共查询到20条相似文献,搜索用时 31 毫秒
1.
《生物化学与生物物理学报:生物膜》1985,816(1):63-67
The binding of calmodulin to the mitochondrial F1 · F0-ATPase has been studied. [125I]Iodoazidocalmodulin binds to the ε-subunit and to the endogeneous ATPase inhibitor peptide in a Ca2+-dependent reaction. The effect of the mitochondrial ATPase inhibitor peptide on the purified Ca2+-ATPase of erythrocytes has also been analyzed. The inhibitor peptide stimulates the ATPase when pre-incubated with the enzyme. The activation of the Ca2+-ATPase by calmodulin is not influenced by the inhibitor peptide, indicating that the two mechanisms of activation are different. These in vitro effects of the two regulatory proteins may reflect a common origin of the two ATPases considered and/or of the regulatory proteins. 相似文献
2.
J M Cuezva J F Santarén P González C Valcarce A M Luis J M Izquierdo 《FEBS letters》1990,270(1-2):71-75
Rat liver peroxisomes contain in their matrix the alpha-subunit of the mitochondrial F1-ATPase complex. The identification of this protein in liver peroxisomes has been achieved by immunoelectron microscopy and subcellular fractionation. No beta-subunit of the mitochondrial F1-ATPase complex was detected in the peroxisomal fractions obtained in sucrose gradients or in Nycodenz pelletted peroxisomes. The consensus peroxisomal targeting sequence (Ala-Lys-Leu) is found at the carboxy terminus of the mature alpha-subunit from bovine heart and rat liver mitochondria. Due to the dual subcellular localization of the alpha-subunit and to the structural homologies that exist between this protein and molecular chaperones [(1990) Biol. Chem. 265, 7713-7716] it is suggested that the protein should perform another functional role(s) in both organelles, plus to its characteristic involvement in the regulation of mitochondrial ATPase activity. 相似文献
3.
《BBA》1987,890(2):195-204
A mutant strain of Escherichia coli was isolated in which Gly-48 of the mature ε-subunit of the energy-transducing adenosine triphosphatase was replaced by Asp. This amino acid substitution caused inhibition of ATPase activity (about 70%), loss of ATP-dependent proton translocation and lowered oxidative phosphorylation, but did not affect proton translocation through the F0. Purified F1-ATPase from the mutant strain bound to stripped membranes with the same affinity as the normal F1-ATPase. Partial revertant strains were isolated in which Pro-47 of the ε-subunit was replaced by Ser or Thr. Pro-47 and Gly-48 are predicted to be residues 2 and 3 in a Type II β-turn and the Gly-48 to Asp substitution is predicted to cause a change from a Type II to a Type I or III β-turn. Space-filling models of the β-turn (residues 46–49) in the normal, mutant and partial revertant ε-subunits indicate that the peptide oxygen between Pro-47 and Gly-48 is in a different position to the peptide oxygen between Pro-47 and Asp-48 and that the substitution of Pro-47 by either Ser or Thr restores an oxygen close to the original position. It is suggested that the peptide oxygen between Pro-47 and Gly-48 of the ε-subunit is involved either structurally in inter-subunit H-bonding or directly in proton movements through the F1-ATPase. 相似文献
4.
A Baracca D Menegatti G Parenti Castelli C A Rossi G Solaini 《Biochemistry international》1990,21(6):1135-1142
The incubation of bovine mitochondrial F1-ATPase with 2-hydroxy-5-nitrobenzyl bromide (HNB), a selective reagent toward tryptophan residues in proteins, produced a concentration dependent inactivation of the enzyme and the covalent binding of 0.88 mol reagent/mol F1. Although HNB is highly specific for tryptophan it has also some reactivity toward cysteine, then a pre-treatment of F1 with several sulphydryl reagents has been performed to make the site of reaction clearer. This pre-treatment had neither effects in the binding stoichiometry nor in the extent of catalytic inhibition, suggesting that readly accessible thiol groups are not involved in the reaction with HNB. Since the only tryptophan bearing polypeptide of the bovine mitochondrial F1-ATPase complex is its smallest subunit, subunit-epsilon, this is the most probable candidate for HNB reaction. Therefore it may be inferred that the intactness and/or the correct conformation of this subunit could be important factor(s) for the multisite ATP hydrolytic activity of the enzyme. 相似文献
5.
Cyclic AMP-dependent phosphorylation of the precursor to beta subunit of mitochondrial F1-ATPase: a physiological mistake? 下载免费PDF全文
R A Steinberg 《The Journal of cell biology》1984,98(6):2174-2178
By using the purified rat liver protein for reference in electrophoresis and peptide mapping experiments, I have identified the beta subunit of mitochondrial F1-ATPase and its cytoplasmic precursor in two-dimensional gel patterns of proteins from S49 mouse lymphoma cells. The beta subunit precursor is a substrate for cAMP-dependent phosphorylation during its synthesis. Normally, both nonphosphorylated and phosphorylated forms of beta subunit precursor are processed rapidly to the smaller, more acidic forms of mature beta subunit. When processing is inhibited with valinomycin, both nonphosphorylated and phosphorylated forms of beta subunit precursor are stabilized. Nonphosphorylated beta subunit is one of the most stable of cellular proteins, but the phosphorylated form is eliminated within minutes of processing. This suggests that phosphorylated beta subunit is recognized as aberrant and excluded from assembly into the ATPase complex. These results argue that cAMP-dependent phosphorylation of the beta subunit precursor is a physiological mistake that is remedied after mitochondrial import and processing. 相似文献
6.
Escherichia coli grown anaerobically for osmotic studies upon increased osmolarity in alkaline medium carried out H+–K+-exchange in two steps, the first of which was DCCD1 sensitive and osmo-dependent and had the 2H+/K+ stoichiometry. H+-efflux in the presence of protonophore (CCCP) upon increase of osmolarity was shown to be high and inhibited by DCCD, whereas H+-efflux induced by a decrease of osmolarity was small and not inhibited by DCCD. The 2H+/K+-exchange was absent intrkA anduncA mutants. InuncB mutant 2H+/K+-exchange was not DCCD-and osmosensitive. Competition between DCCD and osmoshock on inhibition of 2H+/K+-exchange was found. Osmosensitivity of this exchange disappeared in spheroplasts. Osmosensitivity of both 2H+/K+-exchange and the F0F1 and osmoregulation of the F0F1 via F0 and a periplasmic space are postulated.Abbreviations F0F1
H+-ATPase complex
- F0
H+-channel, proteolipid
- F1
H+-ATPase
-
Trk
constitutive system for K+ uptake
- PV
periplasmic protein valve
- DCCD
N,N-dicyclohexylcarbodiimide
- CCCP
carbonylcyanide-m-chlorophenylhydrazone
- H or K
transmembrane electrochemical gradient for H+ or K+ respectively
-
membrane potential
- upshock or downshock
increase or decrease of medium osmolarity, respectively
- CGSC
E. coli Genetic Stock Center, Yale University, USA 相似文献
7.
8.
A study was conducted into the course of meiosis in F1 interspecific hybrids of Lycopersicum esculentum Mill (mutant line Mo 638) × Lycopersicum chinense Dul. and its parental forms. An F1 interspecific hybrid was obtained through the embryo culture technique. A decrease in the chiasma frequency and an increase in the frequency of univalents and meiotic abnormalities compared to their parental forms were detected in hybrid plants. The number of univalents and the percentage of main impairments decreased, as the height of bud tier locations increased. A conclusion was made regarding the connection between the regularity of meiosis in the examined F1 interspecific hybrids of Lycopersicon esculentum × Lycopersicon chilense, on the one hand, and the hybrid nature of genotypes and the influence of environmental factors, on the other hand. 相似文献
9.
The interactions between the pyrophosphate (PPi) binding sites and the nucleotide binding sites on mitochondrial F1-ATPase have been investigated, using F1 preparations containing different numbers of catalytic and noncatalytic nucleotide-binding sites occupied by ligands. In all cases, the total number of moles of bound nucleotides and PPi per mole of F1 was less than or equal to six. F1 preparations containing either three or two filled noncatalytic sites and no filled catalytic sites (referred as F1[3,0] and F1[2,0]) were found to bind 3 mol of PPi/mol of F1. Tight binding of ADP-fluoroberyllate complexes to two of the catalytic sites of F1 converted the three heterogeneous PPi-binding sites into three homogeneous binding sites, each exhibiting the same affinity for PPi. The addition of PPi at saturating concentrations to F1 containing GDP bound to two catalytic sites (F1[2,2]) resulted in the release of 1 mol of GDP. Furthermore, the addition of PPi to F1 filled with ADP-fluoroberyllate at the catalytic sites resulted in the release of 1 mol of tightly bound ADP/mol of F1. Taken together, these results indicate that PPi binds to specific sites that interact with both the catalytic and the noncatalytic nucleotide-binding sites of F1. 相似文献
10.
X. J. Chen P. M. Hansbro G. D. Clark-Walker 《Molecular genetics and genomics : MGG》1998,259(5):457-467
Specific mgi mutations in the α, β or γ subunits of the mitochondrial F1-ATPase have previously been found to suppress ρ0 lethality in the petite-negative yeast Kluyveromyces lactis. To determine whether the suppressive activity of the altered F1 is dependent on the F0 sector of ATP synthase, we isolated and disrupted the genes KlATP4, 5 and 7, the three nuclear genes encoding subunits b, OSCP and d. Strains disrupted for any one, or all three of these genes are respiration deficient and have reduced viability. However a strain devoid of the three nuclear genes is still unable to lose mitochondrial DNA, whereas a mgi mutant with the three genes inactivated remains petite-positive. In the latter case, ρ0 mutants can be isolated, upon treatment with ethidium bromide, that lack six major F0 subunits, namely the nucleus-encoded subunits b, OSCP and d, and the mitochondrially encoded Atp6, 8 and 9p. Production of ρ0 mutants indicates that an F1-complex carrying a mgi mutation can assemble in the absence of F0 subunits and that suppression of ρ0 lethality is an intrinsic property of the altered F1 particle. 相似文献
11.
We showed previously that active PKC-α maintains F0F1-ATPase activity, whereas inactive PKC-α mutant (dnPKC-α) blocks recovery of F0F1-ATPase activity after injury in renal proximal tubules (RPTC). This study tested whether mitochondrial PKC-α interacts with and phosphorylates F0F1-ATPase. Wild-type PKC-α (wtPKC-α) and dnPKC-α were overexpressed in RPTC to increase their mitochondrial levels, and RPTC were exposed to oxidant or hypoxia. Mitochondrial levels of the γ-subunit, but not the α- and β-subunits, were decreased by injury, an event associated with 54% inhibition of F0F1-ATPase activity. Overexpressing wtPKC-α blocked decreases in γ-subunit levels, maintained F0F1-ATPase activity, and improved ATP levels after injury. Deletion of PKC-α decreased levels of α-, β-, and γ-subunits, decreased F0F1-ATPase activity, and hindered the recovery of ATP content after RPTC injury. Mitochondrial PKC-α co-immunoprecipitated with α-, β-, and γ-subunits of F0F1-ATPase. The association of PKC-α with these subunits decreased in injured RPTC overexpressing dnPKC-α. Immunocapture of F0F1-ATPase and immunoblotting with phospho(Ser) PKC substrate antibody identified phosphorylation of serine in the PKC consensus site on the α- or β- and γ-subunits. Overexpressing wtPKC-α increased phosphorylation and protein levels, whereas deletion of PKC-α decreased protein levels of α-, β-, and γ-subunits of F0F1-ATPase in RPTC. Phosphoproteomics revealed phosphorylation of Ser146 on the γ subunit in response to wtPKC-α overexpression. We concluded that active PKC-α 1) prevents injury-induced decreases in levels of γ subunit of F0F1-ATPase, 2) interacts with α-, β-, and γ-subunits leading to increases in their phosphorylation, and 3) promotes the recovery of F0F1-ATPase activity and ATP content after injury in RPTC. 相似文献
12.
Burgard S Harada M Kagawa Y Trommer WE Vogel PD 《Cell biochemistry and biophysics》2003,39(3):175-181
The photoaffinity spin-labeled ATP analog, 2-N3-SL-adenosine triphosphate (ATP), was used to covalently modify isolated β-subunits from F1-ATPase of the thermophilic bacterium PS3. Approximately 1.2 mol of the nucleotide analog bound to the isolated subunit in
the dark. Irradiation leads to covalent incorporation of the nucleotide into the binding site. ESR spectra of the complex
show a signal that is typical for protein-immobilized radicals. Addition of isolated α-subunits to the modified β-subunits
results in ESR spectra with two new signals indicative of two distinctly different environments of the spin-label, e.g., two
distinctly different conformations of the catalytic sites. The relative ratio of the signals is approx 2∶1 in favor of the
more closed conformation. The data show for the first time that when nucleotides are bound to isolated β-subunits, binding
of α-subunits induces asymmetry in the catalytic sites even in the absence of the γ-subunit.
This work was supported by a grant from the Deutsche Forschungsgemeinschaft to PDV. 相似文献
13.
Rikiya Watanabe Makoto Genda Yasuyuki Kato-Yamada Hiroyuki Noji 《Biophysical journal》2018,114(1):178-187
F1-ATPase is a rotary motor protein driven by ATP hydrolysis. Among molecular motors, F1 exhibits unique high reversibility in chemo-mechanical coupling, synthesizing ATP from ADP and inorganic phosphate upon forcible rotor reversal. The ε subunit enhances ATP synthesis coupling efficiency to > 70% upon rotation reversal. However, the detailed mechanism has remained elusive. In this study, we performed stall-and-release experiments to elucidate how the ε subunit modulates ATP association/dissociation and hydrolysis/synthesis process kinetics and thermodynamics, key reaction steps for efficient ATP synthesis. The ε subunit significantly accelerated the rates of ATP dissociation and synthesis by two- to fivefold, whereas those of ATP binding and hydrolysis were not enhanced. Numerical analysis based on the determined kinetic parameters quantitatively reproduced previous findings of two- to fivefold coupling efficiency improvement by the ε subunit at the condition exhibiting the maximum ATP synthesis activity, a physiological role of F1-ATPase. Furthermore, fundamentally similar results were obtained upon ε subunit C-terminal domain truncation, suggesting that the N-terminal domain is responsible for the rate enhancement. 相似文献
14.
Differences in the products of mitochondrial protein synthesis in vivo in human and mouse cells and their potential use as markers for the mitochondrial genome in human–mouse cell hybrids 下载免费PDF全文
The proteins synthesized in the mitochondria of mouse and human cells grown in tissue culture were examined by electrophoresis in polyacrylamide gels. The proteins were labelled by incubating the cells in the presence of [(35)S]methionine and an inhibitor of cytoplasmic protein synthesis (emetine or cycloheximide). A detailed comparison between the labelled products of mouse and human mitochondrial protein synthesis was made possible by developing radioautograms after exposure to slab-electrophoresis gels. Patterns obtained for different cell types of the same species were extremely similar, whereas reproducible differences were observed on comparison of the profiles obtained for mouse and human cells. Four human-mouse somatic cell hybrids were examined, and in each one only components corresponding to mouse mitochondrially synthesized proteins were detected. 相似文献
15.
A. J. Lukaszewski J. P. Gustafson B. Apolinarska 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1982,63(1):49-55
Summary The substitution patterns of rye chromosomes in hexaploid triticale × wheat F2 hybrids, along with the transmission patterns of rye chromosomes through egg cells and pollen when several of the F1 hybrids were test crossed to triticale and wheat were investigated. The data indicated that the rye chromosome transmission through both the egg and pollen was random in number and in composition. The test crosses suggested that it was best to use wheat pollen for the transmission of rye chromosomes through the egg cells of the F1 hybrids and triticale egg cells for the transmission of rye chromosomes through F1 hybrid pollen. A deviation from random segregation in the F2 and the transmission rate was observed for rye chromosomes 1R, 4R/7R, and 6R. The transmission rates of 1R and 6R varied depending on the direction in which the cross was made. The results also indicated that there was little or no compensation between the R- and D-genomes and that the chromosomes of these two genomes appeared to be transmitted independently of each other. 相似文献
16.
《BBA》1985,806(1):35-41
The hydrolysis of MgATP and MgITP by mitochondrial F1-ATPase from Saccharomyces cerevisiae is competitively inhibited by α,β-CrADP, α,β,γ-CrATP and β,γ-CrATP. The apparent K1 values of the three complexes are in the range of the half-saturating MgATP concentration. The negative cooperativity (nH = 0.7) of MgATP hydrolysis is totally abolished by α,β-CrADP (nH = 1.0), while it is not affected by the CrATP. It is concluded that α,β-CrADP binds exclusively at the regulatory site and that CrATP binds exclusively to the catalytic site. 相似文献
17.
18.
Sawako Enoki Rikiya Watanabe Ryota Iino Hiroyuki Noji 《The Journal of biological chemistry》2009,284(34):23169-23176
F1-ATPase is a rotary molecular motor in which the γ-subunit rotates against the α3β3 cylinder. The unitary γ-rotation is a 120° step comprising 80 and 40° substeps, each of these initiated by ATP binding and ADP release and by ATP hydrolysis and inorganic phosphate release, respectively. In our previous study on γ-rotation at low temperatures, a highly temperature-sensitive (TS) reaction step of F1-ATPase from thermophilic Bacillus PS3 was found below 9 °C as an intervening pause before the 80° substep at the same angle for ATP binding and ADP release. However, it remains unclear as to which reaction step the TS reaction corresponds. In this study, we found that the mutant F1(βE190D) from thermophilic Bacillus PS3 showed a clear pause of the TS reaction below 18 °C. In an attempt to identify the catalytic state of the TS reaction, the rotation of the hybrid F1, carrying a single copy of βE190D, was observed at 18 °C. The hybrid F1 showed a pause of the TS reaction at the same angle as for the ATP binding of the incorporated βE190D, although kinetic analysis revealed that the TS reaction is not the ATP binding step. These findings suggest that the TS reaction is a structural rearrangement of β before or after ATP binding.F1-ATPase (F1)2 is an ATP-driven rotary motor protein. The subunit composition of the bacterial F1-ATPase is α3β3γδϵ, and the minimum complex of F1-ATPase as a rotary motor is α3β3γ subcomplex. This motor protein forms the FoF1-ATP synthase complex by binding to another rotary motor, namely, Fo, which is driven by the proton flux resulting from the proton motive force across the membranes (1–4). Under physiological conditions, where the proton motive force is sufficiently large, Fo forcibly rotates F1-ATPase in the reverse direction of F1-ATPase, leading the reverse reaction of ATP hydrolysis, i.e. ATP synthesis from ADP and inorganic phosphate (Pi). When the proton motive force diminishes or F1 is isolated from Fo, F1-ATPase hydrolyzes ATP to rotate the γ-subunit against the α3β3 stator ring in the counterclockwise direction as viewed from the Fo side (5). The catalytic sites are located at the interface of the α- and β-subunits, predominantly on the β-subunit (6). Each β-subunit carries out a single turnover of ATP hydrolysis during the γ-rotation of 360° following the common catalytic reaction pathway, whereas they are 120° different in the catalytic phase. In this manner, the three β-subunits undergo different reaction steps of ATP hydrolysis upon each rotational step. The rotary motion of the γ-subunit has been demonstrated by biochemical (7) and spectroscopic methods (8) and directly proved in single-molecule observation studies (5).Since the establishment of the single-molecule rotation assay, the chemomechanical coupling scheme of F1 has been studied extensively by resolving the rotation into discrete steps. The stepping rotation was first observed under an ATP-limiting condition where F1 makes discrete 120° steps upon ATP binding (9). Then, high speed imaging of the rotation with a small probe of low friction was performed, which revealed that the 120° step comprises 80 and 40° substeps, each initiated by ATP binding, and two unknown consecutive reactions, respectively (10). This finding necessitated the identification of the two reactions that trigger the 40° substep. Hence, the rotation assay was performed using a mutant, namely F1(βE190D), and a slowly hydrolyzed ATP analog, namely ATPγS (11). Glutamate 190 of the β-subunit of F1, derived from thermophilic Bacillus PS3 and the corresponding glutamates from other F1-ATPases (Glu-181 of F1 from Escherichia coli and Glu-188 of F1 from bovine mitochondria), has been identified as one of the most critical catalytic residues for ATP hydrolysis (6, 12–15). When this glutamate was substituted with aspartic acid, which has a shorter side chain than that of glutamate, the ATP cleavage step of F1 was drastically slowed. In the rotation assay, this mutant showed a distinct long pause before the 40° substep. ATPγS also caused a long pause before the 40° substep. These observations established that the 40° substep is initiated by hydrolysis. Accordingly, the pause angles before the 80 and 40° substeps are referred to as to the binding angle and the catalytic angle, respectively. Then, the rotation assay was performed in the presence of a high amount of Pi in the solution. It was shown that Pi rebinding caused the long pause at the catalytic angle, suggesting that Pi is released before the 40° substep (16).However, the reaction scheme of F1 cannot be established by simply assigning each reaction step to either the binding angle or the catalytic angle, because each reaction step must be assigned to one of the three binding or catalytic angles when considering the 360° cyclic reaction scheme of each β-subunit. Direct information about the timing of ADP release was obtained by simultaneous imaging of fluorescently labeled nucleotides and γ rotation, which showed that each β retains ADP until the γ rotates 240° after binding of the nucleotide as ATP and releases ADP between 240 and 320° (16, 17). Another powerful approach is the use of a hybrid F1 carrying a mutant β that causes a characteristic pause during the rotation. In a previous study, the hybrid F1 carrying a single copy of β(E190D), α3β2β(E190D)γ, showed a distinct pause caused by the slow hydrolysis of β(E190D) at +200° from the ATP binding angle of the mutant β (18). From this observation, it was confirmed that each β executes the chemical cleavage of the bound ATP at +200° from the angle where the ATP binds to β. The asymmetric feature of the pause of the hybrid F1 was also utilized in other experiments as a marker in the rotational trajectory to correlate the rotational angle and the conformational state of β (19) or to determine the state of F1 in the crystal structures as the pausing state at catalytic angle (20).Recently, we have found a new reaction intermediate of F1 rotation as a clear intervening pause before the 80° substep in the rotation assay below 9 °C (21). Furuike et al. (22) also observed the TS reaction in a high speed imaging experiment. The rate constant of this reaction was remarkably sensitive to temperature, giving a Q10 factor around 19. When ADP was added to solution, the pause before the 80° substep was prolonged, whereas the solution Pi caused a longer pause before the 40° substep (21). Although this result can be explained by assuming that the temperature-sensitive (TS) reaction is ADP release, it was not decisive for the identification of the TS reaction.In this study, we found that the mutant F1(βE190D) also exhibits the distinct pause of the TS reaction but at a higher temperature than for the wild-type F1, i.e. at 18 °C. This feature was advantageous in identifying the angle position of the TS reaction in the catalytic cycle for each β-subunit coupled with the 360° rotation. Taking advantage of the feature of the hybrid F1, we analyzed the rotational behavior of the hybrid F1 at 18 °C in order to assign the angle position of the TS reaction in the catalytic cycle of the 360° rotation, and we have shown that the TS reaction is not directly involved in the ADP release but in some conformational rearrangement before or after ATP binding step. 相似文献
19.
Cuezva JM Sánchez-Aragó M Sala S Blanco-Rivero A Ortega AD 《Journal of bioenergetics and biomembranes》2007,39(3):259-265
Mitochondrial research has experienced a considerable boost during the last decade because organelle malfunctioning is in
the genesis and/or progression of a vast array of human pathologies including cancer. The renaissance of mitochondria in the
cancer field has been promoted by two main facts: (1) the molecular and functional integration of mitochondrial bioenergetics
with the execution of cell death and (2) the implementation of 18FDG-PET for imaging and staging of tumors in clinical practice. The latter, represents the bed-side translational development of the metabolic hallmark that describes the bioenergetic phenotype of most cancer cells as originally
predicted at the beginning of previous century by Otto Warburg. In this minireview we will briefly summarize how the study
of energy metabolism during liver development forced our encounter with Warburg’s postulates and prompted us to study the
mechanisms that regulate the biogenesis of mitochondria in the cancer cell. 相似文献
20.
Chromosome elimination and chromosome pairing in tetraploid hybrids of Hordeum vulgare × H. bulbosum
H. M. Thomas 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1988,76(1):118-124
Summary The C0 tetraploid counterparts of diploid hybrids of Hordeum vulgare × H. bulbosum were meiotically analysed, and were found to be chromosomally less stable than the same genotypes had been as diploids. The 14 bulbosum chromosomes present in the tetraploid cytotypes were probably eliminated as pairs rather than randomly or one genome at the time. Development of the vulgare and bulbosum genomes was asynchronous in some hybrids, the bulbosum chromosomes appearing less advanced than the vulgare chromosomes in the same cell. This appeared to reduce pairing between bulbosum homologues and also suppressed homoeologous pairing. 相似文献