首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We systematically investigated the molecular defects causing a primary LPL deficiency in a Japanese male infant (patient DI) with fasting hyperchylomicronemia (type I hyperlipoproteinemia) and in his parents. Patient DI had neither LPL activity nor immunoreactive LPL mass in the pre- and post-heparin plasma. The patient was a compound heterozygote for novel mutations consisting of a G-to-T transversion at the first nucleotide of exon 5 [+1 position of 3' acceptor splice site (3'-ass) of intron 4] and a T-to-C transition in the invariant GT at position +2 of the 5' donor splice site (5'-dss) of intron 8 (Int8/5'-dss/t(+2)c). The G-to-T transversion, although affecting the 11 nucleotide of the 3'-consensus acceptor splice site, resulted in a substitution of Gly(154) to Val (G154V; GG(716)C(-->)GTC). The mutant G154V LPL expressed in COS-1 cells was catalytically inactive and hardly released from the cells by heparin. The Int8/5'-dss/t(+2)c mutation inactivated the authentic 5' splice site of intron 8 and led to the utilization of a cryptic 5'-dss in exon 8 as an alternative splice site 133 basepairs upstream from the authentic splice site, thereby causing joining of a part of exon 8 to exon 9 with skipping of a 134-bp fragment of exon 8 and intron 8. These additional mutations in the consensus sequences of the 3' and 5' splice sites might be useful for better understanding the factors that are involved in splice site selection in vivo.  相似文献   

2.
Background Transition mutations (A-G) at residue 2143, cognate to position 2058 in the Escherichia coli 23S rRNA gene, have been shown to confer resistance to macrolides in Helicobacter pylori. This study reports the finding that transversion mutations (A-C) can occur at 2143 as well.
Materials and Methods. Three clarithromycin-resistant H. pylori isolated from three different patients after treatment with clarithromycin were analyzed for point mutations by cycle sequencing of a 163-bp amplified region surrounding residue 2143 within the conserved loop of the 23S rRNA gene.
Results. Nucelotide sequence comparisons of a 163-bp amplified product revealed that A-C transversion mutations occurred at position 2143. H. pylori isolated from the patients prior to treatment were susceptible to clarithromycin and displayed no polymorphism at 2143.
Conclusion. This is the first report to show that A-C transversion mutations at position 2143 can confer resistance to clarithromycin in H. pylori and further support the role that mutations at position 2143 play in conferring macrolide resistance in H. pylori.  相似文献   

3.
4.
We examined the recognition of the araBAD promoter by the AraC protein in the Escherichia coli arabinose operon. A mutant promoter, with base substitutions at positions contacted by AraC, was used to isolate suppressor mutations in araC by direct selection. Two hydroxylamine-induced araC mutations were isolated repeatedly; each contained a single amino acid substitution. When tested against a set of base substitution promoter mutants, one revertant, an Arg to His substitution at residue 250, displayed altered base specificity for a single position within the araBAD promoter. The other revertant, a Cys to Tyr substitution at residue 204, did not show consistent base-specific suppression. Neither demonstrated a higher affinity than the wild type protein for the mutant promoter in vitro. Both proteins suppress mutant sequences by a mechanism that does not appear to involve the formation of new net favorable contacts with the mutant base pairs of the promoter.  相似文献   

5.
A lambda lysogen with the prophage inserted into the arabinose B gene of Escherichia coli strain K-12 has been prepared. Induction of the phage from this lysogen yields viable phage at a frequency 4 X 10(-6) that found for induction of lysogens with phage inserted at the normal attachment site. Over 30% of the phage particles induced from the insertion in ara are arabinose-transducing phage. The excision end points of 62 independently isolated, nondefective araC-transducing phage containing less than the entire araC gene were genetically determined and were found to be randomly distributed through the araC gene. The amount of arabinose deoxyribonucleic acid contained on four selected transducing phage was determined by electron microscopy of deoxyribonucleic acid heteroduplexes, providing a physical map of the araC gene. The efficiency with which these phage transduce araC and araB point mutations was found to be approximately proportional to the homology length available for recombination.  相似文献   

6.
7.
A mutant v-rel with increased ability to transform B lymphocytes.   总被引:1,自引:0,他引:1       下载免费PDF全文
We observed that two strains of REV-T differ in the ability to transform bursal cells in vitro. REV-TW, with v-rel derived from a well-characterized clone and considered the prototype of the wild type, fails to generate colonies in soft agar. In contrast, REV-S2A3, derived from the S2A3 cell line, readily transforms bursal cells. With PCR, a 1,591-bp fragment containing v-rel from the REV-S2A3 provirus was cloned into plasmid pREV-0. Except for the absence of v-rel, pREV-0 is identical to pREV-TW. Five clones of pREV-PCR, each produced by an independent amplification, were obtained. The REV-PCR viruses displayed the strong transforming phenotype of REV-S2A3. Two mutations were identified in the 5' region of v-rel from REV-PCR1 to REV-PCR5: a silent mutation and a G-to-T transversion, changing the alanine at position 40 to serine. To confirm the relevance of this amino acid substitution, a 478-bp fragment containing the mutations was exchanged between REV-TW and REV-PCR1. Only the mutant viruses were able to form large colonies of bursal cells in liquid culture and to generate bursal cell colonies in soft agar. When tested on splenocytes, the wild-type viruses induced predominantly non-B-cell colonies while the mutant viruses gave origin mainly to B-cell colonies. The above results indicate that the substitution of serine for alanine at position 40 of v-Rel enhances the ability of REV-T to transform B lymphocytes in vitro. This mutation is close to the DNA-binding region, and the variant v-Rel oncoprotein shows increased kappa B-binding activity, thus confirming the relevance of this property for transformation.  相似文献   

8.
Summary -Thalassemia mutations in 71 chromosomes of Thai patients from the northeast, the middle and the south of the country were investigated using dot blot hybridization of PCR (polymerase chain reaction)-amplified DNA with allelespecific oligonucleotide probes. Eight different known molecular defects were detected, at different frequencies. There was an amber mutation in codon 17, a C-T transversion at position 654 of IVS-2, a frameshift mutation between codons 71 and 72, an A-G transition at nucleotide -28 within the TATA box (known as Chinese mutations), a G-T transversion at position 1 of IVS-1 (an Indian mutation), a 4bp deletion in codons 41/42 and a G-C transversion at position 5 of IVS-1 (described as both Chinese and Indian mutations) and a Thai original mutation, an ochre mutation in codon 35. Analysis of the three unknown alleles by DNA sequencing of the cloned DNA fragment amplified by PCR revealed an A-G substitution at the second position of the codon for amino acid 19 (AAC-AGC). The analytic approach used in the present study and the characteristic distribution of mutations in each region of Thailand will prove useful for setting up a prenatal diagnosis program.  相似文献   

9.
10.
The araIc mutation in Escherichia coli B/r.   总被引:5,自引:4,他引:1       下载免费PDF全文
The araIc allele is a cis-acting mutation which has been used to define the araBAD promoter in Escherichia coli B/r. Nineteen araIc mutants were originally isolated by Englesberg and co-workers as Ara+ "revertants" of an araC deletion mutant (Englesberg et al. J. Mol. Biol. 43:281-298, 1969). The mutants constitutively expressed araBAD gene products in the absence of functional araC activator protein. Eight of the araIc mutations have been cloned by in vivo recombination onto pBR322-ara hybrid plasmids. Restriction and DNA sequence analysis of these araIc mutations showed that they result from a single base-pair change located at -35 in the araBAD promoter.  相似文献   

11.
We report a G-to-T de novo transversion mutation causing the substitution of a glycine with a cysteine (G375C) in a newborn with achondroplasia. This rare observation confirms allelic heterogeneity.  相似文献   

12.
13.
The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. We now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5' splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5' splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G-1-to-T mutation at the 5' splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection.  相似文献   

14.
The simian virus 40 (SV40) mutant tsA1499 contains an 81-base-pair deletion in the region of A gene encoding the C-terminal portion of the large T antigen. This mutant is particularly interesting, since it is a temperature-sensitive mutant that is apparently able to separate the lytic growth and transforming functions of the SV40 large T antigen at 38.5 degrees C. We report the isolation of a tsA1499 revertant (tsA1499-Rev) which is no longer temperature sensitive for lytic growth but still contains the 81-base-pair deletion of tsA1499. Marker rescue experiments with tsA1499-Rev or wild-type strain 830 (wt830) DNAs revealed that the original tsA1499 mutant contained a second mutation within the HindIII-Fnu4HI restriction fragment between 0.425 and 0.484 map units. Sequencing of this DNA fragment from the tsA1499, tsA1499-Rev, and wt830 viruses revealed that tsA1499 contained a single-base transversion (C to G) at 0.455 map units (nucleotide 4261). This transversion resulted in the creation of a new RsaI cleavage site in the tsA1499 DNA and predicts an arginine-to-threonine substitution at amino acid position 186 in the mutant large T antigen. The DNA sequence of the tsA1499-Rev HindIII-Fnu4HI fragment was identical to that of wt830. To determine whether tsA1499 was temperature sensitive for lytic growth solely as a result of the newly discovered point mutation or because of a combination of the point and deletion mutations, a series of viruses were constructed which contained the point mutation, the deletion mutation, both mutations, or neither. This was done by ligating the PstI A and B DNA fragments from either tsA1499 or wt830 and transfecting the ligated DNA into BSC-1H monkey kidney cells. This experiment revealed that all viruses containing the point mutation (the tsA1499 PstI A DNA fragment) were temperature sensitive for lytic growth, regardless of the presence of the 81-base-pair deletion (the tsA1499 PstI B DNA fragment). This newly discovered point mutation, at nucleotide 4261, is therefore unique, since to our knowledge it is the first tsA mutation to be described in the 0.455-map-unit region of the SV40 genome. We then tested the effect of this unique mutation on the ability of the SV40 virus to transform cultured rat cells to anchorage independence.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The Bacillus subtilis araC locus, mapped at about 294 degrees on the genetic map, was defined by mutations conferring an Ara- phenotype to strains bearing the metabolic araA, araB, and araD wild-type alleles (located at about 256 degrees on the genetic map) and by mutants showing constitutive expression of the three genes. In previous work, it has been postulated that the gene in which these mutations lie exerts its effect on the ara metabolic operon in trans, and this locus was named araC by analogy to the Escherichia coli regulatory gene. Here, we report the cloning and sequencing of the araC locus. This region comprises two open reading frames with divergently arranged promoters, the regulatory gene, araC, encoding a 41-kDa polypeptide, and a partially cloned gene, termed araE, which most probably codes for a permease involved in the transport of L-arabinose. The DNA sequence of araC revealed that its putative product is very similar to a number of bacterial negative regulators (the GalR-LacI family). However, a helix-turn-helix motif was identified in the N-terminal region by its identity to the consensus signature sequence of another group of repressors, the GntR family. The lack of similarity between the predicted primary structure of the product encoded by the B. subtilis regulatory gene and the AraC regulator from E. coli and the apparently different modes of action of these two proteins lead us to propose a new name, araR, for this gene. The araR gene is monocistronic, and the promoter region contains -10 and -35 regions (as determined by primer extension analysis) similar to those recognized by RNA polymerase containing the major vegetative cell sigma factor sigmaA. An insertion-deletion mutation in the araR gene leads to constitutive expression of the L-arabinose metabolic operon. We demonstrate that the araR gene codes for a negative regulator of the ara operon and that the expression of araR is repressed by its own product.  相似文献   

16.
17.
18.
We have identified two novel mutant alleles in the transacylase (E2) gene of the human branched-chain alpha-keto acid dehydrogenase (BCKAD) complex in 6 of 38 patients with maple syrup urine disease (MSUD). One mutation, a 2-bp (AT) deletion in exon 2 of the E2 gene, causes a frameshift downstream of residue (-26) in the mitochondrial targeting presequence. The second mutation, a G-to-T transversion in exon 6 of the E2 gene, produces a premature stop codon at Glu-163 (E163*). Transfection of constructs harboring the E163* mutation into an E2-deficient MSUD cell line produced a truncated E2 subunit. However, this mutant E2 chain is unable to assemble into a 24-mer cubic structure and is degraded in the cell. The 2-bp (AT) deletion and the E163* mutant alleles occur in either the homozygous or compound-heterozygous state in the 6 of 38 unrelated MSUD patients studied. Moreover, an array of precise single- and multiple-exon deletions were observed in many amplified E2 mutant cDNAs. The latter results appear to represent secondary effects on RNA processing that are associated with the MSUD mutations at the E2 locus.  相似文献   

19.
Mutations in the araC gene of Escherichia coli B/r were isolated which alter both activation of the araBAD operon expression and autoregulation. The mutations were isolated on an araC-containing plasmid by hydroxylamine mutagenesis of plasmid DNA. The mutant phenotype selected was the inability to autoregulate. The DNA sequence of 16 mutants was determined and found to consist of seven different missense mutations located within the distal third of the araC gene. Enzyme activities revealed that each araC mutation had altered both autoregulatory and activator functions of AraC protein. The mutational analysis presented in this paper suggests that both autoregulatory and activator functions are localized to the same determinants of the AraC protein and that the amino acid sequence within the carboxy-terminal region of AraC protein is important for site-specific DNA binding.  相似文献   

20.
Mutagenesis by N-acetoxy-N-trifluoroacetyl-4-aminobiphenyl, a reactive form of the human bladder carcinogen 4-aminobiphenyl (ABP), was studied in Escherichia coli virus M13mp10. N-acetoxy-N-trifluoroacetyl-4-ABP-treated DNA containing 140 lesions/duplex genome, when introduced into excision repair-competent cells induced for SOS mutagenic processing, resulted in a 40-fold increase in mutation frequency over background in the lacZ alpha gene fragment. DNA sequence changes were determined for 20 independent mutants. G-C base pairs were the major targets for base pair substitution mutations, although significant mutagenic activity was also observed at certain A-T base pairs. Deletion and frameshift mutations also were found in this sample. The salient feature of this partial "mutational spectrum" was a hotspot that occurred at position 6357 (amino acid 30 of the beta-galactosidase fragment encoded by M13mp10); this A-T to T-A transversion appeared in 6 of the 20 mutants. The property of ABP to mutate A-T base pairs was consistent with the result that N-hydroxy-ABP reverted Salmonella typhimurium strain TA104, which is presumed to revert primarily due to mutations at these sites. The ability of the major carcinogen-DNA adduct formed by ABP in vivo and in vitro, N-(deoxyguanosin-8-yl)-4-aminobiphenyl, to cause base pair substitution mutations was also investigated. This adduct was positioned specifically in the minus strand at position 6270 in duplex M13mp10 DNA. In the presence of the mutagenesis-enhancing plasmid pGW16 and UV induction of SOS mutagenic processing, it was shown that fewer than 0.02% of the adducts resulted in transition or transversion mutations following transfection of DNA into excision-repair competent cells. Similar results were obtained in uvrA and uvrC backgrounds. Although the major adduct did not cause base substitution mutations under these experimental conditions, the contribution of this lesion to the entire spectrum of mutations in the lacZ alpha fragment seems likely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号