首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T. Sota 《Population Ecology》2002,44(3):0145-0156
 In the evolutionary process of an animal lineage, interactions in secondary contacts of differentiated populations and introgressive hybridization may play an important role. In the Japanese islands, the carabid subgenus Ohomopterus (genus Carabus) exhibits a marked differentiation in body size and genital morphology. Although geographical differentiation is apparent, two or three species usually coexist at many localities. Their reproductive isolation relies on body size differences, chemical cues for mate recognition, and a species-specific genital lock-and-key system. However, these isolation mechanisms are not always effective enough to prevent interspecific hybridization. An initial assessment of the species-level phylogeny with mitochondrial gene sequences revealed that the gene genealogy is highly inconsistent with the morphology-based taxonomy. A comparison of mitochondrial and nuclear gene genealogies showed that these are strongly incongruent with each other, while the nuclear gene genealogy is more consistent with traditional taxonomy, indicating the repeated occurrence of introgression of mitochondria across species. Here, two different cases of mitochondrial introgression among Ohomopterus species are described in detail, one for parapatric species and the other for sympatric species. First, mitochondrial haplotypes and sequences were studied in Carabus insulicola and three taxa parapatric with C. insulicola, at least two of which hybridize with C. insulicola naturally. Among the four species studied, directional introgressions of mitochondria across boundary zones were detected. Second, in the Mt. Kongo area in central Honshu, which harbors five species, introgression of mitochondria among four out of the five species was detected, despite the apparent absence of on-going natural hybridization. These inferred cases of mitochondrial introgression indicate that species interactions through hybridization could have played an important role at various stages in the evolution of Ohomopterus. Received: April 12, 2002 / Accepted: October 17, 2002 Acknowledgments I am grateful to Alfried P. Vogler for a long-lasting collaboration in the molecular phylogenetic study of Ohomopterus. R. Ishikawa, K. Kubota, M. Ujiie, Y. Takami, and F. Kusumoto have also collaborated at various stages of this study. Thanks are also due to K. Miyashita, T. Funakoshi, H. Fujimoto, T. Dejima, Y. Nagahata, T. Miyagawa, K. Yodoe, H. Kadowaki, S. Nakamine, Y. Oka, H. Tanaka, T. Tanabe, K. Kusakari, and T. Okumura for their care of specimens. Supported by grants-in-aid from the Japan Society for the Promotion of Science (Nos. 09640748, 11304056).  相似文献   

2.
To study the potential importance of introgressive hybridization to the evolutionary diversification of a carabid beetle lineage, we studied intraspecific and trans-species polymorphisms in the mitochondrial NADH dehydrogenase subunit 5 (ND5) gene sequence (1083 bp) in four species of the subgenus Ohomopterus (genus Carabus) in central and eastern Honshu, Japan. Of the four species, C. insulicola is parapatric with the other three, and can hybridize naturally with at least two. This species possesses two haplotypes of remote lineages. We classified ND5 haplotypes using polymerase chain reaction-restriction fragment length polymorphism with TaqI endonuclease for 524 specimens, and sequenced 143 samples. Analysis revealed that each species was polyphyletic in its mitochondrial DNA phylogeny, representing a marked case of trans-species polymorphism. Recent one-way introgression of mitochondria from C. arrowianus nakamurai to C. insulicola, and from C. insulicola to C. esakii, was inferred from the frequency of identical sequences between these species and from direct evidence of hybridization in their contact zones. Other intraspecific polymorphisms in the four species may be due to undetected introgressive hybridization (e.g. C. insulicola to C. maiyasanus) or from stochastic lineage sorting of ancestral polymorphisms. This beetle group has a genital lock-and-key system, with species-specific or subspecies-specific genital morphology that may act as a barrier to hybridization. However, our results demonstrate that introgressive hybridization has occurred multiple times, at least for mitochondria, despite differences among, and stability within, morphological characters that distinguish local populations. Thus, hybridization and introgression could have been key processes in the evolutionary diversification of Ohomopterus.  相似文献   

3.
Contact zones between species provide a unique opportunity to test whether taxa can hybridize or not. Cross‐breeding or hybridization between closely related taxa can promote gene flow (introgression) between species, adaptation, or even speciation. Though hybridization events may be short‐lived and difficult to detect in the field, genetic data can provide information about the level of introgression between closely related taxa. Hybridization can promote introgression between species, which may be an important evolutionary mechanism for either homogenization (reversing initial divergence between species) or reproductive isolation (potentially leading to speciation). Here, we used thousands of genetic markers from nuclear DNA to detect hybridization between two parapatric frog species (Rana boylii and Rana sierrae) in the Sierra Nevada of California. Based on principal components analysis, admixture, and analysis of heterozygosity at species diagnostic SNPs, we detected two F1 hybrid individuals in the Feather River basin, as well as a weak signal of introgression and gene flow between the frog species compared with frog populations from two other adjacent watersheds. This study provides the first documentation of hybridization and introgression between these two species, which are of conservation concern.  相似文献   

4.
Because of introgressive hybridization, closely related species can be more similar to each other in areas of range overlap (parapatry or sympatry) than in areas where they are geographically isolated from each other (allopatry). Here, we report the reverse situation based on nuclear genetic divergence between two fir species, Abies chensiensis and Abies fargesii, in China, at sites where they are parapatric relative to where they are allopatric. We examined genetic divergence across 126 amplified fragment length polymorphism (AFLP) markers in a set of 172 individuals sampled from both allopatric and parapatric populations of the two species. Our analyses demonstrated that AFLP divergence was much greater between the species when comparisons were made between parapatric populations than between allopatric populations. We suggest that selection in parapatry may have largely contributed to this increased divergence.  相似文献   

5.
Rhododendron (Ericaceae) is a large woody genus in which hybridization may play an important role in evolution and speciation, particularly in the Sino-Himalayan region, where many interfertile species often occur sympatrically. Natural hybridization between Rhododendron delavayi Franch. (=  R. arboreum ssp. delavayi ) and Rhododendron decorum Franch., which belong to different subsections of subgenus Hymenanthes, was investigated. Material of R. delavayi and R. decorum and their putative hybrids was collected from the wild. On the basis of morphology, chloroplast DNA, nuclear ribosomal DNA, and AFLP profiles, hybrids and parental species were identified. Hybridization occurred in both directions, but was asymmetrical, with R. delavayi as the major maternal parent in the hybrid zone. Most of the hybrids possessed intermediate phenotypes, and amongst the 15 hybrids detected were six F1s, two F2s, one first-generation backcross to R. delavayi , and two first-generation backcrosses to R. decorum . This indicates that, if Rhododendron underwent rapid radiation in this region, it did so in spite of permeable species barriers.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 119–129.  相似文献   

6.
Natural selection can act against maladaptive hybridization between co‐occurring divergent populations leading to evolution of reproductive isolation among them. A critical unanswered question about this process that provides a basis for the theory of speciation by reinforcement, is whether natural selection can cause hybridization rates to evolve to zero. Here, we investigated this issue in two sibling mosquitoes species, Aedes mariae and Aedes zammitii, that show postmating reproductive isolation (F1 males sterile) and partial premating isolation (different height of mating swarms) that could be reinforced by natural selection against hybridization. In 1986, we created an artificial sympatric area between the two species and sampled about 20,000 individuals over the following 25 years. Between 1986 and 2011, the composition of mating swarms and the hybridization rate between the two species were investigated across time in the sympatric area. Our results showed that A. mariae and A. zammitii have not completed reproductive isolation since their first contact in the artificial sympatric area. We have discussed the relative role of factors such as time of contact, gene flow, strength of natural selection, and biological mechanisms causing prezygotic isolation to explain the observed results.  相似文献   

7.
A review of behavioural studies of hybridization and mixed pairing in birds led to the following conclusions. (1) Hybridization is more common where one of two hybridizing species is rare. (2) There is no tendency in mixed pairs or in interspecific copulations for females to belong to a rarer species than males, as would be predicted by theory based on female choice. (3) There is no evidence that females prefer males of a larger species when hybridizing, in sympatric or in parapatric species. I propose three hypotheses to account for these findings. (1) Scarcity of conspecifics facilitates hybridization in general, no matter which sex is the rare one. (2) Mistakes in mate recognition cause hybridization, especially when females choose wrongly. (3) Supernormal stimuli may sometimes cause hybridization. It is not possible to judge which of these hypotheses is the best supported, and hybridization is likely to have multiple causes.  相似文献   

8.
The natural hybridization that occurs between two sympatric species of Rhododendron subgenus Hymenanthes in Yunnan, China, was investigated. In field observations, it was noted that the putative hybrids between R. delavayi Franch. and R. cyanocarpum (Franch.) Franch. ex W.W. Sm. had intermediate morphologies. On the basis of morphology, chloroplast DNA (trnL-rpl32) and nuclear DNA (waxy), hybrids and parental species were identified. Hybridization occurred in both directions, but was asymmetrical, with R. delavayi as the major maternal parent. Reciprocal hand pollination treatments showed that either species, as pollen donor or pollen receiver, could produce fruits. It was noted that fruit set varied among treatments. The same pollinators (bumblebees) were shared in both parental species. From these results, we conclude that individuals with intermediate morphologies are indeed of hybrid origin from natural hybridization between R. cyanocarpum and R. delavayi. Furthermore, we presume the hybridization at the study site could have been initiated by habitat disturbance in the 1950s, and we may hence witness the early stages of hybrid swarm formation.  相似文献   

9.
Y Chromosome Evolution in the Subgenus Mus (Genus Mus)   总被引:6,自引:5,他引:1       下载免费PDF全文
P. K. Tucker  B. K. Lee    E. M. Eicher 《Genetics》1989,122(1):169-179
A 305 base pair DNA sequence isolated from the Y chromosome of the inbred mouse strain C57BL/10 was used to investigate the pattern and tempo of evolution of Y chromosome DNA sequences for five species in the subgenus Mus, including Mus spretus, Mus hortulanus, Mus abbotti, Mus musculus and Mus domesticus. Variation in hybridization patterns between species was characterized by differences in fragment lengths of both intensely and faintly hybridizing fragments, whereas variation in hybridization patterns within species was characterized primarily by differences in fragment lengths of faintly hybridizing fragments. Phylogenetic analyses were conducted based on fragment size variation within and among species. Phylogenetic relationships inferred from these analyses partly agree with the phylogenetic relationships obtained from biochemical and mitochondrial DNA data. We conclude that a set of DNA sequences common to the Y chromosomes of a closely related group of species in the subgenus Mus has evolved rapidly as reflected by sequence divergence and sequence amplification.  相似文献   

10.
The mechanical isolation hypothesis predicts that physical incompatibility between divergent reproductive morphologies hinders hybridization between populations. However, evidence for this hypothesis remains scarce. We examined this hypothesis using two parapatric carabid beetles, Carabus insulicola and C. esakii, which are of the subgenus Ohomopterus and exhibit a species-specific genital lock-and-key system. Our interspecific crossing experiment revealed that incompatibility of genital morphologies served as a strong postmating-prezygotic isolation barrier. This isolation was asymmetric: a decrease in female fitness was more costly in the cross with greater genitalic incompatibility between a C. esakii female and a C. insulicola male. These two species share a limited sympatric area, but the mechanism responsible for their coexistence is unclear given no evidence of premating isolation via male mate choice. A comparison of the present results with those of previous studies that quantified reproductive isolation between Ohomopterus species suggest that strong mechanical isolation via genitalic incompatibility plays a major role in species isolation, but that it may be less important in species coexistence.  相似文献   

11.
Sasabe M  Takami Y  Sota T 《Heredity》2007,98(6):385-391
Marked diversification of genital morphology is common in internally fertilizing animals. Although sexual selection may be the primary process controlling genital evolution, factors promoting genital evolution are controversial, and the genetic background of genital morphology is poorly understood. We analyzed the genetic basis of species-specific genital morphologies in carabid beetles of the subgenus Ohomopterus (genus Carabus, Carabidae) using two parapatric species with hybrid zones. Biometric analyses on experimental F(1) and backcross populations revealed that inheritance of genital morphology is polygenic. Applying Lande's modification of the Castle-Wright estimator to population means and variances to estimate the minimum number of genes involved, we found that a relatively small number of loci is responsible for species differences in genital morphology. In addition, joint-scaling tests indicated that the additive genetic effect accounts for most interspecific differences in genital traits, but dominance and epistatic genetic effects also play roles. Overall, the genetic basis of male and female genitalia is fairly simple, enabling these traits to respond quickly to selection pressures and to diverge rapidly. Our results provide insight into the diversification of genital morphology in carabid beetles, and will hopefully stimulate further studies on the genetic basis of genitalia, such as mapping of quantitative trait loci affecting species-specific genital morphology.  相似文献   

12.
The shapes and lengths of copulatory pieces and vaginal appendices of the carabid beetle subgenus Ohomopterus (genus Carabus) vary among species. In Japan, the species in the group with a medium body size (C. yaconinus, C. iwawakianus, C. maiyasanus, C. uenoi, C. arrowianus, C. esakii, and C. insulicola) are usually allopatric or parapatric, except at Mt Kongosan, where C. uenoi, C. iwawakianus, and C. yaconinus are sympatrically distributed. The degree of premating isolation by mate preference was high between sympatric populations, irrespective of the genetic distance between them. However, premating isolation was absent between parapatric populations. The degree of premating isolation for allopatric populations spanned a wide range of isolation values. Thus, mate discrimination by males seems to have evolved mostly between sympatric pairs. These results suggest two hypotheses. First, premating isolation has evolved through reinforcement or through reproductive character displacement after sympatric contact. Second, premating isolation has evolved in allopatry, and as a result of premating isolation, the species can coexist in sympatry. We also examined the degree of mechanical isolation between C. uenoi and C. iwawakianus (a sympatric pair), which have a very large difference in the length of the copulatory piece. The insertion success was low and only one female produced viable offspring among 15 crosses; however, death in females due to copulation was rare. For sympatric matings between C. uenoi and C. iwawakianus, a large difference in the genital size might reduce the gene flow with small mating costs. Gene flow that was significantly reduced by genital difference might cause either the evolution of premating isolation through reinforcement/reproductive character displacement or through the maintenance of a high degree of premating isolation following sympatric contact. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 87 , 145–154.  相似文献   

13.
四照花亚属(Cornus subg.Syncarpea)隶属于山茱萸科山茱萸属(Cornus),我国该亚属共有5种8亚种。为探讨四照花亚属nrDNA ITS序列的致同进化不完全现象及假基因产生的可能原因,分析了该亚属4种(每种1~2个居群)共21个个体的nrDNA ITS序列。结果表明,这些类群的nrDNA ITS存在多态性,通过分析这些nrDNA ITS克隆序列的G+C含量、5.8S保守基序和二级结构最小自由能,推测其可能存在假基因。系统发育研究结果显示所有nrDNA ITS序列分成5个分支,同一个体的不同拷贝被分别置于两个甚至多个分支中,且不同分支显示了不同种间关系。四照花亚属物种个体内部存在nrDNA ITS不完全致同进化,可能归咎于不完全的世系分选(incomplete lineage sorting)、种间杂交或多倍化等进化事件,从而导致基因组内nrITS区序列出现多态性,同时也导致难以通过外部形态来划分亚属内种间界限。  相似文献   

14.
The behavior and physiology of two parapatric sibling species, i Heliconius erato cyrbia Godt. and H. himera Hew., were investigated to assess if environmental adaptation enabled stable morphological, genetic, and ecological differences to exist in the face of hybridization. Morning and evening activity, egg production, and larval development time of H. himera and H. erato in insectaries were recorded; individuals were collected in allopatry and in sympatry from a hybrid zone in which the species overlapped. Studies were performed at ambient conditions within the natural range of H. himera. H. himera was considerably more active than H, erato flying earlier in the morning and later in the evening, even when both species were collected in sympatry. Similarly, H. himera laid more eggs, and the hatched larvae developed more rapidly. The results suggest that physiological constraints are an important selective force that may have been important in speciation and counteracts hybridization in the maintenance of the H. himeral H. erato contact zone. Ecological selection, arising from adaptation to low temperatures, may help explain the competitive exclusion of H. erato by H. himera in the drier, cooler montane habitat favored by the latter species.  相似文献   

15.
Increased attention towards the Neotropical cats Leopardus guttulus and L. geoffroyi was prompted after genetic studies identified the occurrence of extensive hybridization between them at their geographic contact zone in southern Brazil. This is a region where two biomes intersect, each of which is associated with one of the hybridizing species (Atlantic Forest with L. guttulus and Pampas with L. geoffroyi). In this study, we conducted in-depth analyses of multiple molecular markers aiming to characterize the magnitude and spatial structure of this hybrid zone. We also performed a morphological assessment of these species, aiming to test their phenotypic differentiation at the contact zone, as well as the correlation between morphological features and the admixture status of the individuals. We found strong evidence for extensive and complex hybridization, with at least 40% of the individuals sampled in Rio Grande do Sul state (southernmost Brazil) identified as hybrids resulting from post-F1 generations. Despite such a high level of hybridization, samples collected in this state still comprised two recognizable clusters (genetically and morphologically). Genetically pure individuals were sampled mainly in regions farther from the contact zone, while hybrids concentrated in a central region (exactly at the interface between the two biomes). The morphological data set also revealed a strong spatial structure, which was correlated with the molecular results but displayed an even more marked separation between the clusters. Hybrids often did not present intermediate body sizes and could not be clearly distinguished morphologically from the parental forms. This observation suggests that some selective pressure may be acting on the hybrids, limiting their dispersal away from the hybrid zone and perhaps favoring genomic combinations that maintain adaptive phenotypic features of one or the other parental species.  相似文献   

16.
Geographical and temporal variation in gene exchange between two endemic land snail species, Mandarina aureola and Mandarina ponderosa, was studied on Hahajima Island of the Bonin Islands. Allozyme variation in modern samples, and variation in the color and shell morphology of modern and fossil samples, suggest a complex geographical and historical pattern of hybridization. These two species occur in sympatry, and their shell morphologies and protein genotypes are markedly divergent. However, many specimens of M. aureola, collected from the middle region of the island, exhibit intermediate shell morphologies and possess marker alleles of M. ponderosa. Fossil samples of the two species strongly suggest that these intermediates were hybrids with M. ponderosa that were produced since the end of the Pleistocene. Each of these species, in addition, is subdivided into two genetically and morphologically divergent parapatric races. Interspecific hybridization appears to have produced genetical and morphological admixture among these four distinctive groups of populations. The past distribution and geographic variation of M. ponderosa can be traced in the distribution of M. ponderosa-derived genotypes in current populations of M. aureola. Temporal changes of the color pattern in the fossil populations of hybrids suggest that the traits introduced from M. ponderosa to M. aureola have been affected by natural selection and could replace traits of living species when advantageous. Moreover, these introgressed genes appeared to provide novel properties that enabled M. aureola to advance into a new environment. Relatively independent change in shell color and morphology further suggests mosaic evolution following the hybridization events. Connectively, these data reveal how hybridization events may be an important source of evolutionary novelties and make it clear that the phenomenon of reticulate evolution cannot be ignored.  相似文献   

17.
To date, molecular markers have not settled the question of the specific status of the closely related, but phylogenetically unresolved, brown seaweeds, hermaphroditic Fucus spiralis and dioecious Fucus vesiculosus, nor their propensity for natural hybridization. To test the degree of species integrity and to assess effect of the mating system on the population genetic structure, 288 individuals coming from parapatric (discontinuous) and sympatric (contiguous) spatial configurations at two sites were genotyped with five microsatellite loci. Using a Bayesian admixture analysis, our results show that F. spiralis and F. vesiculosus comprise clearly distinct genetic entities (clusters) generally characterized by cosexual and unisexual individuals, respectively. Genetic diversity within each entity suggests that F. spiralis reproduces primarily through selfing while F. vesiculosus is characterized by an endogamous breeding regime. Nevertheless, aberrant sexual phenotypes were observed in each cluster, no diagnostic alleles were revealed and 10% of study individuals were intermediate between the two genetic entities. This pattern can be explained by recent divergence of two taxa with retention of ancestral polymorphism or asymmetrical, introgressive hybridization. However, given (i) coincident monomorphism at three loci in spiralis clusters and (ii) that significantly more intermediates were observed in sympatric stations than in parapatric stations, we argue that interspecific gene flow has occurred after divergence of the two taxa. Finally, we show that whether recently separated or recently introgressive, the divergent breeding systems probably contribute to species integrity in these two taxa.  相似文献   

18.
In a study of intra- and interpopulation variation in seed glucosinolates, remarkable uniformity was found among individuals within the two chemically distinct subspecies of East Coast Cakile edentula. Glucosinolates were used as taxonomic markers in a study of hybridization between ssp. edentula and ssp. harperi where they form mixed populations on the Outer Banks of North Carolina. Thirteen plants with hybrid chemical profiles were detected in a sample of 89 individuals from four populations; the zone of hybridization is narrow, and has persisted for at least eight years. Artificial hybrids of the two subspecies are additive for kinds and intermediate for proportions of seed glucosinolates, and families of F2's show a range of recombinant chemical profiles. Natural hybridization was confirmed by recovering hybrid and parental types in 47 progeny of three presumptive wild hybrids. Glucosinolate profile characteristics segregated independently of the segregation patterns for fruit length and seed weight. Selection against particular glucosinolate phenotypes is one possible mechanism maintaining this narrow hybrid zone on the Outer Banks.  相似文献   

19.
Natural hybridization is very common in plants, and plays an important role in plant evolution. Besides the traditional methods including morphological analysis and hand crossing, molecular evidence is needed for studying natural hybridization.In order to analyze natural hybridization in Roscoea,HAT-RAPD technique was used toidentify putative hybrids from parental species by principal co ordinate analysis and hybrid index. The results indicated that the bands amplified by HAT-RAPD technique were more stable and reliable than that of RAPD. The result of principal co ordinate analysis and hybrid index showed that intermediate individuals were the hybrids of R.humeana and R.cautleoides, and showed closer relationships to R.humeana. These results suggested that HAT-RAPD could be used to study natural hybridization. As it is simple and easy to manipulate, HAT RAPD may prove to be a very effective technique in hybrid identification in the studies of plant evolution.  相似文献   

20.
Within a broad (>200 km wide) hybrid zone involving three parapatric species of Aesculus, we observed coincident clines in allele frequency for 6 of 14 electrophoretic loci. The cooccurrence of alleles characteristic of A. pavia, A. sylvatica, and A. flava was used to estimate genetic admixtures in 48 populations involving various hybrids between these taxa in the southeastern United States. High levels of allelic polymorphism (up to 40% greater than the parental taxa) were observed in hybrid populations and also in some populations bordering the hybrid zone. A detailed analysis of a portion of the hybrid zone involving A. pavia and A. sylvatica revealed a highly asymmetrical pattern of gene flow, predominantly from Coastal Plain populations of A. pavia into Piedmont populations of A. sylvatica. Computer simulations were used to generate expected genotypic arrays for parental, F1; and backcross individuals, which were compared with natural populations using a character index scoring system. In these comparisons, hybrid individuals could be distinguished from either parent, but F1 and backcross progeny could not be distinguished from each other. Most hybrid populations were found to include hybrids and one of the parental taxa, but never both parents. Three populations appeared to be predominantly hybrids with no identifiable parental individuals. Hybrids occurred commonly at least 150 km beyond the range of A. pavia, but usually not more than 25 km beyond the range of A. sylvatica. Introgression, suggested by genetically hybrid individuals and significant gene admixtures of two or more species in populations lacking morphological evidence of hybridization, may extend the hybrid zone further in both directions. The absence of one or both parental species from hybrid populations implies a selective disadvantage to parentals in the hybrid zone and/or that hybridization has occurred through long-distance gene flow via pollen, primarily from A. pavia into A. sylvatica. Long-distance pollen movement in plants may generate hybrid zones of qualitatively different structure than those observed in animals, where gene flow involves dispersal of individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号