首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intraperitoneal injection of prostaglandin E1 (PGE) produces a transient hypothermia in rats that lasts 1-2 h. Rats exposed to an ambient temperature (Ta) of 26 degrees C displayed a decrease in rectal temperature (Tre) of 0.95 +/- 0.12 degrees C (SE) after injection with PGE (100 micrograms/kg ip). Hypothermia was produced mainly by heat losses, as indicated by increases in tail blood flow. At Ta of 4 degrees C, PGE produced a comparable fall in Tre of 1.00 +/- 0.14 degrees C. However, in the cold the hypothermia was caused solely by decreases in heat production. These results indicate that the PGE-induced hypothermia is not the result of a peripheral vasodilation induced by the direct action of PGE on the tail vascular smooth muscle but is a central nervous system-mediated response of the thermoregulatory system induced by PGE within the peritoneal cavity. Capsaicin injected subcutaneously induces a transient hypothermia in rats because of stimulation of the warm receptors. If administered peripherally in sufficient amounts, it is reputed to impair peripheral warm receptors so that they become desensitized to the hypothermic effects of capsaicin. We measured PGE-induced hypothermias in rats both before and after capsaicin desensitization at Ta of 26 degrees C. Before desensitization the hypothermia was -1.14 +/- 0.12 degrees C, whereas after capsaicin treatment the PGE-induced hypothermia was -0.34 +/- 0.17 degrees C. The biological effects of capsaicin are diverse; however, based on current thinking about the thermoregulatory effects of capsaicin desensitization, our results indicate that peripheral warm receptor pathways are in some manner implicated in the hypothermia induced by intraperitoneal PGE.  相似文献   

2.
Torpor, a state characterized by a well-orchestrated reduction of metabolic rate and body temperature (T(b)), is employed for energetic savings by organisms throughout the animal kingdom. The nucleotide AMP has recently been purported to be a primary regulator of torpor in mice, as circulating AMP is elevated in the fasted state, and administration of AMP causes severe hypothermia. However, we have found that the characteristics and parameters of the hypothermia induced by AMP were dissimilar to those of fasting-induced torpor bouts in mice. Although administration of AMP induced hypothermia (minimum T(b) = 25.2 +/- 0.6 degrees C) similar to the depth of fasting-induced torpor (24.9 +/- 1.5 degrees C), ADP and ATP were equally effective in lowering T(b) (minimum T(b): 24.8 +/- 0.9 degrees C and 24.0 +/- 0.5 degrees C, respectively). The maximum rate of T(b) fall into hypothermia was significantly faster with injection of adenine nucleotides (AMP: -0.24 +/- 0.03; ADP: -0.24 +/- 0.02; ATP: -0.25 +/- 0.03 degrees C/min) than during fasting-induced torpor (-0.13 +/- 0.02 degrees C/min). Heart rate decreased from 755 +/- 15 to 268 +/- 17 beats per minute (bpm) within 1 min of AMP administration, unlike that observed during torpor (from 646 +/- 21 to 294 +/- 19 bpm over 35 min). Finally, the hypothermic effect of AMP was blunted with preadministration of an adenosine receptor blocker, suggesting that AMP action on T(b) is mediated via the adenosine receptor. These data suggest that injection of adenine nucleotides into mice induces a reversible hypothermic state that is unrelated to fasting-induced torpor.  相似文献   

3.
A secretin releasing peptide exists in dog pancreatic juice   总被引:1,自引:0,他引:1  
Li P  Song Y  Lee KY  Chang TM  Chey WY 《Life sciences》2000,66(14):1307-1316
Canine pancreatic juice has been shown to stimulate exocrine pancreatic secretion in the dog. In the present study we investigated whether there is a secretin-releasing peptide in canine pancreatic juice. Pancreatic juice was collected from the dogs with Thomas gastric and duodenal cannulas while pancreatic secretion was stimulated by intravenous administration of secretin at 0.5 microg/kg/h and CCK-8 at 0.2 microg/kg/h, respectively. The pancreatic juice was separated into three different molecular weight (MW) fractions (Fr) by ultrafiltration (Fr 1; MW > 10,000, Fr 2; MW=10,000-4,000 and Fr 3; MW < 4,000), respectively. All the fractions were bioassayed in anesthetized rats. Fraction 3 dose-dependently and significantly stimulated pancreatic juice flow volume from 78.0% to 99.4% (p<0.05) and bicarbonate output from 128.9% to 202.1% (p<0.01), respectively. Plasma secretin concentration also increased from 1.2 +/- 0.5 pM to 5.0 +/- 0.8 pM and 6.0 +/- 1.0 pM (p<0.05). None of these fractions increased pancreatic protein secretion or plasma CCK level. The stimulatory effect of Fraction 3 on pancreatic secretion and the release of secretin was completely abolished by treatment with trypsin (1 mg/ml for 60 min at 37 degrees C) but not by heating (100 degrees C, 10 min). Intravenous injection of a rabbit anti-secretin serum, which rendered plasma secretin almost undetectable in rat plasma, also abolished Fr 3-stimulated pancreatic secretion of fluid and bicarbonate secretion. These observations suggest that a secretin-releasing peptide exists in the canine pancreatic juice. It is trypsin-sensitive and heat-resistant. This peptide may play a significant physiological role on the release of secretin and regulation of exocrine pancreatic secretion.  相似文献   

4.
Secrepan (Eisai Co. Tokyo, Japan) was administered to 9 healthy volunteers and 36 patients with non-insulin dependent diabetes mellitus (NIDDM) to clarify the effect of secretin on the pancreatic B-cell, by determining the changes in blood of insulin (IRI). Whereas IRI in healthy subjects showed a monophasic change, reaching a peak (delta IRI = 43 +/- 7.3 microunits/ml, M +/- SE) 5 min after secretin loading and returning to the basal level in 15 min, NIDDM patients on diet therapy (delta IRI = 40.2 +/- 7.6 microunits/ml) showed no significant difference from the control group, but NIDDM patients on sulfonylurea (SU) (15.5 +/- 2.4 microunits/ml) and those on insulin therapy (5.3 +/- 1.4 microunits/ml), both showed a significant depression in responsiveness. Further, the changes in insulin secretion after atropine administration in healthy subjects and the changes in IRI response to Secrepan in vagotomized patients were also determined. As a result, data which preclude the possibility of association of the vagus nerve and cholinergic nerve with the stimulation of insulin secretion by secretin were obtained, and a direct action of secretin on the cell of islets of Langerhans was suggested. The maximum IRI response after a secretin load had a significant positive correlation with the IRI response after a 75-gm GTT and the content of C-peptide immunoreactivity in 24-hour urine. Therefore, insulin response to a secretin load can be useful in assessing endogenous insulin secretion and provides a pertinent clinical guide for the selection of an appropriate therapy for diabetes mellitus.  相似文献   

5.
Elevated circulating cytokines are observed in heatstroke patients, suggesting a role for these substances in the pathophysiological responses of this syndrome. Typically, cytokines are determined at end-stage heatstroke such that changes throughout progression of the syndrome are poorly understood. We hypothesized that the cytokine milieu changes during heatstroke progression, correlating with thermoregulatory, hemodynamic, and tissue injury responses to heat exposure in the mouse. We determined plasma IL-1alpha, IL-1beta, IL-2, IL-4, IL-6, IL-10, IL-12p40, IL-12p70, IFN-gamma, macrophage inflammatory protein-1alpha, TNF-alpha, corticosterone, glucose, hematocrit, and tissue injury during 24 h of recovery. Mice were exposed to ambient temperature of 39.5 +/- 0.2 degrees C, without food and water, until maximum core temperature (T(c,Max)) of 42.7 degrees C was attained. During recovery, mice displayed hypothermia (29.3 +/- 0.4 degrees C) and a feverlike elevation at 24 h (control = 36.2 +/- 0.3 degrees C vs. heat stressed = 37.8 +/- 0.3 degrees C). Dehydration ( approximately 10%) and hypoglycemia ( approximately 65-75% reduction) occurred from T(c,Max) to hypothermia. IL-1alpha, IL-2, IL-4, IL-12p70, IFN-gamma, TNF-alpha, and macrophage inflammatory protein-1alpha were undetectable. IL-12p40 was elevated at T(c,Max), whereas IL-1beta, IL-6, and IL-10 inversely correlated with core temperature, showing maximum production at hypothermia. IL-6 was elevated, whereas IL-12p40 levels were decreased below baseline at 24 h. Corticosterone positively correlated with IL-6, increasing from T(c,Max) to hypothermia, with recovery to baseline by 24 h. Tissue lesions were observed in duodenum, spleen, and kidney at T(c,Max), hypothermia, and 24 h, respectively. These data suggest that the cytokine milieu changes during heat strain recovery with similarities between findings in mice and those described for human heatstroke, supporting the application of our model to the study of cytokine responses in vivo.  相似文献   

6.
The effect of secretin on acid and pepsin secretion and gastrin release in the totally isolated vascularly perfused rat stomach was studied. With the phosphodiesterase inhibitor isobutyl methylxanthine (IMX) added to the vascular perfusate, baseline acid secretion was 4.7 +/- 1.1 (mean +/- S.E.M.) mumol/h and baseline pepsin output 1147 +/- 223 micrograms/h. Secretin significantly inhibited acid output to a minimum of 1.4 +/- 0.2 mumol/h at a concentration of 25 pM in the vascular perfusate (P less than 0.01). Pepsin output was not significantly different from baseline at any of the secretin doses tested. Threshold secretin concentration for acid inhibition was 5 pM. IMX stimulated gastrin output from 48 +/- 9 pM in the basal state to 95 +/- 13 pM after IMX (P less than 0.01). Secretin inhibited gastrin release only at the maximal dose of 625 pM, when gastrin concentration in the venous effluent decreased from 93 +/- 19 to 68 +/- 19 pM after secretin. Thus, in the totally isolated vascularly perfused rat stomach secretin in physiological concentrations inhibits acid secretion by a direct action on the acid secretory process and not via gastrin inhibition. The study also suggests that gastrin release at least in part is mediated via increased intracellular cAMP.  相似文献   

7.
Components of excitation-contraction (EC)-coupling were compared at 37 degrees C and 22 degrees C to determine whether hypothermia altered the gain of EC coupling in guinea pig ventricular myocytes. Ca(2+) concentration (fura-2) and cell shortening (edge detector) were measured simultaneously. Hypothermia increased fractional shortening (8.3 +/- 1.7 vs. 2.6 +/- 0.3% at 37 degrees C), Ca(2+) transients (157 +/- 33 vs. 35 +/- 5 nM at 37 degrees C), and diastolic Ca(2+) (100 +/- 9 vs. 60 +/- 6 nM at 37 degrees C) in field-stimulated myocytes (2 Hz). In experiments with high-resistance microelectrodes, the increase in contractions and Ca(2+) transients was accompanied by a twofold increase in action potential duration (APD). When voltage-clamp steps eliminated changes in APD, cooling still increased contractions and Ca(2+) transients. Hypothermia increased sarcoplasmic reticulum (SR) Ca(2+) stores (83 +/- 17 at 37 degrees C to 212 +/- 50 nM, assessed with caffeine) and increased fractional SR Ca(2+) release twofold. In contrast, peak Ca(2+) current was much smaller at 22 degrees C than at 37 degrees C (1.3 +/- 0.4 and 3.5 +/- 0.7 pA/pF, respectively). In cells dialyzed with sodium-free pipette solutions to inhibit Ca(2+) influx via reverse-mode Na(+)/Ca(2+) exchange, hypothermia still increased contractions, Ca(2+) transients, SR stores, and fractional release but decreased the amplitude of Ca(2+) current. The rate of SR Ca(2+) release per unit Ca(2+) current, a measure of EC-coupling gain, was increased sixfold by hypothermia. This increase in gain occurred regardless of whether cells were dialyzed with sodium-free solutions. Thus an increase in EC-coupling gain contributes importantly to positive inotropic effects of hypothermia in the heart.  相似文献   

8.
This study compared torpor as a response to food deprivation and low ambient temperature for the introduced house mouse (Mus musculus) and the Australian endemic sandy inland mouse (Pseudomys hermannsburgensis). The house mouse (mass 13.0+/-0.48 g) had a normothermic body temperature of 34.0+/-0.20 degrees C at ambient temperatures from 5 degrees C to 30 degrees C and a basal metabolic rate at 30 degrees C of 2.29+/-0.07 mL O2 g(-1) h(-1). It used torpor with spontaneous arousal at low ambient temperatures; body temperature during torpor was 20.5+/-3.30 degrees C at 15 degrees C. The sandy inland mouse (mass 11.7+/-0.16 g) had a normothermic T(b) of 33.0+/-0.38 degrees C between T(a) of 5 degrees C to 30 degrees C, and a BMR of 1.45+/-0.26 mL O2 g(-1) h(-1) at 30 degrees C. They became hypothermic at low T(a) (T(b) about 17.3 degrees C at T(a)=15 degrees C), but did not spontaneously arouse. They did, however, survive and become normothermic if returned to room temperature (23 degrees C). We conclude that this is hypothermia, not torpor. Consequently, house mice (Subfamily Murinae) appear to use torpor as an energy conservation strategy whereas sandy inland mice (Subfamily Conilurinae) do not, but can survive hypothermia. This may reflect a general phylogenetic pattern of metabolic reduction in rodents. On the other hand, this may be related to differences in the social structure of house mice (solitary) and sandy inland mice (communal).  相似文献   

9.
10.
Effect of low body temperature on gastric secretory activity in the guinea pig under urethane general anaesthesia. Acta Physiol. Pol., 1978, 29 (1): 61-66. The effect of low body temperature on spontaneous and histamine (H) stimulated or Nalpha Nalpha-dimethylhistamine (NDMH)-stimulated gastric secretion was investigated in the guinea pig under general anaesthesia with urethane. In normothermia NDMH had a stronger stimulatory action on acid secretion In hypothermia (30 degrees C and 25 degrees C) only NDMH showed some stimulating effect. The obtained results point to the necessity of strict controlling of body temperature in the experiments performed on animals under general anaesthesia and suggest that the lack of effect at low temperature may be connected with an inhibition of the processes of H side-chain methylation when the rate of metabolic processes in the organism has fallen.  相似文献   

11.
To examine the influence of muscle glycogen on the thermal responses to passive rewarming subsequent to mild hypothermia, eight subjects completed two cold-water immersions (18 degrees C), followed by 75 min of passive rewarming (24 degrees C air, resting in blanket). The experiments followed several days of different exercise-diet regimens eliciting either low (LMG; 141.0 +/- 10.5 mmol.kg.dry wt-1) or normal (NMG; 526.2 +/- 44.2 mmol.kg.dry wt-1) prewarming muscle glycogen levels. Cold-water immersion was performed for 180 min or to a rectal temperature (Tre) of 35.5 degrees C. In four subjects (group A, body fat = 20 +/- 1%), postimmersion Tre was similar to preimmersion Tre for both trials (36.73 +/- 0.18 vs. 37.26 +/- 0.18 degrees C, respectively). Passive rewarming in group A resulted in an increase in Tre of only 0.13 +/- 0.08 degrees C. Conversely, initial rewarming Tre for the other four subjects (group B, body fat = 12 +/- 1%) averaged 35.50 +/- 0.05 degrees C for both trials. Rewarming increased Tre similarly in group B during both LMG (0.76 +/- 0.25 degrees C) and NMG (0.89 +/- 0.13 degrees C). Afterdrop responses, evident only in those individuals whose body core cooled during immersion (group B), were not different between LMG and NMG. These data support the contention that Tre responses during passive rewarming are related to body insulation. Furthermore these results indicate that low muscle glycogen levels do not impair rewarming time nor alter after-drop responses during passive rewarming after mild-to-moderate hypothermia.  相似文献   

12.
The effects of arterial alphastat regulation on brain intracellular pH (pHi) and several phosphate metabolites were assessed in anesthetized rats during hypothermia (28.6 +/- 0.2 degrees C) and normothermia (36.2 +/- 0.2 degrees C) by using 31P high-field (8.5 T) nuclear magnetic resonance (NMR). There were significant differences in pHi and metabolite ratios at the two temperatures under conditions of equal minute ventilation. During hypothermia, the brain pHi was 0.09 U higher, the phosphocreatine-to-inorganic phosphate (PCR/Pi) ratio 49% larger, and Pi-to-ATP 20% lower than at normothermia. These changes were fully reversible on warming the animal. The change in brain pHi/temperature was -0.011U/degrees C (95% confidence interval -0.007 to -0.016). The brain's ability to regulate its pHi and phosphate metabolism during hypercapnic acid-base stress was studied by using 10% CO2 ventilation. Hypothermic rats showed a larger fall in brain pHi (0.145 +/- 0.01 U, 7.15-7.01) with 10% CO2 than normothermic rats (0.10 +/- 0.02 U, 7.06-6.96). Similarly ventilated rats had a larger fall in arterial pH with 10% CO2 at hypothermia (0.36 +/- 0.04 U) than normothermia (0.24 +/- 0.01 U), so the delta brain pH/delta arterial pH was the same at both temperatures. The brain PCr-to-Pi ratio decreased approximately 20% during 10% CO2 breathing in both hypothermic and normothermic animals. Brain pHi and metabolite ratios returned to base line 30-50 min after CO2 washout in both groups. In summary, lowering body temperature while maintaining constant ventilation leads to changes in brain pHi and metabolites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
S Q Wang  Z Q Zhou 《Life sciences》1999,65(9):871-877
To explore how to manage pH when calibrating Ca2+ probes at different temperatures, the dissociation constant (Kd) of indo-1 was determined both in pH-stat (pH is fixed despite the temperature) and in alpha-stat (pH changes with temperature as in cells). The results showed that the Kd was much more sensitive to temperature in pH-stat than in alpha-stat, demonstrating that alpha-stat calibration should be preferred when using a Ca2+ probe to measure intracellular free calcium ([Ca2+]i) at different temperatures. Based on the calibration in situ and in alpha-stat, we showed a striking increase of [Ca2+]i from 141+/-8 nM at 30 degrees C to 218+/-22 nM at 10 degrees C in indo-1 loaded rat ventricular cells, which supports that intracellular calcium overload takes place in cardiac myocytes of non-hibernating mammals during hypothermia.  相似文献   

14.
Effect of pentoxiphylline on oxygen transport during hypothermia   总被引:2,自引:0,他引:2  
At least two investigators have demonstrated a reduction in O2 extraction during induced hypothermia (Cain and Bradley, J. Appl. Physiol. 55: 1713-1717, 1983; Schumacker et al., J. Appl. Physiol. 63: 1246-1252, 1987). We hypothesized that administration of pentoxiphylline (PTX), a theobromine that lowers blood viscosity and has vasodilator effects, would increase O2 extraction during hypothermia. To test this hypothesis, we studied O2 transport in anesthetized, paralyzed, mechanically ventilated beagles exposed to hypoxic hypoxia during either 1) normothermia (38 degrees C), 2) hypothermia (30 degrees C), or 3) hypothermia + PTX (30 degrees C and PTX, 20 mg.kg-1.h-1). Measurements included arterial and mixed venous PO2, hemoglobin concentration and saturation, cardiac output, systemic vascular resistance (SVR), blood viscosity, and O2 consumption (VO2). Critical levels of O2 delivery (DO2, the product of arterial O2 content and cardiac output) were determined by a system of linear regression. Hypothermia significantly decreased base line cardiac output (-35%), DO2 (-37%), and VO2 (-45%), while increasing SVR and blood viscosity. Addition of PTX increased cardiac output (35%) and VO2 (14%), and returned SVR and blood viscosity to normothermic levels. Hypothermia alone failed to significantly reduce the critical level of DO2, but addition of PTX did [normothermia, 11.4 +/- 4.2 (SD) ml.kg-1.min-1; hypothermia, 9.3 +/- 3.6; hypothermia + PTX, 6.6 +/- 1.3; P less than 0.05, analysis of variance]. The O2 extraction ratio (VO2/DO2) at the critical level of DO2 was decreased during hypothermia alone (normothermia, 0.60 +/- 0.13; hypothermia, 0.42 +/- 0.16; hypothermia + PTX, 0.62 +/- 0.19; P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Cold is supposed to be associated with alterations in blood coagulation and a pronounced risk for thrombosis. We studied the effect of clinically encountered systemic hypothermia on microvascular thrombosis in vivo and in vitro. Ferric chloride-induced microvascular thrombus formation was analyzed in cremaster muscle preparations from hypothermic mice. Additionally, flow cytometry and Western blot analysis was used to evaluate the effect of hypothermia on platelet activation. To test whether preceding hypothermia predisposes for enhanced thrombosis, experiments were repeated after hypothermia and rewarming to 37 degrees C. Control animals revealed complete occlusion of arterioles and venules after 742 +/- 150 and 824 +/- 172 s, respectively. Systemic hypothermia of 34 degrees C accelerated thrombus formation in arterioles and venules (279 +/- 120 and 376 +/- 121 s; P < 0.05 vs. 37 degrees C). This was further pronounced after cooling to 31 degrees C (163 +/- 57 and 281 +/- 71 s; P < 0.05 vs. 37 degrees C). Magnitude of thrombin receptor activating peptide (TRAP)-induced platelet activation increased with decreasing temperatures, as shown by 1.8- and 3.0-fold increases in mean fluorescence after PAC-1 binding to glycoprotein (GP)IIb-IIIa and 1.6- and 2.9-fold increases of fibrinogen binding on incubation at 34 degrees C and 31 degrees C. Additionally, tyrosine-specific protein phosphorylation in platelets was increased at hypothermic temperatures. In rewarmed animals, kinetics of thrombus formation were comparable to those in normothermic controls. Concomitantly, spontaneous and TRAP-enhanced GPIIb-IIIa activation did not differ between rewarmed platelets and those maintained continuously at 37 degrees C. Moderate systemic hypothermia accelerates microvascular thrombosis, which might be mediated by increased GPIIb-IIIa activation on platelets but does not cause predisposition with increased risk for microvascular thrombus formation after rewarming.  相似文献   

16.
In mink (Mustela vison) kits newborn mortality is very high. One of the major causes of death is hypothermia. The objectives of this study were to observe the development of thermoregulation in mink kits, and their ability to maintain their body temperature during the postnatal period (1-50 days of age). Based on the kit's body weight (BW), and rectal and ambient temperature measurements during cold (+4 degrees C) and warm (+40 degrees C) exposures, a homeothermy index (HI) and cooling and warming rates were calculated. No significant differences in the body temperatures were found between the kits and the dam after 36 days of age. The kits were able to maintain homeothermy by 22 days of age (HI 90%). The body cooling rate was 0.88+/-0.04 degrees C min(-1) on day 1 but only 0.35+/-0.03 degrees C min(-1) at 22 days of age. The body WR was lower: day 1, 0.85+/-0.04 degrees C min(-1) and 0.22+/-0.03 degrees C min(-1) at 22 days of age. All measured and calculated thermophysiological variables were significantly influenced by BW and age of the kit.  相似文献   

17.
Mild hypothermia is a major concomitant of surgery under general anesthesia. We examined the hypothesis that baroreceptor loading/unloading modifies thermoregulatory peripheral vasoconstriction and, consequently, body core temperature in subjects undergoing lower abdominal surgery with general anesthesia. Thirty-six patients were divided into four groups: control group (C), applied positive end-expiratory pressure (PEEP; 10 cmH(2)O) group (P), applied leg-up position group (L), and a group of leg-up position patients with PEEP starting 90 min after induction of anesthesia (L + P). The esophageal temperature (T(es)) and the forearm-fingertip temperature gradient, as an index of peripheral vasoconstriction, were monitored for 3 h after induction of anesthesia. Mean arterial pressure and pulse pressure did not change during the study in any group. The change in right atrial transmural pressure from the baseline value was 0.3 +/- 0.1 mmHg in C, -3.0 +/- 0.5 mmHg in P, and 2.3 +/- 0.4 mmHg in L (P < 0.01). The change in T(es) at the end of the study was -1.7 +/- 0.1 (35.1 +/- 0.1) degrees C in C, -1.1 +/- 0.1 (35.7 +/- 0.1) degrees C in P, and -2.7 +/- 0.1 (34.1 +/- 0.1) degrees C in L, showing significant differences (P < 0.01). The T(es) threshold for thermal peripheral vasoconstriction was 35.6 +/- 0.1 degrees C in C, 36.2 +/- 0.2 degrees C in P, and 34.8 +/- 0.2 degrees C in L (P < 0.01). Excessive T(es) decrease in the leg-up-position operation was attenuated by applying PEEP (L + P group; P < 0.05). Our data indicate that baroreceptor loading augments and unloading prevents perioperative hypothermia in anesthetized and paralyzed subjects by reducing and increasing the body temperature threshold for peripheral vasoconstriction, respectively.  相似文献   

18.
To address whether a shift in hypothalamic thermal setpoint might be a significant factor in induction of hypoxic hypothermia, behavioral thermoregulation was examined in 7 female Sprague-Dawley rats implanted with radiotelethermometers for deep body temperature (Tb) measurement in a thermocline during normoxia (PO2 = 125 torr) and hypoxia (PO2 = 60 torr). Normoxic rats (TNox) selected a mean ambient temperature of 19.7 +/- 1.4 (SE) degrees C and maintained Tb at 37.0 +/- 0.2 degrees C. Hypoxic rats selected a significantly higher ambient temperature (THox = 28.6 +/- 2.2 degrees C) but maintained Tb significantly lower at 35.5 +/- 0.3 degrees C. Without a thermal gradient (ambient temperature = 25 degrees C), Tb during hypoxia was 35.4 +/- 0.4 degrees C. The maintenance of a lower body temperature during hypoxia through behavioral thermoregulation despite having warmer temperatures available supports the hypothesis that the thermoregulatory setpoint of hypoxic rats is shifted to promote thermoregulation at a lower Tb, effectively reducing oxygen demand when oxygen supply is limited.  相似文献   

19.
The relationship between two abnormalities of exercise physiology in chronic heart failure patients was investigated: chronotropic incompetence and decrease in core temperature. While at rest, 13 heart failure patients had an average sinus heart rate that was significantly higher than seven normals (92 +/- 13 vs. 82 +/- 10 min-1, P less than 0.05). However, during exercise, the trend of increase in sinus heart rate as a function of work load and O2 uptake was significantly greater in normals compared with heart failure (P less than 0.05), and the absolute increase in heart rate at 50 W of cycle ergometry was larger in normals compared with heart failure (38 +/- 17 vs. 22 +/- 13 min-1, P less than 0.05). Differences in core temperature regulation were also observed. In the normals, core temperature increased from 37.13 +/- 0.33 degrees C at rest to 37.37 +/- 0.31 degrees C at 50 W of exercise (P less than 0.01). In the heart failure patients, core temperature decreased from 36.99 +/- 0.33 degrees C at rest to 36.66 +/- 0.39 degrees C at 50 W of exercise (P less than 0.01). As expected, significant differences in hemodynamic and gas exchange variables were observed between the normals and the heart failure patients both at rest and during exercise. A multiple linear regression analysis was performed of heart rate changes as the dependent variable and thermoregulatory and hemodynamic changes as the independent variables to test for their influence on heart rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The changes in circulation and migration of mature and immature neutrophils during 12 h of hypothermia have been studied using an experimental pig model. At 29 degrees C the number of circulating neutrophils fell from 5 +/- 1.1 at 37 degrees C to 3.5 +/- 0.6 X 10(9)/l and then remained unchanged while hypothermia was maintained. The number of circulating immature neutrophils did not fall during hypothermia. During hypothermia, hydrocortisone failed to stimulate the release of mature and immature neutrophils from the bone marrow. In contrast, endotoxin caused a profound neutropenia followed by a gradual increase in the number of circulating mature neutrophils, which by 6 h, was similar to the number circulating before endotoxin administration. At 29 degrees C the number of circulating immature neutrophils also fell following endotoxin but then increased over the number circulating before endotoxin administration by approximately 10-fold. Compared with neutrophil migration at 37 degrees C, very few mature or immature neutrophils migrated to an inflammatory site during the 12 h of hypothermia (29 degrees C). Unlike hypothermia in vitro, where neutrophil function may improve with time in vivo, neutrophil function remains compromised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号