首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Residual patches of forest remaining after natural or anthropogenic disturbance may facilitate regeneration of fragmented forest. However, residual patch function remains unclear, especially after natural wildfire. We investigate the role of residual boreal forest patches as refugia for bryophytes and ask the question, do they house bryophyte communities similar to those encountered in undisturbed forests? Bryophytes were sampled in three habitat types in black spruce boreal forests illustrating a gradient of disturbance severity: undisturbed forests, residual patches and burned matrices. Temporal, disturbance severity, spatial and structural variables of habitats were also recorded. Bryophyte community composition differed among habitat types with residual patches characterized by higher species richness, the loss of forest specialists and the addition of disturbance-prone species. The bryophyte community found in residual patches is at the interface between the communities of undisturbed forests and burned matrices. As residual patches did not conserve all species, particularly forest specialists, they were not refugia. However, we identify temporal, spatial and structural characteristics that can maintain bryophyte communities most similar to undisturbed forests and enhance residual patch “refugia potential”. Residual patches enhance bryophyte diversity of the landscape housing species that cannot survive in the burned matrix. As conclusion we discuss the use of retention patches in harvested stands, together with the preservation of undisturbed stands that house singular bryophyte communities and especially sensitive forest specialists.  相似文献   

2.

Aims

Natural disturbances leave long-term legacies that vary among landscapes and ecosystem types, and which become integral parts of successional processes at a given location. As humans change land use, not only are immediate post-disturbance patterns altered, but the processes of recovery themselves are likely altered by the disturbance. We assessed whether short-term effects on soil and vegetation that distinguish wildfire from forest harvest persist over 60 years after disturbance in boreal black spruce forests, or post-disturbance processes of recovery promote convergence of the two disturbance types.

Methods

Using semi-variograms and Principal Coordinates of Neighbour Matrices, we formulated precise, a priori spatial hypotheses to discriminate spatial signatures following wildfire and forest harvest both over the short- (16–18 years) and long-term (62–98 years).

Results

Both over the short- and the long-term, wildfire generated a wide spectrum of responses in soil and vegetation properties at different spatial scales, while logging produced simpler patterns corresponding to the regular linear pattern of harvest trails and to pre-disturbance ericaceous shrub patches that persist between trails.

Conclusions

Disturbance by harvest simplified spatial patterns associated with soil and vegetation properties compared to patterns associated with natural disturbance by fire. The observed differences in these patterns between disturbance types persist for over 60 years. Ecological management strategies inspired by natural disturbances should aim to increase the complexity of patterns associated with harvest interventions.  相似文献   

3.
We examined long‐term responses of an Amazonian bird assemblage to wildfire disturbance, investigating how understory birds reacted to forest regeneration 1, 3, and 10 years after a widespread fire event. The bird community was sampled along the Arapiuns and Maró river catchments in central Brazilian Amazonia. Sampling took place in 1998, 2000, and 2008 using mist‐nets in eight plots (four burned, four unburned sites). Species richness did not change significantly in unburned sites. In burned sites, however, we found significantly lower richness in 1998, higher richness in 2000, and similar richness in 2008. Multi‐dimensional scaling ordination showed consistent differences in bird communities both within burned sites sampled in different sampling years, and between burned and unburned sites in all years. Of the 30 most abundant species, 12 had not recovered 10 years after the fires, including habitat specialists such as mixed flocks specialists and ant‐followers. Fire‐disturbance favored three species (two hummingbirds and a manakin) in the short term only. All other species were either favored throughout the study (seven species of omnivores and small insectivores) or did not show a clear response (eight species). In burned sites, we also found significantly lower abundance of species sensitive to disturbances and habitat specialists over the entire study period. Although the bird community seems to be recovering in terms of richness, the overall community composition and abundance of some species in post‐burned and unburned sites remain very different, and have not recovered after 10 years of forest regeneration.  相似文献   

4.
Disturbance regimes in much of the boreal forest have shifted from wildfire to clearcutting over the last century, resulting in concerns for biodiversity. Because the boreal forest has evolved under a natural fire regimes, we hypothesized that application of prescribed burning (PB) after clearcutting would result in plant communities more similar to wildfire than clearcut only. However, because clearcutting + PB involves multiple disturbances in a short interval, we proposed an alternate hypothesis that clearcutting + PB would result in a species composition and trait assemblage that differ from those that develop after a single wildfire or clearcutting event. We determined species composition, diversity, and trait composition of 17 clearcut, 17 clearcut + PB, and 15 wildfire sites of jack pine (Pinus banksiana) dominated forests in northwestern Ontario, Canada 15–37 years after disturbance. Contrary to our primary hypothesis we found that clearcut + PB formed communities different from wildfire and clearcut, the latter two being similar. Clearcut + PB harbored more early successional species associated with seed banking, wind dispersal, deciduous foliage, and alien origin than wildfire or clearcut sites, which showed no specific trait associations. Taxonomic and trait analysis of clearcut + PB sites exhibited effects of compound disturbances, as observed after short-interval fires, supporting our alternate hypothesis. We concluded that PB after clearcutting formed plant communities significantly different from those developed either after clearcutting or wildfire alone. We attribute this community divergence to the compounding effects associated with the addition of prescribed fire to these previously disturbed forests.  相似文献   

5.
Species loss caused by anthropogenic disturbance threatens forest ecosystems globally. Until 50 years ago, the major sources of boreal forest disturbance in western Canada were a combination of forest wild fire events, pest insect outbreaks, and forest timber harvesting. However, in the 1960s, when the oil boom started in Alberta, oil and gas development along with oil sands mining quickly became another major forest disturbance agent. In this case study we report the effects of operational oil sands mine reclamation on terrestrial arthropod communities and compare them with nearby burned and mature forest sites as a way to provide a benchmark from which to understand the long-term trajectory of recovery for these groups. During the summer of 2016 over 6700 epigaeic beetles were collected using pitfall traps. A total of 43 species of ground beetles and 118 species of rove beetles were collected. Epigaeic beetle assemblages differed between the reclaimed, burned, and mature forest sites. Partitioning of beta diversity in the reclaimed, burned areas and mature forests indicated that species turnover formed the largest component of diversity. Species richness patterns were similar among sites; however, cluster analysis indicated that epigaeic beetle assemblages were only 20% similar between the reclaimed and natural sites. Although ground beetles of the reclaimed area showed positive spatial autocorrelation among treatments, both ground and rove beetles showed responses to the reclamation treatments. The reclaimed areas were dominated by small- to medium-sized open-habitat eurytopic species, whereas the fire and mature forest sites were dominated by larger forest species. The reclaimed area of this case study constitutes a novel, reconstructed ecosystem that is clearly not equivalent in species assemblage to burnt stands of similar age or to mature forest stands.  相似文献   

6.
Cleary DF 《Oecologia》2003,135(2):313-321
The impact of disturbance on species diversity may be related to the spatial scales over which it occurs. Here I assess the impact of logging and ENSO (El Niño Southern Oscillation) -induced burning and forest isolation on the species richness (477 species out of more than 28,000 individuals) and community composition of butterflies and butterfly guilds using small (0.9 ha) plots nested within large (450 ha) landscapes. The landscapes were located in three habitat classes: (1) continuous, unburned forest; (2) unburned isolates surrounded by burned forest; and (3) burned forest. Plots with different logging histories were sampled within the two unburned habitat classes, allowing for independent assessment of the two disturbance factors (logging and burning). Disturbance within habitat classes (logging) had a very different impact on butterfly diversity than disturbance among habitat classes (due to ENSO-induced burning and isolation). Logging increased species richness, increased evenness, and lowered dominance. Among guilds based on larval food plants, the species richness of tree and herb specialists was higher in logged areas but their abundance was lower. Both generalist species richness and abundance was higher in logged areas. Among habitat classes, species richness was lower in burned forest and isolates than continuous forest but there was no overall difference in evenness or dominance. Among guilds, generalist species richness was significantly lower in burned forest and isolates than continuous forest. Generalist abundance was also very low in the isolates. There was no difference among disturbance classes in herb specialist species richness but abundance was significantly higher in the isolates and burned forest than in continuous forest. Tree specialist species richness was lower in burned forest than continuous forest but did not differ between continuous forest and isolates.The scale of assessment proved important in estimating the impact of disturbance on species richness. Within disturbance classes, the difference in species richness between primary and logged forest was more pronounced at the smaller spatial scale. Among disturbance classes, the difference in species richness between continuous forest and isolates or burned forest was more pronounced at the larger spatial scale. The lower levels of species richness in ENSO-affected areas and at the larger (landscape) spatial scale indicate that future severe ENSO events may prove one of the most serious threats to extant biodiversity.  相似文献   

7.
The two major disturbance types of boreal black spruce forest in north–central Quebec, Canada – natural disturbance by wildfire and anthropogenic disturbance by harvest – may affect processes of recovery differently and leave distinct post‐disturbance soil and vegetation spatial patterns. We tested whether 1) spatial patterns of physico‐chemical soil organic layer properties, black spruce diameter and density, and understory ericaceous shrub cover, differ between these two principal disturbance types; 2) operations associated with forest harvest result in distinct, regular spatial patterns of these same variables related to presence of machine trails; and 3) ericaceous shrub presence is a potential factor contributing to the legacy of spatial patterns after harvest. We explored these patterns on black spruce‐feathermoss forest stands, including fire‐origin stands (18 and 98 years) and stands originating from harvest (16 and 62 years) in central Quebec, Canada. We used two spatial analysis methods, spectral analysis and principal component analysis in the frequency domain, to characterize and relate spatial patterns of these soil and vegetation variables, measured along 50‐m transects on each site. Spatial patterns of distribution of soil and vegetation variables were different on the burned and the harvested forest sites. Wildfire gave rise to spatial patterns in soil and vegetation variables at multiple scales, reflecting the complexity generated by variable burn intensity. Patterns following forest harvest were mainly related to the regular structure defined by trails created by logging operations. In contrast to burned sites, ericaceous shrub patterns on harvested sites were strongly associated with spatial arrangements of spruce diameter and density, promoting absence of canopy closure and persistence of trails. Moreover, different spatial signatures did not converge in the long‐term (62–98 years) between the two disturbance types. The divergence in spatial structure between natural and anthropogenic disturbances has implications for ecosystem structure and function in the longer term.  相似文献   

8.
As post-disturbance community response depends on the characteristics of the ecosystem and the species composition, so does the invasion of exotic species rely on their suitability to the new environment. Here, we test two hypotheses: exotic spider species dominate the community after burning; and two traits are prevalent for their colonisation ability: ballooning and body size, the latter being correlated with their dispersal ability. We established spring burn, summer burn and unburned experimental plots in a New Zealand tussock grassland area and collected annual samples 3 and 4 years before and after the burning, respectively. Exotic spider abundance increased in the two burn treatments, driven by an increase in Linyphiidae. Indicator analysis showed that exotic and native species characterised burned and unburned plots, respectively. Generalised linear mixed-effects models indicated that ballooning had a positive effect on the post-burning establishment (density) of spiders in summer burn plots but not in spring plots. Body size had a positive effect on colonisation and establishment. The ability to balloon may partly explain the dominance of exotic Linyphiidae species. Larger spiders are better at moving into and colonising burned sites probably because of their ability to travel longer distances over land. Native species showed a low resilience to burning, and although confirmation requires longer-term data, our findings suggest that frequent fires could cause long lasting damage to the native spider fauna of tussock grasslands, and we propose limiting the use of fire to essential situations.  相似文献   

9.
Bird community characteristics of three sites with different levels of disturbance were studied using transect surveys during the dry season in a subtropical humid forest in Bolivia. One area had been unintentionally burned 4 years prior and selectively harvested (DIS) 1 year prior to sampling. A second area had been selectively harvested 1 year prior to sampling and had no recent history of fire (HAR). Species richness, as assessed by species–time curves and rarefaction, was higher in both altered areas than in undisturbed forest (INT). In general, frugivores and omnivores were more abundant in both altered areas compared to intact forest. Canopy frugivores, understory omnivores and multiple-strata omnivores were most abundant in HAR. Canopy frugivores, near-ground insectivores, understory and multiple-strata omnivores were least abundant in INT, although INT had the highest abundances of canopy insectivores and near-ground omnivores. Richness and abundance of widespread species with low habitat specificity was higher in both areas that experienced disturbance compared to intact forest. Differences in bird community structure between disturbed and intact forest at this site are attributed primarily to the addition of widespread species with less narrow habitat requirements, and possibly to changes in the distribution of different food types.  相似文献   

10.
Logging and wildfire are significant anthropogenic disturbance agents in tropical forests. We compared the abundance and species richness of selected terrestrial wildlife taxa including small mammals, amphibians, reptiles, and terrestrial invertebrates in areas burned by wildfire and then logged and in adjacent undisturbed areas of a tropical humid forest in Bolivia. Disturbed areas had 24% less canopy cover than undisturbed areas but had 2.6 times the cover of large woody debris. Understory cover did not differ between disturbed and undisturbed areas. Small mammal abundance and species richness in disturbed areas were 43 and 70% higher, respectively, than in adjacent undisturbed areas. Herpetofaunal abundance did not differ significantly among disturbed and undisturbed areas, but trends for higher abundance were observed for both reptiles and amphibians in disturbed areas. Herpetofaunal species richness was significantly higher in disturbed compared to undisturbed areas. Total terrestrial invertebrate abundance, as estimated by pitfall traps, was significantly higher in undisturbed compared to disturbed areas mostly due to higher abundances of Formicidae and Blattidae. However, two invertebrate groups, Orthoptera and Lepidoptera (larvae) were more abundant in disturbed areas. Wildlife conservation strategies for areas where logging or wildfire occur should take into account species- or guild-specific responses to these disturbance agents.  相似文献   

11.
  1. We investigated how compositional differences in riparian leaf litter derived from burned and undisturbed forests influenced leaf breakdown and macroinvertebrate communities using experimental mixed-species leaf packs in boreal headwater streams. Leaf pack mixtures simulating leaf litter from dominant riparian woody-stem species in burned and undisturbed riparian zones were incubated in two references and two fire-disturbed streams for 5 weeks prior to measuring temperature-corrected breakdown rates and macroinvertebrate community composition, richness, and functional metrics associated with decomposers such as shredder abundance and % shredders.
  2. Leaf litter breakdown rates were higher and had greater variability in streams bordered by reference riparian forests than in streams where riparian forests had been burned during a wildfire. Streams bordered by fire disturbance showed significant effects of litter mixture on decomposition rates, observed as significantly higher decomposition rates of a fire-simulated leaf mixture compared to all other mixtures.
  3. Variation among sites was higher than variation among litter mixtures, especially for macroinvertebrate community composition. In general, fire-simulated leaf mixtures had greater shredder abundances and proportions, but lower overall macroinvertebrate abundance; however, the shredder abundance trend was not consistent across all leaf mixtures at each stream.
  4. These results show that disturbance-driven riparian forest condition and resulting composition of leaf subsidies to streams can influence aquatic invertebrate community composition and their function as decomposers. Therefore, if one of the primary goals of modern forest management is to emulate natural disturbance patterns, boreal forest managers should adapt silvicultural practices to promote leaf litter input that would arise post-fire, thereby supporting stream invertebrate communities and their function.
  相似文献   

12.
Abstract Multiple disturbance regimes are increasingly common as novel anthropogenic disturbances are added to existing natural disturbances. However, it is generally unknown whether simultaneous or sequential effects of different forms of disturbance are predictable from the independent effects of each disturbance. This study examines the short‐term effects of sequential disturbance by mineral sand‐mining followed by fire in a forest community in south‐eastern Australia. Four combinations of disturbance were sampled: unburned mined, burned mined, unburned forest (unmined) and burned forest (unmined, with between‐fire interval matching the disturbance interval between mining and fire of the burned mined treatment). All combinations were sampled approximately 12 months following fire on the burned sites. The impact of fire after mining depended on disturbance interval. Sites burned 0.5–2.4 years since mining had fewer native vascular plant species than unburned mined sites of the same mined age, whereas sites with 10–16 years or 20–26 years between mining and fire had greater native species richness than unburned mined sites of the same age. Burning 20–26 years after mining brought native species richness within the range of burned forest. For both unmined and mined sites native seedling densities increased with burning, and with longer disturbance intervals. Weed species richness and weed seedling densities were greater on mined sites than in forest, and burning mined sites elevated weed seedling densities further, particularly for short intervals. Both disturbance interval and fire intensity are likely to have contributed to these results, as intensity on mined areas increased with interval, and at 20–26 years post‐mining was equivalent to unmined forest. These results suggest that fire could be used to promote rehabilitation of these mined areas after at least 10 years, but should be excluded from earlier stages of post‐mining regeneration. However, other sources of spatial and temporal variability should be considered in addition to interval and intensity, as variation among mined areas was correlated with post‐fire weather conditions and available weed sources. Finally, the combined effects of mining and fire could not be predicted from knowledge of the disturbances operating separately, indicating that effects of multiple disturbance may be synergistic rather than additive.  相似文献   

13.
In boreal forests of eastern Canada, wildfire has gradually been replaced by clearcut harvesting as the most extensive form of disturbance. Such a shift in disturbance may influence the chemical properties of the forest floor and its capacity to cycle and supply nutrients, with possible implications for forest productivity. We compared the effects of stem-only harvesting (SOH), whole-tree harvesting (WTH) and wildfire on the chemical composition of forest floor organic matter and nutrient availability for plants, 15–20 years after disturbance in boreal coniferous stands in Quebec (Canada). The forest floor on plots of wildfire origin was significantly enriched in aromatic forms of C with low solubility, whereas the forest floor from SOH and WTH plots was enriched with more soluble and labile C compounds. The forest floor of wildfire plots was also characterized by higher N concentration, but its high C:N and high concentration of 15N suggest that its N content could be recalcitrant and have a slow turnover rate. Total and exchangeable K were associated with easily degradable organic structures, whereas total and exchangeable Ca and Mg were positively correlated with the more recalcitrant forms of C. We suggest that the bulk of Ca and Mg cycling in the soil–plant system is inherited from the influx of exchangeable cations in the forest floor following disturbance. The buildup of Ca and Mg exchangeable reserves should be greater with wildfire than with harvesting, due to the sudden pulse of cation-rich ash and to the deposition of charred materials with high exchange capacity. This raises uncertainties about the long-term availability of Ca and Mg for plant uptake on harvested sites. In contrast, K availability should not be compromised by either harvesting or wildfire since it could be recycled rapidly through vegetation, litter and labile organic compounds.  相似文献   

14.
In disturbed sites, some groups of seeds might be excluded from the seed rain due to their dispersal modes or seed size, and some groups might be successful as a result of disturbance effects. In the present study, we examined the seed rain in natural treefall gaps and in an area of regenerating forest following an accidental burning, which occurred 4 years before this study. Both of these disturbed areas were compared with nearby forest understorey. The number of seeds, number of species, and proportion of wind-dispersed seeds were compared between these disturbed and undisturbed areas. The treefall gaps have received lower numbers of seeds and species than the nearby understorey, but the number of wind-dispersed seeds did not differ between these areas. The lowest seed number observed in treefall gaps can be attributed to a lower number of animal-dispersed seeds, suggesting that animals may be avoiding treefall gap areas. A higher number of seeds and a lower number of species were observed in the burned area when compared to the adjacent understorey. The high number of small-sized seeds and of wind-dispersed seeds in the burned area was almost surely a consequence of the local production of the pioneer plants established after the burning. In this study, substantial differences were observed in the characteristics of the seed rain at disturbed sites, when compared with undisturbed understorey. However, these two distinct types of disturbance showed quite differing patterns, as treefall gaps received lower number of seeds while the burned area received a higher number of seeds, with a greater proportion of wind-dispersed seeds. The exception was for species richness, which was quite low at both these disturbed sites.  相似文献   

15.
We aimed to detect the trajectories of forest-floor vegetation recovery in a Picea mariana forest after a wildfire. Since fire severity in boreal forests is expected to increase because of climate changes, we investigated the effects of ground-surface burn severity, a surrogate for overall fire severity, on the revegetation. We annually monitored vegetation <1.3 m high in 80 1 m × 1 m quadrats at Poker Flat Research Range (65°12′N, 147°46′W, 650 m a.s.l.) near Fairbanks, interior Alaska, where a large wildfire occurred in the summer of 2004, from 2005 to 2009. Sphagnum mosses were predominant on the unburned ground surface. In total, 66 % of the ground surface was burned completely by the wildfire. Total plant cover increased from 48 % in 2005 to 83 % in 2009. The increase was derived mostly by the vegetative reproduction of shrubs on the unburned surface and by the immigration of non-Sphagnum mosses and deciduous trees on the burned surface. Deciduous trees, which had not been established before the wildfire, colonized only on the burned surface and grew faster than P. mariana. Although species richness decreased with increasing slope gradient, these deciduous trees became established even on steep slopes. The wildfire that completely burned the ground surface distorted the revegetation, particularly on steep slopes. The restoration of the Sphagnum surface was a prerequisite after the severe wildfire occurred, although the Sphagnum cover had difficulty returning to predominance in the short term.  相似文献   

16.
Opencast mining causes severe environmental impacts by removing the vegetation cover and depleting the fauna. Reforestation methods using native species and diverse pre- and post-disturbance approaches aim to recover the original richness and diversity of species found before the impact. Bioindicators are powerful tools to evaluate the restoration of the original environmental conditions in disturbed areas. We used species richness, endemism and diversity measurements of Collembola to compare successional stages in reforested sites of different ages compared with a control undisturbed area. Richness and abundance of Collembola were subjected to correlation analysis with age of plots and vegetational variables. Areas that were reforested for up to 16 years supported a much lower Collembola species richness than undisturbed areas. Both the age of reforestation plots and vegetation variables (number of trees, diameter of crowns, depth of leaf litter and tree species richness) were positively and significantly correlated to collembolan abundance and richness. The results showed that the diversity of the 16-year-old plot was significantly higher than that of younger areas, but significantly less diverse than that of the control area. Endemic species were more sensitive to disturbance than non-endemics. Thus, species richness and diversity of soil Collembola can be only partially restored with appropriate reforestation methods, and although it takes many years, to some extent even endemic species can be gradually restored. Nevertheless, the maintenance of undisturbed diversity reservoirs linked by ecological corridors to reforested plots is imperative, as only undisturbed areas can support most of the endemic species able to re-colonize reforested sites.  相似文献   

17.
Abstract The dry sclerophyll forest community of the Tomago Sandbeds, near Newcastle in New South Wales, has been subject to regular disturbances due to fire, clearing and strip mining for over 18 years. In this study we use chronosequence analysis to examine whether the structure of the ant community varies with the type of disturbance and the time since disturbance. We treat the recovery trajectory after fire as a control trajectory because fire is an endogenous disturbance. The main analyses were based on an ant fauna comprising 72 species sampled from 44 sites surveyed in December 1992. Comparison with samples taken in April and December 1991, and for cumulative records for all sites over this 20 month period, all show quantitatively similar responses. Results suggest that while fire has a minor effect on the composition of the ant community over time, the impact of clearing and mining is much more severe. Ant species richness at cleared and mined sites recovers rapidly, overshoots controls in mid-succession and returns to control levels by 18 years after disturbance. The cumulative number of species recorded over all sites (from the total recorded fauna of 82 species) for each different disturbance type were: burned, 61; cleared, 55; and mined 56. Species composition at cleared or mined sites, after 18 years, approaches but does not match controls. The recovery trend for mined sites lags slightly behind that for cleared sites, which have reached 49% similarity with the oldest burned sites, while mined sites have not exceeded 39% similarity of species composition. The main patterns in the ant community appear to be related to habitat variables. These results provide further evidence that the ant community may be used as a reliable bio-indicator for evaluating the extent of habitat damage and recovery after disturbance in these Australian forests.  相似文献   

18.
Several boreal wood-living insect species breed exclusively in recently burned forest. However, the reason for this dependence on fire is largely unknown. Here wood-living insects and other arthropods were sampled from burned and unburned logs of birch and spruce in a burned forest, together with unburned logs at a clearing and in an uncut forest, during two years of succession after tree death. Burned spruce logs hosted fewer beetles than unburned logs. Notably, bark-beetles and their associated fauna, responded negatively to fire-scorching of the logs while arthropods that feed on ascomycete fungi responded positively. Fire-scorched logs more often had visible ascomycete fungi, and lost their bark faster than unburned logs. However, despite this obvious effect of fire-scorching of the logs, the species composition in burned and unburned logs at the burned site was more similar than in unburned logs at the three different sites. A larger diversity of beetles, when measured with rarefaction, was found for fire-scorched logs. When sites were compared, birch logs had the most diverse fauna at the burned site and spruce logs in the uncut forest. Pyrophilous insect species were almost exclusively confined to the burned forest, but occurred in both burned and unburned logs. These species may be divided into two groups: (1) mycophagous species that need burned substrate per se because ascomycete fungi are favoured by burning, and (2) phloem-feeders and predators that are favoured by some habitat characteristic of recently burned forest rather than of burned wood.  相似文献   

19.
Little is known about the diversity of tropical animal communities in recently fire‐affected environments. Here we assessed species richness, evenness, and community similarity of butterflies and odonates in landscapes located in unburned isolates and burned areas in a habitat mosaic that was severely affected by the 1997/98 ENSO (El Niño Southern Oscillation) event in east Kalimantan, Indonesian Borneo. In addition related community similarity to variation in geographic distance between sampling sites and the habitat/vegetation structure Species richness and evenness differed significantly among landscapes but there was no congruence between both taxa. The species richness of butterflies was, for example, highest in sites located in a very large unburned isolate whereas odonate species richness was highest in sites located in a small unburned isolate and once‐burned forest. We also found substantial variation in the habitat/vegetation structure among landscapes but this was mainly due to variation between unburned and burned landscapes and variation among burned landscapes. Both distance and environment (habitat/vegetation) contributed substantially to explaining variation in the community similarity (beta diversity) of both taxa. The contribution of the environment was, however, mainly due to variation between unburned and burned landscapes, which contained very different assemblages of both taxa. Sites located in the burned forest contained assemblages that were intermediate between assemblages from sites in unburned forest and sites from a highly degraded slash‐and‐burn area indicating that the burned forest was probably recolonised by species from these disparate environments. We, furthermore, note that in contrast to species richness (alpha diversity) the patterns of community similarity (beta diversity) were highly congruent between both taxa. These results indicate that community‐wide multivariate measures of beta diversity are more consistent among taxa and more reliable indicators of disturbance, such as ENSO‐induced burning, than univariate measures.  相似文献   

20.
As climate rapidly warms at high-latitudes, the boreal forest faces the simultaneous threats of increasing invasive plant abundances and increasing area burned by wildfire. Highly flammable and widespread black spruce (Picea mariana) forest represents a boreal habitat that may be increasingly susceptible to non-native plant invasion. This study assess the role of burn severity, site moisture and time elapsed since burning in determining the invisibility of black spruce forests. We conducted field surveys for presence of non-native plants at 99 burned black spruce forest sites burned in 2004 in three regions of interior Alaska that spanned a gradient of burn severities and site moisture levels, and a chronosequence of sites in a single region that had burned in 1987, 1994, and 1999. We also conducted a greenhouse experiment where we grew invasive plants in vegetation and soil cores taken from a subset of these sites. In both our field survey and the greenhouse experiment, regional differences in soils and vegetation between burn complexes outweighed local burn severity or site moisture in determining the invasibility of burned black spruce sites. In the greenhouse experiments using cores from the 2004 burns, we found that the invasive focal species grew better in cores with soil and vegetation properties characteristic of low severity burns. Invasive plant growth in the greenhouse was greater in cores from the chronosequence burns with higher soil water holding capacity or lower native vascular biomass. We concluded that there are differences in susceptibility to non-native plant invasions between different regions of boreal Alaska based on native species regeneration. Re-establishment of native ground cover vegetation, including rapidly colonizing bryophytes, appear to offer burned areas a level of resistance to invasive plant establishment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号