat jejunal enterocyte was investigated using isolated membrane vesicles. In basolateral membrane vesicles l-lactate uptake is stimulated by an inwardly directed H+ gradient; the effect of the pH difference is drastically reduced by FCCP, pCMBS and phloretin, while furosemide is ineffective. The pH gradient effect is strongly temperature dependent. The initial rate of the proton gradient-induced lactate uptake is saturable with respect to external lactate with a K m of 39.2 ± 4.8 mm and a J max of 8.9 ± 0.7 nmoles mg protein−1 sec−1. A very small conductive pathway for l-lactate is present in basolateral membranes. In brush border membrane vesicles both Na+ and H+ gradients exert a small stimulatory effect on lactate uptake. We conclude that rat jejunal basolateral membrane contains a H+-lactate cotransporter, whereas in the apical membrane both H+-lactate and Na+-lactate cotransporters are present, even if they exhibit a low transport rate. Received: 22 October 1996/Revised: 11 March 1997  相似文献   

18.
Absorption kinetics of [14C]glucose and [β-methyl-14C]glucoside in Hymenolepis diminuta are reported. β-Methylglucoside (βMG) is a pure competitive inhibitor of [14C]glucose transport and has kinetic parameters, Vmax and Kt, for transport similar to those reported for glucose. While absorbed 14C-βMG is not metabolized, transport of this glucose analog retains the general characteristics which have been established for glucose transport including: (1) Na+ dependence, (2) inhibition by K+, (3) sensitivity to phlorizin and various hexoses, (4) transport against an apparent concentration gradient, and (5) increase in worm water during accumulation. It is concluded that glucose and βMG are transported by the same system. The value of using βMG to study the mechanism of hexose transport and accumulation in H. diminuta is suggested.  相似文献   

19.
Kinetics of glucose transport in K-562 cells was studied using 3-0-methylglucose, a nonmetabolizable analog of glucose. A Km of 3.7 mM and Vmax of 32.0 nmoles/minute/106 cells was found for the process. D-Glucose, phloretin, and phlorizin competitively inhibit the transport of 3-0-methylglucose with Ki values of 4.1 mM, 4.1 μM and 225 μM, respectively, whereas L-glucose did not inhibit transport at all. The results indicate that K-562 cells, which are known to have erythropoietic characteristics, possess a glucose carrier system similar to the one in adult human erythrocytes. However, the Vmax data suggest that more copies of the carrier are present in the malignant cell, presumably to support the high rate of anaerobic glycolysis.  相似文献   

20.
Summary Characteristics of 2-deoxyglucose uptake (2DG) by intestinal epithelial cells isolated from chickens were evaluated as a means of discriminating between the concentrative transport system for monosaccharides, associated with the mucosal brush border, and other possible routes of monosaccharide entry. 2DG was chosen as it is not a substrate for the mucosal transport system. The deoxysugar enters via a saturable pathway which is not Na+-dependent, is not inhibited by K+, does not accumulate solute against a concentration gradient; exhibits a high sensitivity to inhibition by phloretin; is relatively insensitive to phlorizin inhibition; and has low affinity [but high capacity relative to Na+-dependent mucosal transport of 3-O-methylglucose (3-OMG) and other monosaccharides]. These characteristics confirm those established in an earlier report for Na+-independent uptake of 3-OMG. Complications encountered in the use of 2DG as a test sugar include significant rates of metabolic conversion to an anionic form which presumably is a phosphorylated species. Methods for distinguishing between transport and subsequent metabolism are described. Inhibition of 2DG entry by several other sugars is described and inhibitory constants (K's) given for each.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号