首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nucleosome histone core model is presented which is compatible with experimental data. The model consists of 28 α-helices located as predicted by others1–4. The histone wheel resembles the one proposed by Klug et al.5 Most of the helices are packed nearly parallel to the DNA superhelical axis, forming a bandoleer-like structure. About 10 to 20% of the nucleosomal phosphates may be neutralized by positively charged residues in the α-helices. Disregarding the charge of the NH2-terminals, this is sifficient for the thermodynamic stability of the nucleosome under physiological conditions. The electrostatic charge on the protein surface is assumed to be relatively fixed due to the participation of the corresponding side chains to the hydrophobically packed helices. Thus, DNA wrapping appears to be determined by the core histones not by the histone NH2-terminals.  相似文献   

2.
Free DNA in solution exhibits an untwisting of the double helix with increasing temperature. We have shown previously that when DNA is reconstituted with histones to form nucleosome core particles, both the core DNA and the adjacent linker DNA are constrained from thermal untwisting. The origin of this constraint is unknown. Here we examine the effect of two modifications of nucleosome structure on the constraint against thermal untwisting, and also on DNA topology. In one experiment, we removed the highly positively charged histone amino and carboxy termini by trypsinization. Alternatively, we added histone H5, a histone H1 variant from chick erythrocytes. Neither of these modifications had any major effect on DNA topology or twist in the nucleosome.  相似文献   

3.
We describe a new mesoscopic model of oligonucleosomes that incorporates flexible histone tails. The nucleosome cores are modeled using the discrete surface-charge optimization model, which treats the nucleosome as an electrostatic surface represented by hundreds of point charges; the linker DNAs are treated using a discrete elastic chain model; and the histone tails are modeled using a bead/chain hydrodynamic approach as chains of connected beads where each bead represents five protein residues. Appropriate charges and force fields are assigned to each histone chain so as to reproduce the electrostatic potential, structure, and dynamics of the corresponding atomistic histone tails at different salt conditions. The dynamics of resulting oligonucleosomes at different sizes and varying salt concentrations are simulated by Brownian dynamics with complete hydrodynamic interactions. The analyses demonstrate that the new mesoscopic model reproduces experimental results better than its predecessors, which modeled histone tails as rigid entities. In particular, our model with flexible histone tails: correctly accounts for salt-dependent conformational changes in the histone tails; yields the experimentally obtained values of histone-tail mediated core/core attraction energies; and considers the partial shielding of electrostatic repulsion between DNA linkers as a result of the spatial distribution of histone tails. These effects are crucial for regulating chromatin structure but are absent or improperly treated in models with rigid histone tails. The development of this model of oligonucleosomes thus opens new avenues for studying the role of histone tails and their variants in mediating gene expression through modulation of chromatin structure.  相似文献   

4.
Electron spin resonance study of Mn (II) binding to chromatin and derivatives, including core particles, shows that Mn (II) is a good probe for testing the overall electrostatic balance of the nucleoproteic complex as well as DNA accessibility. Experimental results are in good agreement with a recent model proposed (Mirzabekov A. D. and Rich A. (1979) Proc. Natl. Acad. Sci. USA 76, 1118-1121), for the core particle, in which an asymmetrical shielding of DNA by the protein core is assumed. Furthermore, it was found that the histone H1 hinders a number of charges on the linker DNA in a proportion equal to the net positive charge of the histone itself. This result is interpreted as due to a tighter interaction between the linker DNA and the core histones in the presence of histone H1.  相似文献   

5.
We conducted molecular dynamics computer simulations of charged histone tail-DNA interactions in systems mimicking nucleosome core particles (NCP) . In a coarse-grained model, the NCP is modeled as a negatively charged spherical particle with flexible polycationic histone tails attached to it in a dielectric continuum with explicit mobile counterions and added salt. The size, charge, and distribution of the tails relative to the core were built to mimick real NCP. In this way, we incorporate attractive ion-ion correlation effects due to fluctuations in the ion cloud and the attractive entropic and energetic tail-bridging effects. In agreement with experimental data, increase of monovalent salt content from salt-free to physiological concentration leads to the formation of NCP aggregates; likewise, in the presence of MgCl2, the NCPs form condensed systems via histone-tail bridging and accumulation of counterions. More detailed mechanisms of the histone tail-DNA interactions and dynamics have been obtained from all-atom molecular dynamics simulations (including water), comprising three DNA 22-mers and 14 short fragments of the H4 histone tail (amino acids 5–12) carrying three positive charges on lysine+ interacting with DNA. We found correlation of the DNA-DNA distance with the presence and association of the histone tail between the DNA molecules.  相似文献   

6.
7.
8.
9.
10.
MacroH2A is a histone H2A variant that is typically found in heterochromatic regions of the genome. A positively charged linker that connects the histone-fold with the macro-domain was suggested to have DNA-binding properties, and has been shown to promote oligomerization of chromatin fibers. Here we examine the influence of this basic linker on DNA of mononucleosomes. We find that the macro-linker reduces accessibility to extranucleosomal DNA, and appears to increase compaction of the nucleosome. These properties arise from interactions between the H1-like basic linker region and DNA around the entry/exit site, which increases protection of nucleosomal DNA from exonuclease III digestion by ∼10 bp. By stabilizing the wrapping of DNA around the histone core, this basic linker of macroH2A may alter the distribution of nucleosome-associated factors, and potentially contribute to the more compacted nature of heterochromatin.  相似文献   

11.
12.
13.
25 years after the nucleosome model: chromatin modifications   总被引:28,自引:0,他引:28  
  相似文献   

14.
15.
We have analyzed the conditions of aggregation or precipitation of DNA in four different states: double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), mononucleosome core particles (NCP), and H1-depleted chromatin fragments (ChF) in the presence of the multivalent cation spermine (4+). In an intermediate regime of DNA concentration, these conditions are identical for the four states. This result demonstrates that the mechanism involved is general from flexible chains to rigid rods and quasi-colloidal states. It is dominated by local electrostatic attractions that are considered, for instance, by the "ion-bridging" model. The onset of precipitation does not require the electroneutrality of the DNA chains. Above a given spermine concentration dsDNA aggregates remain neutral, whereas NCP aggregates turn positively charged. The difference is thought to originate from the extension of the positively charged proteic tails of the NCP. This suggests that local fluctuations of polyamine concentrations can induce either positively or negatively charged chromatin domains.  相似文献   

16.
La Penna G  Furlan S  Perico A 《Biopolymers》2006,83(2):135-147
Molecular dynamics computer simulations were performed for the 25-residue N-terminal tail of the H3 histone protein in the proximity of a DNA segment of 10 base pairs (bp), representing a model for the linker DNA in chromatin. Several least biased configurations were used as initial configurations. The secondary structure content of the protein was increased by the presence of DNA close to it, but the locations of the secondary motifs were different for different initial orientations of the DNA grooves with respect to the protein. As a common feature to all simulations, the electrostatic attraction between negatively charged DNA and positively charged protein was screened by the water solvent and counterbalanced by the intrinsic compaction of the protein due to hydrophobic effects. The protein secondary structure limited the covering of DNA by the protein to 4-5 bp. The degree of compaction and charge density of the bound protein suggests a possible role of H3 tail in a nonspecific bending and plasticity of the linker DNA when the protein is located in the crowded dense chromatin.  相似文献   

17.
Bundles of F-actin and DNA present in the sputum of cystic fibrosis (CF) patients but absent from normal airway fluid contribute to the altered viscoelastic properties of sputum that inhibit clearance of infected airway fluid and exacerbate the pathology of CF. Previous strategies to remove these filamentous aggregates have focused on DNase to enzymatically depolymerize DNA to constituent monomers and gelsolin to sever F-actin to small fragments. The high densities of negative surface charge on DNA and F-actin suggest that the bundles of these filaments, which alone exhibit a strong electrostatic repulsion, may be stabilized by multivalent cations such as histones, antimicrobial peptides, and other positively charged molecules prevalent in airway fluid. This study reports that bundles of DNA or F-actin formed after addition of histone H1 or lysozyme are efficiently dissolved by soluble multivalent anions such as polymeric aspartate or glutamate. Addition of poly-aspartate or poly-glutamate also disperses DNA and actin-containing bundles in CF sputum and lowers the elastic moduli of these samples to levels comparable to those obtained after treatment with DNase I or gelsolin. Addition of poly-aspartic acid also increased DNase activity when added to samples containing DNA bundles formed with histone H1. When added to CF sputum, poly-aspartic acid significantly reduced the growth of bacteria, suggesting activation of endogenous antibacterial factors. These findings suggest that soluble multivalent anions have potential alone or in combination with other mucolytic agents to selectively dissociate the large bundles of charged biopolymers that form in CF sputum.  相似文献   

18.
SCN- binds to the charged amino group of lysines, inducing local changes in the electrostatic free energy of histones. We exploited this property to selectively perturb the histone-DNA interactions involved in the stabilization of eu and heterochromatin. Differential scanning calorimetry (DSC) was used as leading technique in combination with trypsin digestion that selectively cleaves the histone end domains. Euchromatin undergoes progressive destabilization with increasing KSCN concentration from 0 to 0.3 M. Trypsin digestion in the presence of 0.2 M KSCN show that the stability of the linker decreases as a consequence of the competitive binding of SCN- to the amino groups located in the C and N-terminal domain of H1 and H3, respectively; likewise, the release of the N-terminal domain of H4 induces an appreciable depression in both the temperature and enthalpy of melting of core particle DNA. Unfolding of heterochromatin requires, in addition to further cleavage of H4, extensive digestion of H2A and H2B, strongly suggesting that these histones stabilize the higher order structure by forming a protein network which extends throughout the heterochromatin domain.  相似文献   

19.
Arcesi L  La Penna G  Perico A 《Biopolymers》2007,86(2):127-135
Histonelike proteins in prokaryotes and histone octamers in eukaryotes carry large positive charges, which are responsible of strong electrostatic interactions with DNA. As a result, DNA wraps around proteins and genetic information is condensed. We describe a generalized model of these electrostatic interactions mediated by salt that explains the wrapping of DNA around the nucleosome octamer, around remodeling factors in eukaryotes and around histonelike proteins in prokaryotes. It comes out that small changes in protein dimension and charge produce large effects in the supramolecular DNA-protein architecture.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号