首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
M K Mathew  C L Smith  C R Cantor 《Biochemistry》1988,27(26):9210-9216
Bacteriophage DNAs annealed into linear oligomeric concatemers were used to examine the quantitative pulsed-field gel electrophoretic behavior of different-sized DNAs as a function of electrical field strength and pulse time. Three zones of resolution are observed for increasingly larger DNAs. In the first two zones, the electrophoretic mobility decreases linearly with increasing DNA size. The separation in zone 2 is roughly twice that in zone 1. The largest DNA molecules do not resolve at all and migrate in a compression zone. Mobility in zone 1 increases linearly with the electric field strength and decreases with the inverse of the pulse time. The behavior of DNA in zone 2 is qualitatively similar. However, the effect of field strength and pulse time on the separations in each zone is quite different. The results for zone 1 are generally consistent with the predictions of several existing physical models of pulsed-field gel electrophoresis, but no model accounts for all of the observed behavior in the three zones.  相似文献   

2.
The design and construction of a transistor-driven hexagonal contour-clamped homogeneous electric field (CHEF) apparatus is discussed in detail. The addition of computer control of pulsed-field timings and experiment duration gives rise to an efficient electrophoresis tool designed to achieve separation of DNA molecules in different size groupings. In particular, pulse time regimes which lead to the monotonic separation of DNA molecules ranging from 90 kbp to over a megabase pair are demonstrated. Theoretical treatment of electric field clamping with transistor-driven multiple electrodes is supported by measurements and by the actual performance of electrophoretic separation of yeast chromosomes. The large sample capacity of gels run in this apparatus coupled with the modest power requirements necessary to provide a homogeneous electric field offer significant advantages over earlier CHEF designs.  相似文献   

3.
Conventional agarose gel electrophoresis separates DNA using a static electric field. The maximum size limit for separation of DNA by this method is about 20 kilobase pairs (kb). A number of new electrophoretic techniques which employ periodic reorientation of electric fields permit separation of DNA well beyond this size limit. We sought to determine whether the use of very fast (millisecond) field switching could improve separation of DNA in the size range of 1 to 50 kb. Additionally, we have compared the resolution obtained with each of the different field switching regimens for DNA in this size range. Switching intervals of from 0.2 to 900 ms were used with unidirectional pulsing of a single electric field, with pulsed field gels, and with field inversion gel electrophoresis. Plotting the mobility of DNA as a function of size demonstrates that under the conditions used, each of these techniques offers comparable resolution. We also have examined the separation obtained when field inversion gels are run with forward and reverse fields of equal voltage and different durations, versus using fields of equal duration and different voltages. Field inversion which uses forward and reverse fields of different voltages yields resolution which is superior to the other methods examined.  相似文献   

4.
Quantitative measurement of DNA migration in gel electrophoresis requires precisely controlled homogeneous electric fields. A new electrophoresis system has allowed us to explore several parameters governing DNA migration during homogeneous field pulsed field gel (PFG) electrophoresis. Migration was measured at different switch times, temperatures, agarose concentrations, and voltage gradients. Conditions which increase DNA velocities permit separation over a wider size range, but reduce resolution. We have also varied the angle between the alternating electric fields. Reorientation angles between 105 degrees and 165 degrees give equivalent resolution, despite significant differences in DNA velocity. Separation of DNA fragments from 50 to greater than 7000 kilobases (Kb) can easily be optimized for speed and resolution based on conditions we describe.  相似文献   

5.
HydroLink materials represent a novel family of gels composed of unique polymer matrices. The applications of HydroLink to molecular biology and, specifically, to DNA technology have been carefully investigated. Our results indicate that the HydroLink matrix developed for double-stranded DNA (dsDNA) is an excellent tool for electrophoretic separations in fixed electric fields. Excellent linear resolution from 100 to 5000 base pairs is easily achieved with good resolution albeit non-linear from 6000 to 23000 base pairs. The broad range of separation in addition to increased mechanical strength of dsDNA HydroLink represents a distinct advantage over other matrices currently used in DNA electrophoretic analysis.  相似文献   

6.
The understanding, on a molecular level, of the mechanisms responsible for the improved separation in DNA gel electrophoresis when using modulated electric fields requires detailed information about conformational distribution and dynamics in the DNA/gel system. The orientational order due to electrophoretic migration ("electrophoretic orientation") is an interesting piece of information in this context that can be obtained through linear dichroism spectroscopy [M. Jonsson, B. Akerman, and B. Nordén, (1988) Biopolymers 27, 381-414]. The technique permits measurement of the orientation factor S of DNA (S = 1 corresponds to perfect orientation) within an electrophoretic zone in the gel during the electrophoresis. It is reported that the degree of orientation of T2 DNA [170 kilo base pairs (kpb)] is considerable (S = 0.17 in 1% agarose at 10 V/cm) compared to relatively modest orientations of short fragments found earlier (for 23-kbp DNA, S = 0.03 in 1% agarose at 10 V/cm), showing that large DNA coils are substantially deformed during the migration. Growth and relaxation dynamics of the orientational order of the T2 DNA are also reported, as functions of gel concentration (0.3-2%), electric field strength (0-40 V/cm), and pulse characteristics. The rise profile of the DNA orientation, when applying a constant field, is a nonmonotonic function that displays a pronounced overshoot, followed by a minor undershoot, before it reaches steady-state orientation (after 12 s in 1% agarose, 9 V/cm). The orientational relaxation in absence of field shows a multiexponential decay in a time region of some 10 s, when most of the DNA anisotropy has disappeared. A surprising phenomenon is a memory over minutes of the DNA/gel system to previous pulses: with two consecutive rectangular pulses (of the same polarity), the orientational overshoot and undershoot as a response to the second pulse are significantly reduced compared to the first pulse. The time required to recover 90% of their amplitudes is typically 1200 s (1% agarose, 9 V/cm), which may be compared to the time required to relax 90% of the DNA orientation, which is only 6 s. The major part of the over- and undershoot recovery is thus a reorganization of a system in which DNA is already randomly oriented. The different response amplitudes and relaxation times, including the amplitude and recovery time of the overshoot, of the orientational order of DNA in the electrophoretic gel have been studied as functions of gel concentration and field strength. The results are discussed against relevant theories of polymer dynamics.  相似文献   

7.
Optimization of electrophoretic techniques is becoming an increasingly important area of research as microdevices are now routinely adapted for numerous biology and engineering applications. The present work seeks to optimize electrophoresis within microdevices by utilizing ultra-high voltages to increase sample concentration prior to separation. By imaging fluorescently-tagged DNA samples, the effects of both conventional and atypical voltage protocols on DNA migration and separation are readily observed. Experiments illustrate that short periods of high voltage during electrophoretic injection do not destroy the quality of DNA separations, and in fact can enhance sample concentration five-fold. This study presents data that illustrate increases in average resolution, and resolution of longer fragments, obtained from electrophoretic injections utilizing voltages between 85 and 850 V/cm.  相似文献   

8.
In high electric fields, megabase DNA fragments are found to be trapped, i.e. to enter or migrate in the gel only very slowly, if at all, leading to very broad electrophoretic bands and loss of separation. As a consequence, low electric fields are usually used to separate these molecules by pulsed field electrophoretic methods. We report here that high-frequency pulses eliminate the molecular trapping found in continuous fields. When high frequency pulses are used to modulate the longer pulses used in pulsed field electrophoresis, narrower bands result, and higher fields can be used. We suggest that this is due to effects that occur on the length scale of a single pore.  相似文献   

9.
A novel technique, which we call secondary pulsed field gel electrophoresis (SPFG) has been developed. In SPFG, short pulses are applied in the direction of net migration of the DNA in addition to the reorienting pulses used in conventional pulsed field electrophoresis (PFG). Experimental results show that SPFG extends and improves the electrophoretic resolution of DNA for molecules from 0.5 megabase pairs to over 10 megabase pairs in size. This improved resolution is obtained with dramatically shorter run times. Thus SPFG appears to circumvent a number of the key limitations in previous PFG protocols.  相似文献   

10.
Poly-N-acryloyl-tris(hydroxymethyl)aminomethane (NAT) gels were evaluated as a matrix for DNA electrophoresis. The resolution of DNA restriction fragments in three poly(NAT)-N,N'-methylenebisacrylamide (Bis) gels (4, 5, and 6%) was compared with the resolution in polyacrylamide (AA)-Bis gels of the same percentage. Poly(NAT) gels were found to give a substantially improved separation of DNA fragments larger than 200 bp. In contrast to poly(AA) gels, DNA fragments of up to 4 kbp were well resolved in the new matrix. By pulse-field electrophoresis the useful separation range of poly(NAT) gels was expanded to at least 23 kbp. For DNA fragments below 10 kbp, the resolution was better than that in a 0.7% agarose gel. Thus poly(NAT) gels are most suitable for the electrophoretic separation of DNA molecules whose size is out of the optimal fractionation range of poly(AA) or agarose gels.  相似文献   

11.
Pulsed field gradient electrophoresis allows the separation of large DNA molecules up to 2,000 kilobases (kb) in length and has the potential to close the resolution gap between standard electrophoresis of DNA molecules (smaller than 50 kb) and standard cytogenetics (larger than 2,000 kb). We have analysed the amplified DNA in four cell lines containing double minute chromosomes (DMs) and two lines containing homogeneously staining regions. The cells were immobilized in agarose blocks, lysed, deproteinized, and the liberated DNA was digested in situ with various restriction endonucleases. Following electrophoretic separation by pulsed field gel electrophoresis, the DNA in the gel was analysed by Southern blotting with appropriate probes for the amplified DNA. We find that the DNA in intact DMs is larger than 1,500 kb. Our results are also compatible with the notion that the DNA in DMs is circular, but this remains to be proven. The amplified segment of wild-type DNA covers more than 550 kb in all lines and possibly up to 2,500 kb in some. We confirm that the repeat unit is heterogeneous in some of the amplicons. In two cell lines, however, with low degrees of gene amplification, we find no evidence for heterogeneity of the repeats up to 750 (Y1-DM) and 800 kb (3T6-R50), respectively. We propose that amplicons start out long and homogeneous and that the heterogeneity in the repeat arises through truncation during further amplification events in which cells with shorter repeats have a selective advantage. Even if the repeats are heterogeneous, however, pulsed field gradient gels can be useful to establish linkage of genes over relatively short chromosomal distances (up to 1,000 kb). We discuss some of the promises and pitfalls of pulsed field gel electrophoresis in the analysis of amplified DNA.  相似文献   

12.
Contour-clamped homogeneous electric field (CHEF) electrophoresis is a technique of pulsed-field gel electrophoresis that enables the resolution of large fragments of DNA that cannot be resolved by conventional gel electrophoresis. The procedure involves the application of controlled electric fields that change direction at a predetermined angle to samples of DNA that have been embedded in an agarose gel matrix and digested with a restriction endonuclease. Adjustment of the electrophoresis conditions enables the separation of DNA fragments with lengths from 10 kilobases up to 9 megabases in a size-dependent manner in agarose gels. The banding patterns can be used for epidemiological typing, the separated DNA can be immobilized onto a membrane and used for genetic mapping, or individual fragments can be extracted and used for downstream genetic manipulations. The protocol requires specialized equipment and can be completed in a maximum of 7 days.  相似文献   

13.
DNA typing based on gel electrophoretic separation of DNA fragments, followed by hybridization analysis, has become an important analytical tool in areas ranging from forensic science to population biology. This approach can be extended by combining size separation with sequence-specific separation in denaturing gradient gels; this creates a high resolution two-dimensional pattern. The high information content of this system means that very closely related individuals (even monozygotic twins) can be distinguished and that the genetic events associated with development or cancer, for instance, can be followed. Ultimately, 2-D DNA typing could lead to computerized matching of a single individual's genome to a database of genetic markers.  相似文献   

14.
H W White 《BioTechniques》1992,12(4):574-579
This report describes the use of a new type of agarose (FastLane agarose) for faster separation of DNA by agarose gel electrophoresis. DNA molecules separated in this agarose exhibited electrophoretic mobilities up to 30% higher than similar separations in standard analytical grade agarose. DNA molecules of all sizes examined showed higher mobilities in FastLane agarose. The mobility increase was predominantly due to the low electroendosmosis of FastLane agarose and was most pronounced in pulsed field gel electrophoresis separations. The magnitude of mobility increase varied depending on the conditions used for electrophoresis.  相似文献   

15.
The electrophoretic mobility of fixed human erythrocytes immunologically labeled with poly(vinylpyridine) or poly(glutaraldehyde) microspheres was reduced by approximately 40%. This observation was utilized in preparative scale electrophoretic separations of fixed human and turkey erythrocytes, the mobilities of which under normal physiological conditions do not differ sufficiently to allow their separation by continuous flow electrophoresis. We suggest that resolution in the electrophoretic separation of cell subpopulations, currently limited by finite and often overlapping mobility distributions, may be significantly enhanced by immunospecific labeling of target populations using microspheres.  相似文献   

16.
A new method has been developed to introduce foreign DNA into rice cells. Gene delivery occurred when an electrophoretic drive with cycles of intervallic electric field was applied to a mixture containing partially digested small cell groups (SCGs) and plasmid DNAs. Gene transfer efficiency was evaluated by the detection of -glucuronidase (GUS) activity resulting from expression of a chimaeric plasmid DNA. The optimal combination of treatment conditions (3 V/cm, 30 s pulse and 30 min electrophoretic run) produced a frequency of up to 8.2% of blue cells in transformed microcalluses 40 days after culture of treated SCGs without selection for kanamycin resistance. Southern hybridization showed that the foreign gene had integrated into the chromosomal DNA. These results demonstrate that pulsed electrophoretic drive is applicable to the transfer of foreign genes into plant cells.  相似文献   

17.
The electrophoretic mobility of fixed human erythrocytes immunologically labeled with poly(vinylpyridine) or poly(glutaraldehyde) microspheres was reduced by approximately 40%. This observation was utilized in preparative scale electrophoretic separations of fixed human and turkey erythrocytes, the mobilities of which under normal physiological conditions do not differ sufficiently to allow their separation by continuous flow electrophoresis. We suggest that resolution in the electrophoretic separation of cell subpopulations, currently limited by finite and often overlapping mobility distribution, may be significantly enhanced by immunospecific labeling of target populations using microspheres.  相似文献   

18.
Guihen E  Hogan AM  Glennon JD 《Chirality》2009,21(2):292-298
In this research, a capillary electrophoretic method for the fast enantiomeric resolution of (R,S)-naproxen was investigated. Method development involved variation of applied potential, buffer concentration, buffer pH, and cyclodextrin concentration. The optimum electrophoretic separation conditions were 110 mM sodium acetate run buffer (pH 6.0), 30 mM methyl-beta-cyclodextrin, 20% (v/v) acetonitrile, 25 degrees C. The total length of capillary was 48 cm, (50 microm I.D.) with ultra violet (UV) detection at 232 nm. Using these conditions, the number of theoretical plates was close to one million (896,000/m). The possibility of achieving a fast chiral separation of (R,S)-naproxen on a microchip of 2.5 cm in length was investigated. Complete enantiomeric resolution of naproxen was achieved in less than 1 min, on this microchip platform, with linear imaging UV detection. This system had the advantage of real-time separation monitoring, so that enantiomeric resolution could be visually observed, and high-speed chiral analysis was realized. The microchip electrophoresis (MCE) separation was compared with the capillary electrophoresis (CE) separation with regards to speed, efficiency, separation platform, and precision. This work highlights the potential of CE and MCE in future chiral separations.  相似文献   

19.
Experimental and theoretical works were performed for the separation of large polyelectrolyte, such as DNA, in a column packed with gel particles under the influence of an electric field. Since DNA quickly orient in the field direction through the pores, this paper presents how intraparticle convection affects the residence time distribution of DNAs in the column. The concept is further illustrated with examples from solid-liquid systems, for example, from chromatography showing how the column efficiency is improved by the use of an electric field. Dimensionless transient mass balance equations were derived, taking into consideration both diffusion and electrophoretic convection. The separation criteria are theoretically studied using two different Peclet numbers in the fluid and solid phases. These criteria were experimentally verified using two different DNAs via electrophoretic mobility measurements, which showed how the separation position of the DNAs varies in the column in relation to the Peg/Pef values of an individual DNA. The residence time distribution was solved by an operator theory and the characteristic method to yield the column response.  相似文献   

20.
Experimental and theoretical works were performed for the separation of large polyelectrolyte such as DNA in the column packed with gel particles under influence of an electric field. Since DNA quickly orients through the pores in the field direction, this paper presents how intraparticle convection affects the separation of DNAs in the column. Dimensionless transient mass balance equations were derived considering diffusion and electrophoretic convection. The separation criteria are theoretically studied using two different Peclet numbers in the fluid and solid phases and these criteria were verified using two different DNAs by electrophoretic mobilities measured experimentally, showing how the separation position of DNAs varies in the column according to values of Pef/Peg of individual DNA. Governing equations are solved by an operator theory and the characteristic method to yield the column response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号