首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The eggshells of Hepialus hecta, Wiseana umbraculata (Hepialidae) and of Mnesarchaea fusilella (Mnesarchaeidae) (Lepidoptera, Exoporia) were studied by scanning electron microscopy (SEM) and transmission (TEM) electron microscopy. All 3 species show a very similar surface sculpture of the micropylar region which, however, is very different from the eggs of the Ditrysia. The micropylar plate is large and oval. There are only 2 or 3 micropylar openings. In the hepialid moths, the surface of the egg's main body is characterized by spherical protuberances. The radial fine structure of the eggshells of all 3 species as well as of alcohol-stored eggs of Mnesarchaea acuta (Mnesarchaeidae) is basically identical to the eggshell of Korscheltellus lupulinus (Hepialidae). The chorion consists of only one layer, which, in the hepialid species, shows a crystalline-like fine structure. The vitelline envelope is composed of a thin, laminated, outer layer (V-2) and a thick, rigid, inner layer (V-1) that is traversed by large numbers of canals. This kind of eggshell architecture is distinctively different from that of the ditrysian Lepidoptera.  相似文献   

2.
The eggshell fine structure of the dark-winged fungus-gnat Bradysia aprica (Winnertz) (Diptera : Sciaridae) was investigated by scanning and transmission electron microscopy. At the anterior pole of the ovoid egg is a single micropyle, centrally located in a well-defined micropylar area. The latter is covered by many long drumstick-like chorionic processes that are longer and more numerous than those of the rest of the egg surface. Cross-sections of the eggshell show 3 concentric envelopes: the vitelline envelope, wax layer and chorion. The chorion consists of 3 components with different morphological features: the inner, intermediate and outer chorion. The latter 2 layers, involved in the organization of the drumstick-like processes, have homogeneous features, whereas the former is crystalline and resembles the innermost chorionic layer of other Diptera.  相似文献   

3.
The external morphology and fine structure of the eggshell of Ommatissus binotatus Fieber (Homoptera : Tropiduchidae) was investigated by light, scanning and transmission electron microscopy. The egg surface has 2 main regions: a specialized area and an unspecialized egg capsule. The specialized area is characterized by a large respiratory plate containing the operculum and a short respiratory horn. The latter consists of an external hollow tube and an internal coneshaped projection hosting a micropylar canal. The eggshell has 4 layers: the vitelline envelope, a wax layer, the chorion and an outer mucous layer. The chorion has inner, intermediate and outer parts. The functions of the different parts of the eggshell are discussed. Characters useful to define the eggs and the oviposition habit in the family Tropiduchidae were provided. The size and morphology of the egg, plate, respiratory horn and operculum are suggested as useful characters for ootaxonomic analysis.  相似文献   

4.
The egg shell of the incurvarioid moth Adela metallica (Lepidoptera : Adelidae) was studied by conventional (cTEM) and energy-filtering transmission electron microscopy (EFTEM). The shell of the laid egg consists of 3 envelopes. The vitelline envelope is 0.1–0.2μm thick and homogeneous, thus exhibiting the non-exoporian character state. The single-layered chorion, which is covered by a fibrogranular mucous layer, is 0.5–0.9μm thick and homogeneous, thus exhibiting the non-ditrysian character state. The chorion is highly electron-lucent. Neither cTEM nor EFTEM revealed any sub-structural details. However, electron spectroscopic imaging (ESI) and electron energy-loss spectroscopy (EELS), revealing the elemental composition of the egg shell, indicate that the chorion and vitelline envelope are proteinaceous and hence, similar to the egg shells of other lepidopteran species. The presence of high sulphur signals associated with the vitelline envelope and the thin basal lamella of the chorion indicates that these components may be stabilized via sulphur-bridges.  相似文献   

5.
The structural features of eggs of Zorotypus caudelli Karny are described in detail. The egg is elliptic with long and short diameters of 0.6 and 0.3 mm respectively, and creamy white. The egg shows a honeycomb pattern on its surface, without any specialized structures for hatching such as an operculum or a hatching line. The fringe formed by a fibrillar substance secreted after the completion of the chorion encircles the lateral surface. The egg layer is composed of an exochorion, an endochorion, and a vitelline envelope. The exochorion and endochorion are electron-dense and homogeneous in structure. The exochorion shows a perforation of numerous branching aeropyles. The exo- and endochorion are connected by numerous small columnar structures derived from the latter. The vitelline envelope is very thin and more electron-dense than the chorion. A pair of micropyles is present at the equator on the dorsal side of the egg. Originating at the micropyle, the micropylar canal runs through the chorion obliquely. The structural features of the eggs of Zoraptera were compared with those of other polyneopteran and paraneopteran orders.  相似文献   

6.
The covering of the eggs in Russian sturgeon Acipenser gueldenstaedtii consists of three envelopes (the vitelline envelope, chorion and extrachorion) and is equipped with multiple micropyles. The most proximal to the oocyte is the vitelline envelope that consists of four layers of filamentous and trabecular material. The structural components of this envelope are synthesized by the oocyte (primary envelope). The chorion encloses the vitelline envelope. The extrachorion covers the external surface of the egg. Examination of the arrangement of layers that comprise the egg envelopes together with the ultrastructure of follicular cells revealed that the chorion and extrachorion are secondary envelopes. They are secreted by follicular cells and are built of homogeneous material. During formation of egg envelopes, the follicular cells gradually diversify into three morphologically different populations: 1) cells covering the animal oocyte region (cuboid), (2) main body cells (cylindrical) and (3) micropylar cells. The apical surfaces of follicular cells from the first two populations form processes that remain connected with the oocyte plasma membrane by means of gap junctions. Micropylar cells are located at the animal region of the oocyte. Their apical parts bear projections that form a barrier to the deposition of materials for egg envelopes, resulting in the formation of the micropylar canal.  相似文献   

7.
The micropylar apparatus (MA) in Rhagoletis cerasi (Diptera, Tephritidae) is located at the anterior pole of the egg and consists of two parts: an outer chorion and an inner vitelline membrane. Sperm entry takes place through the micropylar canal, 2.0–2.5 μm in diameter, which penetrates the micropylar endochorion and terminates in the thick vitelline membrane, thus forming the “pocket.” The pore of the micropylar canal, i.e., the micropyle, is covered by the exochorionic tuft. The formation of the MA is accomplished by 40 micropylar cells during oogenesis. These cells secrete the successive eggshell layers: the vitelline membrane, the wax layer, the innermost chorionic layer, the micropylar endochorion, and the exochorion. Two among 40 micropylar cells differentiate and form two tightly connected projections. The latter contain a bundle of parallel microtubules and participate in the formation of the micropylar canal and the pocket. At the tip of the projections there are two thin extensions full of microfilaments. In late developmental stages the two projections and the extensions degenerate and leave the canal and the pocket behind. We also discuss the structural features of the MA in relation to its physiology among Diptera.  相似文献   

8.
Micropylar apparatuses in insects are specialized regions of the eggshell through which sperm enters the oocyte. This work is an ultrastructural study and deals with the structure and morphogenesis of the micropylar appendage in the hymenopteran Eurytoma amygdali. The micropylar appendage is a 130 mum long cylindrical protrusion located at the posterior pole of the egg, unlike other insects i.e. Diptera. in which the micropylar apparatus is located at the anterior pole. In mature eggs there is a 0.4 mum wide pore (micropyle) at the tip of the appendage leading to a 6 mum wide micropylar canal. The canal contains an electron-lucent substance, it travels along the whole appendage and finally reaches the vitelline membrane of the oocyte. The vitelline membrane is covered by a wax layer and an electron-lucent layer, whereas the chorion surrounding the canal consists of a granular layer (fine and rough) and a columnar layer. The morphogenesis of the appendage starts in immature follicles: four central cells located at the posterior tip of the oocyte near the vitelline membrane, differing morphologically from the adjacent follicle cells. These central cells degenerate during early chorionic stages, thus assisting in the formation of the micropylar canal. The adjacent, peripherally located cells secrete the electron-lucent substance which fills the canal and at the same time, the fine granular layer is formed starting from the base towards the tip of the appendage. The secretion persists at late chorionic stages and results in the formation of the chorion around the micropylar canal. The extremely long (compared to other insects) micropylar appendage seems to facilitate the egg passage through the very thin and long ovipositor. The structure and morphogenesis of this appendage differs significantly from the micropylar apparatuses studied so far in other insects i.e. Diptera, and may reflect adaptational and evolutionary relationships.  相似文献   

9.
The micropylar apparatus (MA) in Ceratitis capitata (Diptera : Tephritidae) is a cone-like protrusion, 18 μm long, at the anterior pole of the egg, and exhibits about 40 follicle cell imprints externally. It consists of chorionic and vitelline membrane parts. The first contains at least a 3 μm wide micropylar canal; the tip of the MA is covered by a “tuft” and includes the micropyle, i.e. the entrance of the micropylar canal. The canal leads to the vitelline membrane part, where it forms a pocket. The sperm enters the oocyte by passing through the micropyle-micropylar canal-pocket route.At least 40 follicle cells participate in the formation of the micropylar apparatus. Two of these form 2 projections, which are tightly connected, and serve as a template for the formation of the canal and the pocket. Throughout their length, both projections have microtubules in parallel arrangement. During oogenesis, the remaining micropylar cells secrete the successive eggshell layers, i.e. the vitelline membrane, the wax layer, the innermost chorionic layer, the endochorion, and the exochorion. Towards the end of oogenesis, the 2 projections degenerate, and the canal becomes available for sperm passage.  相似文献   

10.
The egg capsule of Isohypsibius granulifer granulifer Thulin 1928 (Eutardigrada: Hypsibiidae) is composed of two shells: the thin vitelline envelope and the multilayered chorion. The process of the formation of the egg shell begins in middle vitellogenesis. The I. g. granulifer vitelline envelope is of the primary type (secreted by the oocyte), but the chorion should be regarded as a mixed type: primary (secreted by the oocyte), and secondary (produced by the cells of gonad wall). During early choriogenesis, the parts of the chorion are produced and then connected into a permanent layer. The completely developed chorion consists of three layers: (1) the inner, medium electron dense layer; (2) the middle labyrinthine layer; (3) the outer, medium electron dense layer. After the formation of the chorion, a vitelline envelope is secreted by the oocyte.  相似文献   

11.
Summary The thick rigid chorion of the egg of Triatoma secreted by the follicle cells shows two porous layers: an aerial layer in the exochorion, an alveolar one in the endochorion. The anterior part of the eggshell is closed up by an operculum which is heaved up by the hatching larva. The operculum has no alveolar layer. The air enters through the numerous holes of the shell surface into the aerial layer and through the micropyles into the alveolar layer. The egg has no respiratory plastron.The follicle cells produce also a vitelline envelope whose structure shows a rapid condensation at fertilization time. During its development the embryo secretes two layers: serosal and embryonic cuticle.At high humidities, at low temperatures the egg is able to increase its weight during the early stages of embryogenesis, and this increase stops when the serosal cuticle is secreted. In a dry atmosphere the egg loses water but can develop if the temperature is higher than 20°C.The little permeability of the egg is related to the structure of its envelopes. The chorion and the vitelline envelope prevent the water from getting out of the egg. The serosal cuticle seems to be opposed to the penetration of the water into the egg. The role of the embryonic cuticle is probably limited in the transit of water.
Nous remercions Messieurs les Professeurs Maillet et Folliot qui ont mis le microscope R.C.A. à notre disposition, Madame Allo et Mademoiselle Le Gac, technicienne au microscope à balayage J.S.M. S1, pour leur collaboration technique.  相似文献   

12.
The eggshell ultrastructure of the exophytic riverine dragonfly Onychogomphus forcipatus unguiculatus (Odonata: Gomphidae) is presented using transmission electron microscopy. A homogeneous vitelline envelope is surrounded by a thick, many-layered endochorion and a relatively thick, homogeneous exochorion. The micropylar projection is covered by a jelly-layer. The structure of the shell is intermediate between known endophytic and exophytic eggshells in the order. A possible evolution of jelly-covered exophytic eggs from endophytic riverine ancestors is discussed.  相似文献   

13.
The surface and structure of the chorion of eggs of Diatraea saccharalis (F.) (Lepidoptera: Crambidae), Anticarsia gemmatalis (Huebner), Heliothis virescens F., Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), Sitotroga cerealella (Oliver) (Lepidoptera: Gelechiidae), Ephestia kuehniella Zeller and Corcyra cephalonica Stainton (Lepidoptera: Pyralidae), that are hosts of Trichogramma galloi Zucchi and Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) were studied on SEM and TEM. Other characteristics of these eggs, such as changes in their color during embryonic development, size and volume were also recorded. Sculpturing and texture of the surface of the chorion greatly varied among the species studied, as well as the number of layers of the chorion and their thickness. Eggs of the factitious hosts were among the smallest and their volume was very close to each other. All these characteristics would provide basic information for a better understanding of the host selection behavior and are useful for the development of a suitable artificial host egg for the in vitro rearing of these egg parasitoids.  相似文献   

14.
Scanning electron microscopic examination of the egg chorion in Ictinogomphus rapax (Rambur) (Odonata : Gomphidae) shows hexagonal reticulation throughout the surface. The anterior pole of the egg bears a small rounded micropylar stalk with a group of 6 orifices arranged radially around a central boss, while the posterior pole consists of a sessile, truncated cone formed of 50–60 long, coiled filaments. The functional, taxonomic, and phylogenetic significance of various microstructures of the eggshell are discussed.  相似文献   

15.
A comparative ultrastructural investigation on the eggshell (vitelline and chorionic envelopes) has been carried out in the nymphs of two mayfly species encompassed into the Baetidae, namely Baetis rhodani and Cloeon dipterum. During oocyte differentiation in the meroistic telotrophic ovarioles, gametes are connected to discrete nurse cells by trophic cords. In B. rhodani, each ovariole contains several eggs arranged in sequence, whereas in C. dipterum each contains a single egg. Follicle cells are competent for vitelline and chorionic envelope synthesis. Baetis rhodani is an oviparous species and the chorion is fairly thick, formed by an alveolate endochorion and a fibrillar exochorion delimited by a honey‐comb roof. Cloeon dipterum stands out among Ephemeroptera for being ovoviviparous. In B. rhodani, ovulation starts in the older nymphs with dark wing‐pads, whereas in C. dipterum choriogenesis ends in the imaginal stage. Here the chorion is very thin and laid eggs hatch almost immediately, allowing the larvulae to move out. The maturation of a single egg per ovariole is synchronized with the achievement of the adult stage. The acquisition of ovoviviparity has led to remarkable changes in the ovariole organization along with a simplification of the eggshell structure.  相似文献   

16.
The formation of the micropylar apparatus during oogenesis in the silkworm, Bombyx mori, has been studied using light and transmission electron microscopy. The micropylar apparatus is formed by three types of cells: the micropylar channel-forming cells (MCFCs), the micropylar orifice-forming cells (MOFCs), and the micropylar rosette-forming cells (MRFCs). During the formation of the vitelline membrane and the chorion, each of the MCFCs extends a cytoplasmic projection serving as the mold of a micropylar-channel into the egg envelopes. The detachment and collapse of the projections takes place at the end of choriogenesis. The micropylar channels possess a common external orifice on the chorion and several internal orifices within the vitelline membrane. The MOFCs interact closely with the MCFCs and contribute to the formation of the external micropylar orifice. A petal-like rosette surrounding the orifice is imprinted on the outer chorionic surface by the MRFCs which enclose a group of the MCFCs and MOFCs.  相似文献   

17.
Although sexual selection has been predominantly used to explain the rapid evolution of sexual traits, eggs of oviparous organisms directly face both the challenges of sexual selection as well as natural selection (environmental challenges, survival in niches, etc.). Being the outermost membrane in most insect eggs, the chorion layer is the interface between the embryo and the environment, thereby serving to protect the egg. Adaptive ecological radiations such as divergence in ovipositional substrate usage and host-plant specializations can therefore influence the evolution of eggshell proteins. We can hypothesize that proteins localized on the outer eggshell may be affected to a greater degree by ecological challenges compared with inner eggshell proteins, and therefore, proteins localized in the outer eggshell (chorion membrane) may evolve differently (faster) than proteins localized in the inner egg membrane (vitelline membrane). We compared the evolutionary divergence of vitelline with chorion membrane proteins in species of the melanogaster subgroup and found that chorion proteins as a group are indeed evolving faster than vitelline membrane proteins. At least one vitelline membrane protein (Vm32E), specifically localized on the outer eggshell, is also evolving faster than other vitelline membrane proteins suggesting that all proteins localized on the outer eggshell may be evolving rapidly. We also found evidence that specific codons in chorion proteins cp15 and cp16 are evolving under positive selection. Polymorphism surveys of cp16 revealed inflated levels of divergence relative to polymorphism in specific regions of the gene, indicating that these regions are under strong selection. At the morphological level, we found notable difference in eggshell surface morphologies between specialist (Drosophila sechellia and Drosophila erecta) and generalist species of Drosophila. We do not know if any of the chorion proteins actually interact with spermatozoids, therefore leaving the possibility of rapid evolution through gametic interaction wide open. At this point, however, our results support previous suggestions that divergences in ecology, particularly, ovipositional substrate divergences may be a strong force driving the evolution of eggshell proteins.  相似文献   

18.
Eggshells of stone flies P. marginata and D. cephalotes (Plecoptera : Perlidae), inhabiting mountain streams, were examined using scanning and transmission electron microscopes, a phase-contrast light microscope and histochemical methods to detect proteins, lipids and polysaccharides.The eggshells of the species investigated consist of a vitelline envelope, chorion and gelatinous sheet decorated on its outer surface with mushroom-like structures. An anchoring structure (attachment disc) is situated on the posterior pole of the egg. The structure and function of the attachment disc, as well as the possible taxonomic applications, are discussed. The morphology and histochemical composition of all these elements of the shell clearly demonstrate good adaptation to land and aquatic habitats; the chorion consists of 2 layers, the internal layer being finely perforated by numerous aeropyles. The external layer, with fewer, regularly placed aeropyles, protects the egg interior against dehydration in the land habitat. The gelatinous sheet seems to provide additional protection. Mushroom-like structures, situated on its surface, correspond with the positions of aeropylar openings. These and other interrelations between chorion structure and function are discussed.  相似文献   

19.
A fibrous layer on the surface of eggs of the parasitoid, Cardiochiles nigriceps (Hymenoptera : Braconidae), has been implicated by earlier studies in the evasion from encapsulation by host hemocytes. The present histochemical and ultrastructural study was undertaken to characterize fibrous layer material and to determine the source of fibrous layer and other components of the eggshell. The fibrous layer contains neutral glyco- or mucoprotein; acidic mucoproteins or glycosaminoglycans are absent. The mature eggshell is resolved into 5 morphologically distinct layers by electron microscopy: (from inner to outer) vitelline envelope, endochorion, an electron-dense “irregular layer”, papilliary layer and fibrous layer. During oogenesis each eggshell layer is laid down sequentially in the order mentioned above. Eggshell material appears to be produced by the follicle cells because these develop extensive rough endoplasmic reticulum and golgi apparatus and exhibit apparent exocytotic activity at the plasma membrane adjacent to the egg.  相似文献   

20.
The investigation of ovaries and the formation of egg envelopes of the stonefly Leuctra autumnalis was carried out with light and transmission electron microscopes. The ovary of the studied species is paired and consists of several dozen panoistic ovarioles opening individually to the oviduct. The process of egg capsule formation already begins in previtellogenesis. At this time the follicular cells secrete precursors of the vitelline envelope. Analysis of the presented data suggests that the oocyte itself also takes part in the formation of the vitelline envelope during late vitellogenesis. Simultaneously, the follicular cells produce precursors of further layers of the egg capsule, i.e. two-layered chorion and extrachorion, consisting of two gelatinous layers and a flocculent one. The completely developed capsule contains channels, probably micropylar ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号