首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of phages to control pathogenic bacteria has been investigated since they were first discovered in the beginning of the 1900s. Over the last century we have slowly gained an in-depth understanding of phage biology including which phage properties are desirable when considering phage as biocontrol agents and which phage characteristics to potentially avoid. Campylobacter infections are amongst the most frequently encountered foodborne bacterial infections around the world. Handling and consumption of raw or undercooked poultry products have been determined to be the main route of transmission. The ability to use phages to target these bacteria has been studied for more than a decade and although we have made progress towards deciphering how best to use phages to control Campylobacter associated with poultry production, there is still much work to be done. This review outlines methods to improve the isolation of these elusive phages, as well as methods to identify desirable characteristics needed for a successful outcome. It also highlights the body of research undertaken so far and what criteria to consider when doing in-vivo studies, especially because some in-vitro studies have not been found to translate into to phage efficacy in-vivo.  相似文献   

2.
During the past years, great progress has been made in the field of nanomaterials given their great potential in biomedical applications. Carbon nanotubes (CNTs), due to their unique physicochemical properties, have become a popular tool in cancer diagnosis and therapy. They are considered one of the most promising nanomaterials with the capability of both detecting the cancerous cells and delivering drugs or small therapeutic molecules to these cells. Over the last several years, CNTs have been explored in almost every single cancer treatment modality, including drug delivery, lymphatic targeted chemotherapy, thermal therapy, photodynamic therapy, and gene therapy. In this review, we will show how they have been introduced into the diagnosis and treatment of cancer. Novel SWNT-based tumor-targeted drug delivery systems (DDS) will be highlighted. Furthermore, the in vitro and in vivo toxicity of CNTs reported in recent years will be summarized.  相似文献   

3.
The special issue of Journal of Microbiology contains six reviews dealing with cutting edge research achievements in the fields of molecular microbiology focusing on antibacterial research. In a more specific sense, this special issue helps outline the progress of 21st-century basic molecular microbiology that can encompass related disciplines regarding a variety of interactions involving bacteria during bacterial pathogenesis and their control: sociomicrobiology (interaction between bacteria), immunology (interaction between bacteria and their hosts), and bacteriophage (phage) virology (interaction between bacteria and their parasites). Recent advancements have rapidly been made in our understanding of the real situation regarding polymicrobial interactions during bacterial infection and in non-mammalian host infection models to uncover the molecular mechanisms of host-bacteria interactions, which will complement our growing knowledge about immune responses toward bacterial and environmental elicitors. Moreover, much attention has recently been paid to phages and phage products as potential antibacterial therapeutics in the era of antibiotic resistance. Below, I summarize the individual contributions in these distinct categories.  相似文献   

4.

Introduction

Legionnaires' disease is recognized as a multi-systemic illness. Afflicted patients may have pulmonary, renal, gastrointestinal tract and central nervous system complications. However, renal insufficiency is uncommon. The spectrum of renal involvement may range from a mild and transient elevation of serum creatinine levels to anuric renal failure requiring dialysis and may be linked to several causes. In our present case report, we would like to draw attention to the importance of the pathological documentation of acute renal failure by reporting a case of a patient with acute tubulointerstitial nephritis complicating Legionnaires' disease.

Case presentation

A 55-year-old Caucasian man was admitted to our hospital for community-acquired pneumonia complicated by acute renal failure. Legionella pneumophila serogroup type 1 was diagnosed. Although the patient's respiratory illness responded to intravenous erythromycin and ofloxacin therapy, his renal failure worsened, he became anuric, and hemodialysis was started. A renal biopsy was performed, which revealed severe tubulointerstitial nephritis. After initiation of steroid therapy, his renal function improved dramatically.

Conclusions

This case highlights the importance of kidney biopsies in cases where acute renal failure is a complicating factor in Legionnaires' disease. If the presence of acute tubulointerstitial nephritis can be confirmed, it will likely respond favorably to steroidal treatment and thus irreversible renal damage and chronic renal failure will be avoided.  相似文献   

5.
《Insulin》2007,2(1):31-36
Background: The benefits of tight glycemic control in preventing the onset and progression of microvascular complications in patients with type 2 diabetes mellitus (DM) are unarguable. The majority of patients with type 2 DM will eventually require insulin to achieve adequate glycemic control. Using insulin earlier rather than later in the course of type 2 DM may diminish the deleterious effects of hyperglycemia on β-cell function and therefore help prolong good glycemic control and prevent the occurrence of microvascular complications. However, weight gain is a potential adverse effect of insulin therapy.Objective: The goal of this article was to describe the benefit of insulin therapy early in the course of type 2 DM, review the association of weight gain with insulin therapy, and examine potential detrimental effects that insulin-associated weight gain could have in patients with type 2 DM.Methods: Materials used for this article were identified through a search of MEDLINE (1966–2006). English-language articles were chosen using the search terms diabetes mellitus type 2, insulin, and obesity.Results: Intensive insulin therapy is often associated with weight gain. Although there is concern that weight gain in patients with type 2 DM may have adverse effects on risk factors for cardiovascular disease, unfavorable changes in blood pressure and lipid levels have not been consistently observed in clinical trials. Furthermore, clinical evidence, including data from the United Kingdom Prospective Diabetes Study, supports the view that intensive insulin therapy does not increase the risk for cardiovascular disease.Conclusions: Early insulin therapy in patients with type 2 DM may be a strategy that will help patients achieve and maintain good glycemic control, thereby reducing the risk of developing microvascular complications. Although weight gain is commonly associated with insulin therapy, it does not appear to put these patients at greater risk for cardiovascular disease.  相似文献   

6.
Gene delivery vectors must deliver their cargoes into the cytosol or the nucleus, where DNA or siRNA functions in vivo. Therefore it is crucial for the rational design of the nucleic acid delivery carriers. Compared with viral vectors, non-viral vectors have overcome some fatal defections in gene therapy. Whereas the most important issue for the non-viral vectors is the low transfection efficiency, which hinders the progress of non-viral carriers. Sparked by the structures of the virus and understanding of the process of virus infection, various biomimic structures of non-viral carriers were designed and prepared to improve the transfection issues in vitro and in vivo. However, less impressive results are achieved. In this review, we will investigate the evolution of the virus-mimicking carriers of nucleic acids for gene therapy, especially in cancer therapy; explore and discuss the relationship between the structures, materials and functions of the carriers, to provide guidance for establishing safe and highly efficient non-viral carriers for gene therapy.  相似文献   

7.
Existing control measures have significantly reduced malaria morbidity and mortality in the last two decades, although these reductions are now stalling. Significant efforts have been undertaken to develop malaria vaccines. Recently, extensive progress in malaria vaccine development has been made for Plasmodium falciparum. To date, only the RTS,S/AS01 vaccine has been tested in Phase 3 clinical trials and is now under implementation, despite modest efficacy. Therefore, the development of a malaria transmission-blocking vaccine (TBV) will be essential for malaria elimination. Only a limited number of TBVs have reached pre-clinical or clinical development with several major challenges impeding their development, including low immunogenicity in humans. TBV development efforts against P. vivax, the second major cause of malaria morbidity, lag far behind those for P. falciparum. In this review we summarize the latest progress, challenges and innovations in P. vivax TBV research and discuss how to accelerate its development.  相似文献   

8.
Based on representative analyses of Austrian cereals, a distinct shift in the spectrum of Fusarium toxins and Fusarium species has been observed since the middle of the eighties.Although in the case of maizeF subglutinans — apart fromF graminearum — proved to be the most frequent and constant contaminant over the entire range of test series, there has been a shift in the spectrum of species which is not to be explained simply by seasonal variations or by the varying degree of occurrence of the European corn borer, which in Austria is considered to be the main vector for infections involving fusaria of the Liseola section. Compared to the results from earlier vegetation periods, the nineties brought a significant increase in the number of infections withF proliferatum, a fumonisin-producer. In all likelihood, this shift in the spectrum of species is due to the changed climatic conditions now prevailing in Austria — milder and more humid winters vs. drier and warmer summers — which favour the progress ofF proliferatum.The principal toxin-forming fungus on cereals in Austria isF graminearum. On maize, its respective populations are exclusively those which produce 15-acetyl-DON as a precursor to DON (deoxynivalenol). Whilst in the 1980s,F graminearum isolates from wheat yielded both 15-acetyl-DON and 3-acetyl-DON types, only 15-acetyl-DON populations could be detected in the last few years. One possible explanation for this phenomenon is the continual intensification of maize-wheat crop rotations. In the light of the above observations, the frequently used argument whereby EuropeanF graminearum isolates produce mainly 3-acetyl-DON and American strains prevalently 15-acetyl-DON will have to be reviewed.  相似文献   

9.
Antibody targeting of cancer is showing clinical and commercial success after much intense research and development over the last 30 years. They still have the potential to delivery long-term cures but a shift in thinking towards a cancer stem cell (CSC) model for tumor development is certain to impact on how antibodies are selected and developed, the targets they bind to and the drugs used in combination with them. CSCs have been identified from many human tumors and share many of the characteristics of normal stem cells. The ability to renew, metabolically or physically protect themselves from xenobiotics and DNA damage and the range of locomotory-related receptors expressed could explain the observations of drug resistance and radiation insensitivity leading to metastasis and patient relapse.Targeting CSCs could be a strategy to improve the outcome of cancer therapy but this is not as simple as it seems. Targets such as CD133 and EpCAM/ESA could mark out CSCs from normal cells enabling specific intervention but indirect strategies such as interfering with the establishment of a supportive niche through anti-angiogenic or anti-stroma therapy could be more effective.This review will outline the recent discoveries for CSCs across the major tumor types highlighting the possible molecules for intervention. Examples of antibody-directed CSC therapies and the outlook for the future development of this emerging area will be given.Key words: antibody, targeting, cancer, stem cell, therapyMonoclonal antibodies are clinically and commercially-established therapeutics.1,2 A great deal of progress has been made over the last 30 years in overcoming problems and translating the phenomenal amount of laboratory research into clinical products. However, antibodies or other molecular interventions against cancer do not necessarily cure. In many cases, they can increase survival and improve quality of life. So, have we been hitting the wrong targets? Certainly, receptors such as human epidermal growth factor-1 (HER1/EGFR), HER2, CD20 and growth factors such as vascular endothelial cell (VEGF) and Interleukin-6 (IL-6) are involved in the cancer process, but have we been overlooking the real culprits?This review aims to examine the biology of cancer stem cells considering the markers defining them and their survival and will describe the new antibody-focused strategies emerging to target them for more effective treatment of cancer.  相似文献   

10.
Streptomyces, and related genera of Actinobacteria, are renowned for their ability to produce antibiotics and other bioactive natural products with a wide range of applications in medicine and agriculture. Streptomyces coelicolor A3(2) is a model organism that has been used for more than five decades to study the genetic and biochemical basis for the production of bioactive metabolites. In 2002, the complete genome sequence of S. coelicolor was published. This greatly accelerated progress in understanding the biosynthesis of metabolites known or suspected to be produced by S. coelicolor and revealed that streptomycetes have far greater potential to produce bioactive natural products than suggested by classical bioassay-guided isolation studies. In this article, efforts to exploit the S. coelicolor genome sequence for the discovery of novel natural products and biosynthetic pathways are summarized.  相似文献   

11.
Capsaicinoids are acid amides of C9 - C11 branched-chain fatty acids and vanillylamine. These compounds are responsible for the pungency of the Capsicum species and of cultivars regarded as hot peppers. Moreover, it has been suggested that these compounds play an ecological role in seed dispersal. Because they are used in the pharmacological, food and pesticide industries, much attention has been paid on knowing how their accumulation is controlled, both in the fruit and in cell cultures. Such control involves the processes of biosynthesis, conjugation and catabolism. Recent progress has been made on the biosynthetic pathway, and several of the genes coding for biosynthetic enzymes have been cloned and expression studies performed. With regard to catabolism, cumulative evidence supports that capsaicinoids are oxidized in the pepper by peroxidases. Peroxidases are efficient in catalyzing in vitro oxidation of both capsaicin and dihydrocapsaicin. These enzymes are mainly located in placental and the outermost epidermal cell layers of pepper fruits, as occurs with capsaicinoids, and some peroxidases are present in the organelle of capsaicinoid accumulation, that is, the vacuole. Hence, peroxidases are in the right place for this function. The products of capsaicin oxidation by peroxidases have been characterized in vitro, and some of them have been found to appear in vivo in the Capsicum fruit. Details on the kinetics and catalytic cycle for capsaicin oxidation by peroxidases are also discussed.  相似文献   

12.
In this study, gene sequences coding for the light-harvesting (LH) 2 polypeptides from a thermophilic purple sulfur bacterium Thermochromatium tepidum are reported and characterization of the LH2 complex is described. Three sets of pucBA genes have been identified, and the gene products have been analyzed by electrophoresis and reversed-phase chromatography. The result shows that all of the genes are expressed but the distribution of the expression is not uniform. The gene products undergo post-translational modification, where two of the β-polypeptides appear to be N-terminally methylated. Absorption spectrum of the purified LH2 complex exhibits Q y transitions at 800 and 854?nm in dodecyl β-maltopyranoside solution, and the circular dichroism spectrum shows a “molischianum”-like characteristic. No spectral change was observed for the LH2 when the bacterium was cultured under different conditions of light intensity. In lauryl dimethylamine N-oxide (LDAO) solution, significant changes in the absorption spectrum were observed. The B850 peak decreased and blue-shifted with increasing the LDAO concentration, whereas the B800 intensity increased without change in the peak position. The spectral changes can be partially or almost completely reversed by addition of metal ions, and the divalent cations seem to be more effective. The results indicate that ionic interactions may exist between LH2, detergent molecules and metal ions. Possible mechanisms involved in the detergent- and cation-induced spectral changes are discussed.  相似文献   

13.
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder. It is caused by loss-of-function mutations in the dystrophin gene. Currently, there is no cure. A highly promising therapeutic strategy is to replace or repair the defective dystrophin gene by gene therapy. Numerous animal models of DMD have been developed over the last 30 years, ranging from invertebrate to large mammalian models. mdx mice are the most commonly employed models in DMD research and have been used to lay the groundwork for DMD gene therapy. After ~30 years of development, the field has reached the stage at which the results in mdx mice can be validated and scaled-up in symptomatic large animals. The canine DMD (cDMD) model will be excellent for these studies. In this article, we review the animal models for DMD, the pros and cons of each model system, and the history and progress of preclinical DMD gene therapy research in the animal models. We also discuss the current and emerging challenges in this field and ways to address these challenges using animal models, in particular cDMD dogs.KEY WORDS: Duchenne muscular dystrophy, Dystrophin, Animal model, Canine DMD, Gene therapy  相似文献   

14.
Recombinant DNA techniques have been used to introduce agronomically valuable traits, including resistance to viruses, herbicides, and insects, into crop plants. Introduction of these genes into plants frequently involves Agrobacterium-mediated gene transfer. The potential exists for applying this technology to nematode control by introducing genes conferring resistance to nematodes. Transferred genes could include those encoding products detrimental to nematode development or reproduction as well as cloned host resistance genes. Host genes that confer resistance to cyst or root-knot nematode species have been identified in many plants. The best characterized is Mi, a gene that confers resistance to root-knot nematodes in tomato. A map-based cloning approach is being used to isolate the gene. For development of a detailed map of the region of the genome surrounding Mi, DNA markers genetically linked to Mi have been identified and analyzed in tomato lines that have undergone a recombination event near Mi. The molecular map will be used to identify DNA corresponding to Mi. We estimate that a clone of Mi will be obtained in 2-5 years. An exciting prospect is that introduction of this gene will confer resistance in plant species without currently available sources of resistance.  相似文献   

15.
Cell-based meat, also called ‘clean’, lab, synthetic or in vitro meat, has attracted much media interest recently. Consumer demand for cellular meat production derives principally from concerns over environment and animal welfare, while secondary considerations include consumer and public health aspects of animal production, and food security. The present limitations to cellular meat production include the identification of immortal cell lines, availability of cost-effective, bovine-serum-free growth medium for cell proliferation and maturation, scaffold materials for cell growth, scaling up to an industrial level, regulatory and labelling issues and at what stage mixing of myo-, adipo- and even fibrocytes can potentially occur. Consumer perceptions that cell-based meat production will result in improvements to animal welfare and the environment have been challenged, with the outcome needing to wait until the processes used in cell-based meat are close to a commercial reality. Challenges for cell-based meat products include the simulation of nutritional attributes, texture, flavour and mouthfeel of animal-derived meat products. There is some question over whether consumers will accept the technology, but likely there will be acceptance of cell-based meat products, in particular market segments. Currently, the cost of growth media, industry scale-up of specific components of the cell culture process, intellectual property sharing issues and regulatory hurdles mean that it will likely require an extended period for cellular meat to be consistently available in high-end restaurants and even longer to be available for the mass market. The progress in plant-based meat analogues is already well achieved, with products such as the ImpossibleTM Burger and other products already available. These developments may make the development of cellular meat products obsolete. But the challenges remain of mimicking not only the nutritional attributes, flavour, shape and structure of real meat, but also the changes in regulation and labelling.  相似文献   

16.
Many fermentation products are produced under microaerobic or anaerobic conditions, in which oxygen is undetectable by dissolved oxygen probe, presenting a challenge for process monitoring and control. Extracellular redox potentials that can be detected conveniently affect intracellular redox homeostasis and metabolism, and consequently control profiles of fermentation products, which provide an alternative for monitoring and control of these fermentation processes. This article reviews updated progress in the impact of redox potentials on gene expression, protein biosynthesis and metabolism as well as redox potential control strategies for more efficient production of fermentation products, taking ethanol fermentation by the yeast Saccharomyces under microaerobic conditions and butanol production by the bacterium Clostridium under anaerobic conditions as examples.  相似文献   

17.
18.
《Anaerobe》2009,15(6):281-284
BackgroundThe association of Clostridium difficile infection (CDI) with antecedent antibiotic use suggests that perturbation of normal intestinal flora is an important inciting factor. Therefore, the use of probiotics for the prevention and/or therapy of CDI is considered to be theoretically effective.MethodsA non-systematic review of the literature evaluating the prophylactic and therapeutic efficacy of oral bacterial or yeast products for CDI, as well as the “quality control” and deleterious effects of these agents.ResultsThere is no convincing literature which supports the use of bacterial/yeast products to prevent CDI. There is one prophylactic study from the United Kingdom which showed efficacy, but it has been widely criticized as flawed or not generalizable. One other small case-series described the efficacy of Saccharomyces boulardii in preventing CDI relapse, but only in a subset of patients. Many bacterial/yeast products do not contain what they are purported to contain, and may contain other bacterial/fungal constituents not listed on the label. S. boulardii preparations may predispose to bloodstream infections in recipients, and have been associated with fungemia in contiguous patients when prepared at the bedside in intensive care settings.ConclusionsThere is no persuasive evidence to support the use of bacterial/yeast products for the prevention or treatment of CDI. Oral preparations may not contain what is indicated on the label. Widespread use of some products may lead to bloodstream infections in susceptible individuals, and careless use of S. boulardii in an intensive care setting may place other patients at risk. At the present time, oral bacterial/yeast products do not have a role in the prevention or therapy of CDI.  相似文献   

19.
Bacteria of the genus Staphylococcus are common pathogens responsible for a broad spectrum of human and animal infections and belong to the most important etiological factors causing food poisoning. Because of rapid increase in the prevalence of isolation of staphylococci resistant to many antibiotics, there is an urgent need for the development of new alternative chemotherapeutics. A number of studies have recently demonstrated the strong potential of peptidoglycan hydrolases (PHs) to control and treat infections caused by this group of bacteria. PHs cause rapid lysis and death of bacterial cells. The review concentrates on enzymes hydrolyzing peptidoglycan of staphylococci. Usually, they are characterized by high specificity to only Staphylococcus aureus cell wall components; however, some of them are also able to lyse cells of other staphylococci, e.g., Staphylococcus epidermidis-human pathogen of growing importance and also other groups of bacteria. Some PHs strengthen the bactericidal or bacteriostatic activity of common antibiotics, and as a result, they should be considered as component of combined therapy which could definitely reduced the development of bacterial resistance to both enzymes and antibiotics. The preliminary research revealed that most of these enzymes can be produced using heterologous, especially Escherichia coli expression systems; however, still much effort is required to develop more efficient and large-scale production technologies. This review discusses current state on knowledge with emphasis on the possibilities of application of PHs in the context of therapeutics for infections caused by staphylococci.  相似文献   

20.
《Cytotherapy》2019,21(11):1095-1111
Pluripotent stem cells offer the potential for an unlimited source for cell therapy products. However, there is concern regarding the tumorigenicity of these products in humans, mainly due to the possible unintended contamination of undifferentiated cells or transformed cells. Because of the complex nature of these new therapies and the lack of a globally accepted consensus on the strategy for tumorigenicity evaluation, a case-by-case approach is recommended for the risk assessment of each cell therapy product. In general, therapeutic products need to be qualified using available technologies, which ideally should be fully validated. In such circumstances, the developers of cell therapy products may have conducted various tumorigenicity tests and consulted with regulators in respective countries. Here, we critically review currently available in vivo and in vitro testing methods for tumorigenicity evaluation against expectations in international regulatory guidelines. We discuss the value of those approaches, in particular the limitations of in vivo methods, and comment on challenges and future directions. In addition, we note the need for an internationally harmonized procedure for tumorigenicity assessment of cell therapy products from both regulatory and technological perspectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号