首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Juvenile hormone (JH) mediates the relationship between fecundity and nutrition during the gonotrophic cycle of the mosquito in three ways: (1) by regulating initial previtellogenic development, (2) by mediating previtellogenic resorption of follicles and (3) by altering intrinsic previtellogenic follicle “quality”, physiology, and competitiveness thereby predetermining the fate of follicles after a blood meal. To support a role for JH in mediating the response of ovarian follicles after a blood meal, we explored three main questions: (1) Do changes in nutrition during the previtellogenic resting stage lead to relevant biochemical and molecular changes in the previtellogenic ovary? (2) Do hormonal manipulations during the previtellogenic resting stage lead to the same biochemical and molecular changes? (3) Does nutrition and hormones during the previtellogenic resting stage affect vitellogenic resorption and reproductive output? We examined the accumulation of neutral lipids in the previtellogenic ovary as well as the previtellogenic expression of genes integral to endocytosis and oocyte development such as the: vitellogenin receptor (AaVgR), lipophorin receptor (AaLpRov), heavy-chain clathrin (AaCHC), and ribosomal protein L32 (rpL32) under various previtellogenic nutritional and hormonal conditions. mRNA abundance and neutral lipid content increased within the previtellogenic ovary as previtellogenic mosquitoes were offered increasing sucrose concentrations. Methoprene application mimicked the effect of offering the highest sucrose concentrations on mRNA abundance and lipid accumulation in the previtellogenic ovary. These same nutritional and hormonal manipulations altered the extent of vitellogenic resorption. Mosquitoes offered 20% sucrose during the previtellogenic resting stage had nearly 3 times less vitellogenic resorption than mosquitoes offered 3% sucrose despite taking smaller blood meals and developed ~10% more eggs during the first gonotrophic cycle. Mosquitoes treated with JH III during the previtellogenic resting stage and then offered a blood meal had a ~40% reduction in the amount of vitellogenic resorption and developed ~12% more eggs. Taken together, these results suggest that previtellogenic nutrition alters the extent and pattern of resorption after a blood meal through the effect of JH on mRNA abundance and lipid accumulation in previtellogenic follicles.  相似文献   

2.
《Insect Biochemistry》1987,17(7):1085-1088
This study explores the specificity of the binding of juvenile hormone I to membrane follicle preparations, as revealed by competition studies with juvenile hormone II, juvenile hormone III, and farnesyl methyl ether, and relates their ability to compete to their ability to cause spaces to appear between the cells of the follicular epithelium (patency), and to bring about an increase in Na/K-ATPase activity in microsomal preparations of follicle cells, an important correlate of the ability of JH I to increase patency. None of the compounds tested exhibited significant competitive ability at physiological concentrations, and all them failed to affect patency of ATPase activity. Similar studies were carried out with extracts of the abdominal neurosecretory organs, which owe their antigonadotropic activity to their ability to inhibit the JH I-mediated decrease in cell volume leading to an increase in patency. These extracts failed to affect either the JH I-mediated increase in Na/K-ATPase activity or the binding of JH I to follicle cell membranes.  相似文献   

3.
在家蝇Musca domestica viaina的印黄发生过程中,卵母细胞摄取卵黄原蛋白与滤沟开放是相关的。观察不同发育时期的家蝇滤泡结果表明,在摄取活动最旺盛的时期也就是卵黄发生的顶盛时期,其滤泡开放程度最大,而在卵黄发生前期和后期基本上没有摄取活动,此时的滤泡上皮细胞间不开放。卵巢体外培养的激素处理表明,JH可以促进滤泡开放。家蝇卵巢微粒体制备物的Na+-K+ATP酶活力在卵巢发育过程中存在着动态变化。羽化后24小时时有一定的酶活性,随着卵黄发生的进行,酶活力逐渐增加,到现化48小时时酶活力最高,然后又开始下降,到弱化72小时时已经很小。羽化32小时的家蝇点滴或注射JH之后,测得的卵巢微粒体制备物的Na+-K+ATP酶活力比正常羽化36小时的高,羽化率44小时的家蝇点滴和注射JH之后,测得酶活力比正常羽化48小时的低.羽化36小时和48小时的家蝇卵巢微粒体制备物与JH共同作用后,其Na+-K+ATP酶的活力分别增加2.95倍和3.50倍,羽化48小时的家蝇卵巢在含有JH的培养液中培养后,其匀浆液的酶活性为对照组的1.26倍。由此我们可以推测在家蝇的卵黄发生过程中,JH通过促进滤泡开放和增加卵巢微粒体制  相似文献   

4.
Summary

The addition of juvenile hormone I (JH I) to membrane preparations of the follicle cells from vitellogenic follicles of the insect Rhodnius prolixus causes a significant increase in the phosphorylation of a 100 kDa polypeptide; and ouabain, a specific inhibitor of Na+K+-ATPase, eliminates this effect. H-7 (1-(5-isoquinolinesulfonyl)-2-methylpiperazine), an inhibitor of protein kinase C (PKC), also eliminates the JH-dependent phosphorylation of this polypeptide. PDBU (phorbol-12, 13-dibutyrate), an activator of PKC, mimics the action of JH in increasing the phosphorylation of the 100 kDa polypeptide. Because these findings parallel the action of JH in causing the patency, the appearance of large spaces between the follicle cells through which vitellogenin gains access to the oocyte surface, they suggest that phosphorylation of one or more membrane proteins is a key event in the development of patency in response to JH. The 100 kDa polypeptide may represent the a-subunit of Na+K+-ATPase.  相似文献   

5.
Juvenile hormone (JH I) stimulates specific morphological and biochemical changes in the follicular epithelium surrounding the terminal oöcytes in Leucophaea maderae. These include extracellular and intracellular structural changes, increased rates of follicle cell DNA synthesis, and elevated follicle cell DNA concentrations.Using females decapitated 24 hr after ecdysis, we have shown that JH I injections stimulate the following structural changes in the follicular epithelium: the appearance of channels between adjacent follicle cells and of spaces between the follicular epithelium and the maturing oöcyte; an increase in follicle cell size; the development of an extensive rough endoplasmic reticulum system; and an enlarged nucleus within each follicle cell. No increase in the number of follicle cells surrounding the developing terminal follicles is found in 7-day JH I-treated females, although the terminal follicles are almost twice as long as those in untreated females.In addition, we have demonstrated that JH stimulates the following biochemical events in the ovary: a 3.5 fold increase in thymidine incorporation into follicle cell DNA, with no subsequent transfer of such DNA to the developing oöcyte, and a 1.4 fold increase in ovarian DNA in 7-day JH-treated females. These data indicated that JH stimulates follicle cell DNA synthesis. The absence of any corresponding division of follicle cells suggests that JH I may induce polyploidy in follicle cells.Extended exposure of decapitated females to JH I does not result in complete ovarian maturation. Although fat bodies in the treated insects continue to display an increasing rate of vitellogenin synthesis, DNA synthesis in the terminal follicles declines rapidly after day 9, and the terminal follicles ultimately degenerate.  相似文献   

6.
家蝇卵巢摄取卵黄蛋白的机理   总被引:3,自引:3,他引:0  
龚和  邱威 《昆虫学报》1994,37(1):8-15
在家蝇Musca domestica viaina 的卵黄发生过程中,卵母细胞摄取卵黄原蛋白与滤泡开放是相关的。观察不同发育时期的家蝇滤泡结果表明,在摄取活动最旺盛的时期也就是卵黄发生的顶盛时期,其滤泡开放程度最大,而在卵黄发生前期和后期基本上没有摄取活动,此时的滤泡上皮细胞间不开放。卵巢体外培养的激素处理表明,JH可以促进滤泡开放。家蝇卵巢微粒体制备物的Na+-K+ATP酶活力在卵巢发育过程中存在着动态变化。羽化后24小时时有一定的酶活性,随着卵黄发生的进行,酶活力逐渐增加,到羽化48小时时酶活力最高,然后又开始下降,到羽化72小时时已经很小。羽化32小时的家蝇点滴或注躬 JH之后,测得的卵巢微粒体制备物的Na+-K+ATP酶活力比正常羽化36小时的高,羽化44小时的家蝇点滴和注射JH之后,测得酶活力比正常羽化48小时的低。羽化36小时和48小时的家蝇卵巢微粒体制备物与JH共同作用后,其Na+-K+ATP酶的活力分别增加2.95倍和3.50倍,羽化48小时的家蝇卵巢在含有JH的培养液中培养启,其匀浆液的酶活性为对照组的1.26倍。 由此我们可以推测在家蝇的卵黄发生过程中,JH通过促进滤泡开放和增加卵巢微粒体制备物Na+-K+ATP酶的活力,从而调控卵母细胞对卵黄蛋白的摄取。  相似文献   

7.
The ultrastructural organization of the previtellogenic follicles of the caecilians Ichthyophis tricolor and Gegeneophis ramaswamii, of the Western Ghats of India, were observed. Both species follow a similar seasonal reproductive pattern. The ovaries contain primordial follicles throughout the year with previtellogenic, vitellogenic, or postvitellogenic follicles, depending upon the reproductive status. The just-recruited primordial follicle includes an oocyte surrounded by a single layer of follicle and thecal cells. The differentiation of the theca into externa and interna layers, the follicle cells into dark and light variants, and the appearance of primordial yolk platelets and mitochondrial clouds in the ooplasm mark the transition of the primordial follicle into a previtellogenic follicle. During further development of the previtellogenic follicle the following changes occur: i) the theca loses distinction as externa and interna; ii) all the follicle cells become the dark variant and increase in the complexity of ultrastructural organization; iii) the nucleus of the oocyte transforms into the germinal vesicle and there is amplification of the nucleoli; iv) the primordial yolk platelets of the cortical cytoplasm of the oocyte increase in abundance; v) the mitochondrial clouds fragment and the mitochondria move away from the clouds, leaving behind the cementing matrix, which contains membrane-bound vesicles of various sizes, either empty or filled with a lipid material; vi) the perivitelline space appears first as troughs at the junctional points between the follicle cells and oocyte, which subsequently spread all around to become continuous; vii) macrovilli and microvilli develop from the follicle cells and oocyte, respectively; and viii) the precursor material of the vitelline envelop arrives at the perivitelline space. The sequential changes in the previtellogenic follicles of two species of caecilians are described.  相似文献   

8.
Temporally distinct, head-mediated processes regulate vitellogenic development as well as juvenile hormone (JH)-mediated development of ovarian follicles of Aedes aegypti. In blood-fed adult mosquitoes, vitellogenic development is stimulated during the first day after blood is imbibed and JH secretion is stimulated 2 days later. JH secretion in recently ecdysed adult mosquitoes is stimulated during or shortly before ecdysis. These observations suggest that vitellogenesis follows blood-ingestion, whereas JH activity may secondarily be promoted by vitellogenesis. It may be that vitellogenesis and JH activity are mediated by different brain hormones  相似文献   

9.
The spatial distribution of F-actin microfilaments in the ovaries of previtellogenic and vitellogenic female black blowflies, Phormia regina (Diptera : Calliphoridae), as the females shift from a sugar to a liver diet, is determined using rhodamine-labelled phalloidin (rh-phalloidin). During the pre-vitellogenic stages of ovarian development (i.e. corresponding to a sugar diet) a single bright fluorescent layer marks the interface between follicle cells and the oocyte. Fluorescence is also most evident at the inner surface of the ring canals of the nurse cells. This is observed in the nurse cells both in the distal part of the germarium, and in the vitellogenic growing oocyte. However, when liver-fed (i.e. necessary for vitellogenesis), 2 bright fluorescent layers are observed at the follicle cell-oocyte interface. In addition, the cytoplasm of the nurse cells during vitellogenesis appears full of fluorescent microfilaments and the actin rings are found to increase in size and thickness. The changing organization of the F-actin microfilaments in the follicles during the process of both egg chamber and oocyte formation is discussed and possible functions considered.  相似文献   

10.
Ogielska, M., Rozenblut, B., Augustyńska, R., Kotusz, A. 2010. Degeneration of germ line cells in amphibian ovary. —Acta Zoologica (Stockholm) 91 : 319–327 We studied the morphology of degenerating ovarian follicles in juvenile and adult frogs Rana temporaria, Rana lessonae and Rana ridibunda. Degeneration of primordial germ cells was never observed and was extremely rare in oogonia and early oocytes in a cyst phase in juveniles. Previtellogenic oocytes were rarely affected. Three main types of atresia were identified. In type I (subdivided into stages A–D), vitellogenic oocytes are digested by proliferating follicle cells that hypertrophy and become phagocytic. A – germinal vesicle shrinks, nucleoli fuse, oocyte envelope interrupts, and follicular cells hypertrophy; B – follicular cells multiply and invade the oocyte; C – entire vesicle is filled by phagocytic cells; D – degenerating phagocytes accumulate black pigment. Type II is rare and resembles breakdown of follicles and release of ooplasm. In type III, observed in previtellogenic and early vitellogenic oocytes, ooplasm and germinal vesicle shrink, follicle cells do not invade the vesicle, and condensed ooplasm becomes fragmented. The residual oogonia in adult ovaries (germ patches) multiply, but soon degenerate.  相似文献   

11.
A vertebrate hormone, L-3,5,3'-triiodothyronine (T3), induces volume reduction in the follicle cells of Locusta migratoria and Rhodnius prolixus. The effect of T3 on locust follicle cells is inhibited by ouabain and by antibodies raised against a membrane binding protein for juvenile hormone (JH). [125I]-T3 binds to membrane preparations of vitellogenic follicles in a specific and saturable fashion, with a KD in the low nanomolar range. T3 and JH III exhibited equivalent abilities to compete for the T3 binding site. These findings strongly suggest that T3 and JH act via the same receptor in follicle cells.  相似文献   

12.
Changes in follicle cell morphology were correlated with changes in rates of protein synthesis and DNA synthesis by the ovary during ovarian maturation in Leucophaea maderae. During the vitellogenic period of oöcyte development, which lasts approx, 15 days, morphological changes in the follicle cells are accompanied by moderate rates of ovarian protein synthesis and rapid rates of ovarian DNA synthesis. At approx. 15 days after mating, the shape of the follicle cells changes from cuboidal to squamous, ovarian DNA synthesis is arrested, and ovarian protein synthesis increases slightly. During the final period of oöcyte development, which lasts approx, two days, the interfollicular channels between the follicle cells have disappeared and the squamous follicle cells, which contain an extensive rough endoplasmic reticulum, deposit a chorion around the mature oöcyte. These morphological changes are accompanied by a radical increase in ovarian protein synthesis, while ovarian DNA synthesis remains arrested. Immediately before ovulation, ovarian protein synthesis starts to decline, reaching a minimal level 24 hr post-ovulation.Ovarian maturation is dependent on the presence of juvenile hormone (JH) only during the vitellogenic stage of oöcyte development. Decapitation of insects at any point during the first 10 days after mating arrests the synthesis of DNA and retards the synthesis of protein by the ovary, resulting in degeneration of the oöcyte. Subsequent injection of JH restores both events to normal levels within 72 hr. Decapitation on or after the tenth day following mating does not alter normal oöcyte development, chorion deposition, ovulation or egg case formation.Primary induction of protein synthesis in ovaries from virgin females can be achieved by either an in vivo or in vitro exposure of the tissue to JH, thus confirming a site of action for JH to be ovarian tissue. Electrophoretic analysis of the soluble proteins from JH-exposed ovaries in vivo reveals that JH stimulates general protein synthesis, rather than the synthesis of a specific major protein such as vitellogenin.  相似文献   

13.
The study was aimed at understanding the process of reproduction and the changes happening in the ovary of Portunus pelagicus during maturation, which would be useful for its broodstock development for hatchery purposes. For that, tissue samples from different regions of the ovary at various stages of maturation were subjected to light and electron microscopy, and based on the changes revealed and the differences in ovarian morphology, the ovary was divided into five stages such as immature (previtellogenic oocytes), early maturing (early vitellogenic oocytes), late maturing (late vitellogenic oocytes), mature (vitellogenic oocytes), and spent (resorbing oocytes). The ovarian wall comprised of an outermost thin pavement epithelium, a middle layer of connective tissue, and an innermost layer of germinal epithelium. The oocytes matured as they moved from the centrally placed germinal zone toward the ovarian wall. The peripheral arrangement of nucleolar materials and the high incidence of cell organelles during the initial stages indicated vitellogenesis I. Movement of follicle cells toward oocytes in the early maturing stage and low incidence of mitochondria and endoplasmic reticulum in the ooplasm during late vitellogenic stage marked the commencement and end of vitellogenesis II, respectively. Yolk granules at various stages of development were seen in the ooplasm from late vitellogenic stage onwards. The spent ovary had an area with resorbing oocytes and empty follicle cells denoting the end of one reproductive cycle and another area with oogonial cells and previtellogenic oocytes indicating the beginning of the next.  相似文献   

14.
We studied the ultrastructural organization of the ovarian follicles in a placentotrophic Andean lizard of the genus Mabuya. The oocyte of the primary follicle is surrounded by a single layer of follicle cells. During the previtellogenic stages, these cells become stratified and differentiated in three cell types: small, intermediate, and large globoid, non pyriform cells. Fluid‐filled spaces arise among follicular cells in late previtellogenic follicles and provide evidence of cell lysis. In vitellogenic follicles, the follicular cells constitute a monolayered granulosa with large lacunar spaces; the content of their cytoplasm is released to the perivitelline space where the zona pellucida is formed. The oolemma of younger oocytes presents incipient short projections; as the oocyte grows, these projections become organized in a microvillar surface. During vitellogenesis, cannaliculi develop from the base of the microvilli and internalize materials by endocytosis. In the juxtanuclear ooplasm of early previtellogenic follicles, the Balbiani's vitelline body is found as an aggregate of organelles and lipid droplets; this complex of organelles disperses in the ooplasm during oocyte growth. In late previtellogenesis, membranous organelles are especially abundant in the peripheral ooplasm, whereas abundant vesicles and granular material occur in the medullar ooplasm. The ooplasm of vitellogenic follicles shows a peripheral band constituted by abundant membranous organelles and numerous vesicular bodies, some of them with a small lipoprotein core. No organized yolk platelets, like in lecithotrophic reptiles, were observed. Toward the medullary ooplasm, electron‐lucent vesicles become larger in size containing remains of cytoplasmic material in dissolution. The results of this study demonstrate structural similarities between the follicles of this species and other Squamata; however, the ooplasm of the mature oocyte of Mabuya is morphologically similar to the ooplasm of mature oocytes of marsupials, suggesting an interesting evolutionary convergence related to the evolution of placentotrophy and of microlecithal eggs. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
The clock protein PERIOD (PER) displays circadian cycles of accumulation, phosphorylation, nuclear translocation and degradation in Drosophila melanogaster clock cells. One exception to this pattern is in follicular cells enclosing previtellogenic ovarian egg chambers. In these cells, PER remains high and cytoplasmic at all times of day. Genetic evidence suggest that PER and its clock partner TIMELESS (TIM) interact in these cells, yet, they do not translocate to the nucleus. Here, we investigated the levels and subcellular localization of PER in older vitellogenic follicles. Cytoplasmic PER levels decreased in the follicular cells at the onset of vitellogenesis (stage 9). Interestingly, PER was observed in the nuclei of some follicular cells at this stage. PER signal disappeared in more advanced (stage 10) vitellogenic follicles. Since the phosphorylation state of PER is critical for the progression of circadian cycle, we investigated the status of PER phosphorylation in the ovary and the expression patterns of DOUBLETIME (DBT), a kinase known to affect PER in the clock cells. DBT was absent in previtellogenic follicular cells, but present in the cytoplasm of some stage 9 follicular cells. DBT was not distributed uniformly but was present in patches of adjacent cells, in a pattern resembling PER distribution at the same stage. Our data suggest that the absence of dbt expression in the follicular cells of previtellogenic egg chambers may be related to stable and cytoplasmic expression of PER in these cells. Onset of dbt expression in vitellogenic follicles coincides with nuclear localization of PER protein.  相似文献   

16.
Vertebrate-type steroids, such as progesterone, have been identified in crustaceans. The physiological activity of progesterone during vitellogenesis is still not well understood. In this study, progesterone levels in the female mud crab, Scylla paramamosain, were determined by enzyme-linked immunosorbent assay. Peak levels of progesterone were detected during the previtellogenic stage in the hemolymph, ovary, and hepatopancreas, whereas the progesterone level decreased significantly in vitellogenic stage I. During vitellogenic stage II, progesterone levels rose again in the hemolymph and ovary, but continued to decrease in the hepatopancreas. By using western blotting, progesterone receptor (PR), with an apparent molecular weight of 70 kDa, was identified in the ovary during both vitellogenic stages I and II. By means of immunohistochemistry, PR was detected mainly in the follicle cells during vitellogenic stage I and in the nuclei of oocytes in vitellogenic stage II. Our results strongly suggest that progesterone promotes vitellogenesis in the mud crab, S. paramamosain via a classical genomic mechanism.  相似文献   

17.
In this work we carried out an ultrastructural analysis of the cell interface between oocyte and follicle cells during the oogenesis of the amphibian Ceratophrys cranwelli, which revealed a complex cell-cell interaction. In the early previtellogenic follicles, the plasma membrane of the follicle cells lies in close contact with the plasma membrane of the oocyte, with no interface between them. In the mid-previtellogenic follicles the follicle cells became more active and their cytoplasm has vesicles containing granular material. Their apical surface projects cytoplasmic processes (macrovilli) that contact the oocyte, forming gap junctions. The oocyte surface begins to develop microvilli. At the interface both processes delimit lacunae containing granular material. The oocyte surface has endocytic vesicles that incorporate this material, forming cortical vesicles that are peripherally arranged. In the late previtellogenic follicle the interface contains fibrillar material from which the vitelline envelope will originate. During the vitellogenic period, there is an increase in the number and length of the micro- and macrovilli, which become regularly arranged inside fibrillar tunnels. At this time the oocyte surface exhibits deep crypts where the macrovilli enter, thus increasing the follicle cell-oocyte junctions. In addition, the oocyte displays coated pits and vesicles evidencing an intense endocytic activity. At the interface of the fully grown oocyte the fibrillar network of the vitelline envelope can be seen. The compact zone contains a fibrillar electron-dense material that fills the spaces previously occupied by the now-retracted microvilli. The macrovilli are still in contact with the surface of the oocyte, forming gap junctions.  相似文献   

18.
We defined the somatic environment in which female germinal cells develop, and performed ultrastructural analyses of various somatic cell types, with particular reference to muscle cells and follicle cells, that reside within the ovary at different stages of oogenesis. Our findings show that ovarian wall of the crayfish is composed of long muscle cells, blood cells, blood vessels and hemal sinuses. The follicle and germinal cells lie within a common compartment of ovarian follicles that is defined by a continuous basal matrix. The follicle cells form branching cords and migrate to surround the developing oocytes. A thick basal matrix separates the ovarian interstitium from ovarian follicles compartment. Transmission electron microscopy shows that inner layer of basal matrix invaginates deeply into the ovarian compartment. Our results suggest that before being surrounded by follicle cells to form follicles, oogonia and early previtellogenic oocytes reside within a niche surrounded by a basal matrix that separates them from ovarian interstitium. We found coated pits and coated vesicles in the cortical cytoplasm of previtellogenic and vitellogenic oocytes, suggesting the receptor mediated endocytosis for transfer of material from the outside of the oocytes, via follicle cells. The interstitial compartment between the inner muscular layer of the ovarian wall and the basal matrix of the ovarian follicle compartment contains muscle cells, hemal sinuses, blood vessels and blood cells. Granular hemocytes, within and outside the vessels, were the most abundant cell population in the ovarian interstitium of crayfish after spawning and in the immature ovary. J. Morphol. 277:118–127, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
In this work we characterized the degenerative process of ovarian follicles of the bug Rhodnius prolixus challenged with the non-entomopathogenic fungus Aspergillus niger. An injection of A. niger conidia directly into the hemocoel of adult R. prolixus females at the onset of vitellogenesis caused no effect on host lifespan but elicited a net reduction in egg batch size. Direct inspection of ovaries from the mycosed insects revealed that fungal challenge led to atresia of the vitellogenic follicles. Light microscopy and DAPI staining showed follicle shrinkage, ooplasm alteration and disorganization of the monolayer of follicle cells in the atretic follicles. Transmission electron microscopy of thin sections of follicle epithelium also showed nuclei with condensed chromatin, electron dense mitochondria and large autophagic vacuoles. Occurrence of apoptosis of follicle cells in these follicles was visualized by TUNEL labeling. Resorption of the yolk involved an increase in protease activities (aspartyl and cysteinyl proteases) which were associated with precocious acidification of yolk granules and degradation of yolk protein content. The role of follicle atresia in nonspecific host-pathogen associations and the origin of protease activity that led to yolk resorption are discussed.  相似文献   

20.
Yang X  Zhao L  Zhao Z  Hu B  Wang C  Yang Z  Cheng Y 《Tissue & cell》2012,44(2):95-100
Estrogen induces oocytes development and vitellogenesis in crustacean by interacting with estrogen receptor (ER) subtypes. In the present study, we detect for the first time the ERα in oocytes and follicle cells and hepatopancreas cells of mysis by immunohistochemistry using a specific ERα antibody. ERα was mainly localized in the nuclei of oocytes and follicle cells, while mainly detected in nuclei of oogonia (OG), previtellogenic oocyte (PR) and endogenous vitellogenic oocyte (EN) at previtellogenic and early vitellogenic stage (I-early III). Follicle cells in all stages of ovary (all vitellogenic stages) showed strong ERα positive reaction, and they were able to gradually move to oocytes during the development of oocytes. In addition, ERα was also localized in the nuclei and cytoplasm of four hepatopancreas cells (including E-, R-, F- and B-cell) in all ovary stages. These findings suggest, for the first time to our knowledge, that there could be a close link between oogenesis, follicle cells, hepatopancreas cells and endocrine regulation, and estrogens might be involved in the regulation of oocytes at early ovarian stage in mysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号