首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Greece is characterized by high plant diversity (5800 species) and endemism (15.6%). This study attempts a first overall assessment of the taxonomy, distribution, traits and conservation status of the Greek endemic plants. The endemic species belong to 56 families and 242 genera. Most of the endemic plants have a narrow geographical and altitudinal distribution range. The southern floristic regions are richer in endemic species. The species area relationships for endemics (EARs) for island and continental floristic regions explain over 50% of the variation in number of species and are characterized by steep curves. Analysis of the distributional pattern of the endemics by similarity coefficients offers useful insights into the palaeogeography and biogeography of Greece. The endemic species occur at all altitudes, but the altitudinal distribution shows a predominance of local endemics at 0–600 m in the island regions and in higher zones in the continental regions. The life form spectra show a predominance of hemicryptophytes and chamaephytes. This trait seems indicative of their habitat and adaptive strategy and may be related to speciation processes. The overview of the conservation status of the Greek endemics indicates that over 40% of the taxa are threatened or near threatened. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 162 , 130–422.  相似文献   

2.
Current threats to the planet's biodiversity are unprecedented, and they particularly imperil insular floras. In this investigation, we use the threat factors identified by the Millennium Ecosystem Assessment as the main drivers of biodiversity loss on islands to define and rank 13 current, continuing threats to the plant diversity of nine focal archipelagos where volcanic origin (or in the Seychelles a prolonged isolation after a continental origin) has produced a high degree of endemicity and fragility in the face of habitat alteration. We also conduct a global endangerment assessment based on the numbers of insular endemic plants in the endangered (EN) and critically endangered (CR) IUCN categories for 53 island groups with an estimated 9951 endemic plant species, providing a representative sample of the world's insular systems and their floristic richness. Our analyses indicate that isolation does not significantly influence endangerment, but plant endemics from very small islands are more often critically endangered. We estimate that between 3500 and 6800 of the estimated 70,000 insular endemic plant species worldwide might be highly threatened (CR+EN) and between ca. 2000 and 2800 of them in critical danger of extinction (CR). Based on these analyses, and on a worldwide literature review of the biological threat factors considered, we identify challenging questions for conservation research, asking (i) what are the most urgent priorities for the conservation of insular species and floras, and (ii) with the knowledge and assets available, how can we improve the impact of conservation science and practice on the preservation of island biodiversity? Our analysis indicates that the synergistic action of many threat factors can induce major ecological disturbances, leading to multiple extinctions. We review weaknesses and strengths in conservation research and management in the nine focal archipelagos, and highlight the urgent need for conservation scientists to share knowledge and expertise, identify and discuss common challenges, and formulate multi-disciplinary conservation objectives for insular plant endemics worldwide. To our knowledge, this is the most up-to-date and comprehensive survey yet to review the threat factors to native plants on oceanic islands and define priority research questions.  相似文献   

3.
Abstract

Prioritization of endemic, threatened species and the habitats where they live is a crucial point of conservation actions, particularly in areas with rich endemic floras. In this study, we have developed a new procedure to define the conservation priorities among endemic plants and habitats by evaluating eight criteria. Five criteria deal with the geographic and ecological range of the evaluated species, whereas the other three refer to threats. After the evaluation of each criterion, we combined the partial scores to obtain a priority index (PI). Finally, we characterized the EU habitat categories of conservation concern on the basis of the average PI value of the plants living in each habitat. We tested the method on a list of 260 endemic plants from a biodiversity hotspot (Sardinia) that had an average PI of 3.66 ± 0.16. Even if the habitat categories that are most rich in endemic plants were rocky habitats, and coastal/halophytic habitats, the most endangered habitat was coastal sand dunes (PI = 6.75 ± 1.15). The method herein presented is complementary with the application of IUCN criteria. This integrated approach is a concrete solution that adapts IUCN criteria and categories to local contexts.  相似文献   

4.
5.

Aim

Oceanic islands possess unique floras with high proportions of endemic species. Island floras are expected to be severely affected by changing climatic conditions as species on islands have limited distribution ranges and small population sizes and face the constraints of insularity to track their climatic niches. We aimed to assess how ongoing climate change affects the range sizes of oceanic island plants, identifying species of particular conservation concern.

Location

Canary Islands, Spain.

Methods

We combined species occurrence data from single-island endemic, archipelago endemic and nonendemic native plant species of the Canary Islands with data on current and future climatic conditions. Bayesian Additive Regression Trees were used to assess the effect of climate change on species distributions; 71% (n = 502 species) of the native Canary Island species had models deemed good enough. To further assess how climate change affects plant functional strategies, we collected data on woodiness and succulence.

Results

Single-island endemic species were projected to lose a greater proportion of their climatically suitable area (x ̃ = −0.36) than archipelago endemics (x ̃ = −0.28) or nonendemic native species (x ̃ = −0.26), especially on Lanzarote and Fuerteventura, which are expected to experience less annual precipitation in the future. Moreover, herbaceous single-island endemics were projected to gain less and lose more climatically suitable area than insular woody single-island endemics. By contrast, we found that succulent single-island endemics and nonendemic natives gain more and lose less climatically suitable area.

Main Conclusions

While all native species are of conservation importance, we emphasise single-island endemic species not characterised by functional strategies associated with water use efficiency. Our results are particularly critical for other oceanic island floras that are not constituted by such a vast diversity of insular woody species as the Canary Islands.  相似文献   

6.
Endemicity is important for the delimitation of conservation areas. Endemic areas are those that contain two or more taxa with their distribution restricted to the area. The aim of this study was to detect endemic areas for palms in the Amazon region and to determine whether the species that define these endemic areas are protected within conservation units. Records of occurrence were extracted from the global biodiversity information facility (GBIF). The final dataset consisted of 17,310 records, for 177 species of Amazonian palms. For analysis we used parsimony analysis of endemicity (PAE) and NDM-VNDM program, and grid square size of 1° and 3° as operational geographic units (OGUs). The distribution of endemic species was superimposed on occurrence of the conservation units (CUs). PAE did not show endemic areas in grid squares of 1°, but found 10 palm endemic areas in grid squares of 3° in the western Amazon and Andean sub-region. However, the NDM-VNDM program identified an endemic area in grid squares of 1° located at the eastern Guiana with endemicity score = 2.9, and in grid squares of 3° it identified seven consensus areas with endemicity score > 6.0, all in the western Amazon. The combination of PAE and NDM-VNDM analyses resulted in eight endemic palm areas in the combined western Amazon and Andean sub-region. Of the species that define the endemic areas, five are threatened with extinction in one of three IUCN categories (EN, VU, NT), and they are not protected in any conservation units. The western Amazon, besides having high palm richness, also has palm endemic areas, especially, near the Andean sub-region and the Peruvian Amazon.  相似文献   

7.
海洋岛屿生物多样性保育研究进展   总被引:6,自引:0,他引:6  
海洋岛屿生态系统因具有明显的海域地理隔离而区别于陆地生态系统,被誉为生物地理与进化生态学研究的"天然实验室".陆地或其它邻近岛屿的种源物种迁移到新的岛屿后,经历地理隔离、特征置换或适应辐射等一系列的岛屿进化过程,形成与种源物种具有显著遗传差异的岛屿特有种.岛屿在小面积范围内分化形成大量的特有种,是岛屿生物多样性最为重要的特点之一.但是,岛屿种群由于分布范围局限、生境脆弱且种群规模较小,岛屿种群较陆地种群具有更高的灭绝风险.本文通过对海洋岛屿物种的起源与演化、遗传结构以及岛屿物种的濒危与保护3个热点问题的讨论,阐述岛屿生物多样性的形成机制、濒危肇因以及岛屿生物多样性保育的重要性.  相似文献   

8.
An inventory of the endemic vascular plants of the Peloponnese (395 species and subspecies) has been created based on literature, herbarium and field data. Endemics?? distribution patterns, altitudinal distribution and habitat specificity were investigated. A rarity score for each endemic has been calculated based on its population size, geographic range and habitat specificity. The main mountainous areas of the Peloponnese are largely congruent to the hotspots of endemism. Altitudinal range and niche breadth of the endemics were positively correlated to their range size. The elevational gradient of the endemic species richness showed a hump-shaped pattern, in contrast to the monotonically decreasing pattern of total species richness. Endemic species were found to support boundary theory, while total species richness distribution followed the Rapoport??s elevational rule. The elevational distribution of the average rarity score and the average weighted threat of the endemics resulted in low values for mid-elevation intervals and increased values for low and high altitude areas, indicating that conservation efforts should focus on the two extremes of the elevational gradient. Area prioritization methods were applied using a rarity/complementarity based algorithm with two species weighting schemes. Their results were largely congruent confirming the significance of the main mountainous areas for the conservation of the endemics. Spatial overlap among selected grid cells using the rarity/complementarity analysis and Natura 2000 network was found to be low. Our results revealed the conservation importance of at least one new area located on Kythera Island.  相似文献   

9.
The freshwater crabs of the Neotropics comprise 311 species in two families (Pseudothelphusidae and Trichodactylidae) and one or both of these families are found in all of the countries in the Neotropical region (except for Chile and some of the Caribbean islands). Colombia (102 species, 81% endemic) and Mexico (67 species, 95% endemic) are the biodiversity hotspots of freshwater crab species richness and country-level endemism for this region. The results of the IUCN Red List conservation assessments show that 34% of pseudothelphusids and 10% of trichodactylids have an elevated risk of extinction, 29% of pseudothelphusids and 75% of trichodactylids are not at-risk (Least Concern), and although none are actually extinct, 56% of pseudothelphusids and 17% of trichodactylids are too poorly known to assess (Data Deficient). Colombia (14 species), Venezuela (7 species), Mexico (6 species), and Ecuador (5 species) are the countries with the highest number of threatened species of Neotropical freshwater crabs. The majority of threatened species are restricted-range semiterrestrial endemics living in habitats subjected to deforestation, alteration of drainage patterns, and pollution. This underlines the need to prioritize and develop conservation measures before species decline to levels from which they cannot recover. These results represent a baseline that can be used to design strategies to save threatened Neotropical species of freshwater crabs.  相似文献   

10.
The cornerstone of EU nature conservation, the Natura 2000 (N2K) network is far from complete in many EU countries, including Cyprus, particularly where new datasets have become available. Thus, an important question in conservation biology is how new data can be incorporated in an effort to redesign N2K where appropriate. We analyse the efficacy of the N2K network in Cyprus, a global biodiversity hotspot, for protecting threatened vascular plants. We used 252 species for which detailed distributional data were available and added new records for 168 species. Overlaying a 1 km2 grid map for Cyprus we identified distributional hotspots of threatened species (sensu IUCN) and assessed their representation level within the N2K network. Based on new recorded data we propose IUCN status changes for 15 species. There were 60 hotspots identified (cells with more than 5 threatened species) in the central-west, south, southeast and north parts of the island. GIS analysis demonstrated that 145 out of 252 species (57.5%) occur within the N2K network, ranging from 4 to 100% of their occurrences. Τhe conservation gaps identified are related to 107 threatened species (42.5% of Red Data Book plants) which are either completely outside the N2K network or in those areas where EU legislation is not applicable due to the complex political situation on the island. The most important conservation opportunities are found in the northern part of the island, where the acquis communautaire is suspended and the UK Sovereign Base Areas, which are excluded from the Accession Treaty of Cyprus. In the area under the effective control of the Government of the Republic of Cyprus (CYGCA) there are only two important hotspots found outside the N2K network.  相似文献   

11.
Limited financial resources for conservation and growing environmental problems make it vital to base conservation on sound scientific evidence. Small islands hold a disproportionately large amount of the worlds threatened biodiversity but it is among the least well-documented. This paper reports on the most extensive collation and synthesis of biodiversity data to date for the 14 United Kingdom Overseas Territories (UKOTs). A process of literature review and consultation produced 65,259 species records, including 32,216 native species of which 1549 were endemic to a single UKOT. The extent of knowledge of species occurrence varied both between islands and taxonomic groups. It was higher for vertebrates and vascular plants than small bodied invertebrates and non-vascular and for non-Caribbean compared to Caribbean islands, a difference that largely reflects knowledge of invertebrates. Global Red List assessments exist for 2606 species and document 111 of endemic species, 75 % of those assessed, and 291, 12 % of non-endemics, as globally threatened. Using the data to estimate true species richness suggests a further 70,000 native species, including 1800 single island endemics, remain to be documented suggesting the UKOTs as a whole may support over 100,000 native species including 3300 single island endemics.  相似文献   

12.
Due to the current environmental crisis, many animal species face extinction problems. Amphibian populations have been affected by this crisis. Our goal is to study amphibian species diversity in Chiapas, which has 7.6% of the endemic amphibians in Mexico and 53 protected areas. Only 58% of the protected areas have management plans or information on their resident amphibians. We aim to determine the extent of protection provided by the network of natural areas for the conservation of amphibian species in the state and to discuss the effectiveness of this protection. Therefore, we compiled a georeferenced database of 112 amphibian species in Chiapas to create each distribution model. In addition, we carried out representativeness, beta diversity, and species richness analyses. As a result, we obtained a high degree of representativeness for the records and species distribution models. However, we found a decrease in the richness of amphibians involving 20% of total species, 13% of endemics, 18% threatened according to NOM-059, and 31% threatened according to IUCN between 1800 and 2020 and 1980–2020. We also identified two biodiversity hotspots in the Sierra Madre de Chiapas and the Northern Highlands physiographic regions. Finally, based on potential distributions, we found more endemic and threatened species outside protected natural areas than inside them. Our results give a broader picture of how amphibian richness is distributed in Chiapas. This information can help to prioritize conservation efforts toward those areas rich in threatened or endemic species, such as the Northern Mountains Hotspot we identified in northern Chiapas.  相似文献   

13.
Endemic Seed Plant Species from Hainan Island: A Checklist   总被引:1,自引:0,他引:1  
Global conservation of plant biodiversity on tropical islands is a major priority, as approximately one third of all endangered plant species are insular endemics. Checklists can be an important first step in determining conservation priorities on islands. Hainan, the largest island in the Indo-Burma Biodiversity Hotspot, and therefore an international focus for conservation, has the most extensive and best preserved tropical forests in China. In this study we enumerate the endemic seed plants of Hainan Island. The checklist was prepared by consulting: (1) several bibliographic/taxonomic data base resources, (2) relevant taxonomic treatments and floras, and (3) plant taxonomists who are actively working with Chinese plants. The checklist also contains information concerning conservation status, the occurrence of Hainan endemics in four protected areas on the island, and available molecular phylogenies. An additional checklist of the species that were until recently thought to be endemic to Hainan, but are no longer considered to be, is also presented. In a separate paper in this issue of Botanical Review the patterns of endemism on Hainan Island are discussed.  相似文献   

14.
There is an urgent need to reduce drastically the rate at which biodiversity is declining worldwide. Phylogenetic methods are increasingly being recognised as providing a useful framework for predicting future losses, and guiding efforts for pre-emptive conservation actions. In this study, we used a reconstructed phylogenetic tree of angiosperm species of the Eastern Arc Mountains – an important African biodiversity hotspot – and described the distribution of extinction risk across taxonomic ranks and phylogeny. We provide evidence for both taxonomic and phylogenetic selectivity in extinction risk. However, we found that selectivity varies with IUCN extinction risk category. Vulnerable species are more closely related than expected by chance, whereas endangered and critically endangered species are not significantly clustered on the phylogeny. We suggest that the general observation for taxonomic and phylogenetic selectivity (i.e. phylogenetic signal, the tendency of closely related species to share similar traits) in extinction risks is therefore largely driven by vulnerable species, and not necessarily the most highly threatened. We also used information on altitudinal distribution and climate to generate a predictive model of at-risk species richness, and found that greater threatened species richness is found at higher altitude, allowing for more informed conservation decision making. Our results indicate that evolutionary history can help predict plant susceptibility to extinction threats in the hyper-diverse but woefully-understudied Eastern Arc Mountains, and illustrate the contribution of phylogenetic approaches in conserving African floristic biodiversity where detailed ecological and evolutionary data are often lacking.  相似文献   

15.
Oceanic islands are vulnerable ecosystems and their flora has been under pressure since the arrival of the first humans. Human activities and both deliberately and inadvertently introduced biota have had and continue to have a severe impact on island endemic plants. The number of alien plants has increased nearly linearly on many islands, perhaps resulting in extinction‐based saturation of island floras. Here, we provide evidence for such a scenario in Alejandro Selkirk, Robinson Crusoe Islands (Archipelago Juan Fernández, Chile). We compared species richness and species composition of historical vegetation samples from 1917 with recent ones from 2011. Changes in species’ relative occurrence frequency were related to their taxonomic affiliation, dispersal mode, distribution status, and humidity and temperature preferences. While total species richness of vascular plants remained relatively similar, species composition changed significantly. Plants endemic to the Robinson Crusoe Islands declined, exotic species increased substantially within the period of ca. 100 years. Further, the relative occurrence frequency of plants with preferences for very warm and humid climate decreased, while the opposite was found for plants preferring drier and colder environments. Potential drivers responsible for this dramatic shift in the vegetation within only one century might have been the large goat population affecting especially small populations of endemic plants and climatic changes. Taking into account a substantial extinction debt, we expect further shifts in the vegetation of this small oceanic island toward alien plants. This would have significant negative consequences on global biodiversity, considering that island floras contribute substantially to global plant species richness due to their high proportion of endemics.  相似文献   

16.
《PloS one》2014,9(8)

Background

An understanding of the conservation status of Madagascar''s endemic reptile species is needed to underpin conservation planning and priority setting in this global biodiversity hotspot, and to complement existing information on the island''s mammals, birds and amphibians. We report here on the first systematic assessment of the extinction risk of endemic and native non-marine Malagasy snakes, lizards, turtles and tortoises.

Methodology/Principal Findings

Species range maps from The IUCN Red List of Threatened Species were analysed to determine patterns in the distribution of threatened reptile species. These data, in addition to information on threats, were used to identify priority areas and actions for conservation. Thirty-nine percent of the data-sufficient Malagasy reptiles in our analyses are threatened with extinction. Areas in the north, west and south-east were identified as having more threatened species than expected and are therefore conservation priorities. Habitat degradation caused by wood harvesting and non-timber crops was the most pervasive threat. The direct removal of reptiles for international trade and human consumption threatened relatively few species, but were the primary threats for tortoises. Nine threatened reptile species are endemic to recently created protected areas.

Conclusions/Significance

With a few alarming exceptions, the threatened endemic reptiles of Madagascar occur within the national network of protected areas, including some taxa that are only found in new protected areas. Threats to these species, however, operate inside and outside protected area boundaries. This analysis has identified priority sites for reptile conservation and completes the conservation assessment of terrestrial vertebrates in Madagascar which will facilitate conservation planning, monitoring and wise-decision making. In sharp contrast with the amphibians, there is significant reptile diversity and regional endemism in the southern and western regions of Madagascar and this study highlights the importance of these arid regions to conserving the island''s biodiversity.  相似文献   

17.
The Atlantic Forest is one of the most diverse and threatened ecosystems of the world, being thus classified as one of the most important biodiversity hotspots. However, habitat loss, overexploitation, alien species, disease and pollution are not the only threats faced by native fauna and flora. The lack of adequate taxonomic knowledge hinders conservation and management efforts of endemic species. This is true even for mammals, which is the most charismatic group of animals and traditionally receive a good deal of attention from scientists and the public in general. A few examples show how this gap in local fauna information can be demise for species conservation, even misguiding management strategies: molecular data reveal a hidden marsupial diversity; the lack of taxonomic studies at the species level seriously threatens rodent conservation; and the taxonomic rearrangement of the genusBrachyteles revealed a new species and had a great impact on management strategies. New species are discovered, described and taxonomically rearranged at an astounding rate. We can only be successful in biodiversity conservation if we have at least a minimum level of knowledge about what we are trying to preserve. That is true both for researchers and for the general public. Recent taxonomic revisions may represent the turning point in Neotropical fauna knowledge, which, coupled with a greater awareness of local people about the rich biodiversity that dot their backyards, can represent a better conservation prospect for the endemics of the Atlantic Forest.  相似文献   

18.
In the European Union, the Directive 92/43/EEC defines a number of species and habitats of community interest that are worthy to be preserved because in danger to disappear or because they are representative of the different European bio-geographical regions. In the light of the limited economic resources generally allocated to conservation efforts, there is the necessity to prioritise conservation actions in order to avoid deterioration of protected areas. To this aim, in the present study the most representative habitats of the Italian Alps are compared on the basis of vascular plant biodiversity and a conservation priority index is proposed for each habitat taking into account the potential distribution of 252 threatened vascular plant species. Rocky slopes, screes and alpine grasslands resulted to have the greatest percentage of endemic plant species so reflecting the general distributional pattern of endemic plant species at high altitudes in Eurasian mountains. The relationship between the conservation priority index and the corresponding habitat extent within the Natura 2000 network suggests that peatlands, arid grasslands, wet meadows and freshwater habitats deserve a higher priority in conservation actions. Although vascular plant biodiversity is not necessarily a surrogate of overall biodiversity of Alpine habitats, the results here reported can be used as an initial reference framework for prioritising conservation actions, so as to accomplish the provisions of Article 6 of Habitats Directive.  相似文献   

19.
Culturally protected forest patches or sacred groves have been the integral part of many traditional societies. This age old tradition is a classic instance of community driven nature conservation sheltering native biodiversity and supporting various ecosystem functions particularly hydrology. The current work in Central Western Ghats of Karnataka, India, highlights that even small sacred groves amidst humanised landscapes serve as tiny islands of biodiversity, especially of rare and endemic species. Temporal analysis of landuse dynamics reveals the changing pattern of the studied landscape. There is fast reduction of forest cover (15.14–11.02 %) in last 20 years to meet up the demand of agricultural land and plantation programs. A thorough survey and assessment of woody endemic species distribution in the 25 km2 study area documented presence of 19 endemic species. The distribution of these species is highly skewed towards the culturally protected patches in comparison to other land use elements. It is found that, among the 19 woody endemic species, those with greater ecological amplitude are widely distributed in the studied landscape in groves as well as other land use forms whereas, natural population of the sensitive endemics are very much restricted in the sacred grove fragments. The recent degradation in the sacred grove system is perhaps, due to weakening of traditional belief systems and associated laxity in grove protection leading to biotic disturbances. Revitalisation of traditional practices related to conservation of sacred groves can go a long way in strengthening natural ecological systems of fragile humid tropical landscape.  相似文献   

20.
Rates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world''s 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction. The level of extinction risk differed between families, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae. Four described species were Extinct and 21% were assessed as Data Deficient. There was geographical variation in the dominant threats affecting the main centres of crayfish diversity. The majority of threatened US and Mexican species face threats associated with urban development, pollution, damming and water management. Conversely, the majority of Australian threatened species are affected by climate change, harvesting, agriculture and invasive species. Only a small proportion of crayfish are found within the boundaries of protected areas, suggesting that alternative means of long-term protection will be required. Our study highlights many of the significant challenges yet to come for freshwater biodiversity unless conservation planning shifts from a reactive to proactive approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号