首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Existing theories of the origin of HIV-related adipose tissue redistribution syndrome cannot adequately explain simultaneous hypertrophy of certain depots and atrophy of others, or its occasional occurrence in untreated HIV infection. These experiments explore the hypothesis that hypertrophy of lymphoid tissue-containing adipose depots arises from drug-induced disruption to local interactions between perinodal adipocytes and activated lymphoid cells. Guinea pigs were fed on plain or lipid-supplemented (10% suet, sunflower or fish oil) chow ad libitum or restricted, and the popliteal lymph nodes were activated by repeated injection of lipopolysaccharide. Explants of perinodal and other samples from popliteal, mesentery, omentum and nodeless perirenal and epididymal depots were incubated with lymphoid cells and zidovudine, didanosine, lamivudine or stavudine at physiological concentrations (0.1-1 microg/ml) or interleukin-10 and interleukin-6, and basal and maximum lipolysis was measured. All drugs increased lipolysis from perinodal adipocytes, especially mesenteric, though less than exogenous cytokines. Effects on adipocytes from non-perinodal sites and nodeless depots were minimal. The sunflower-oil diet enhanced, and the fish-oil and restricted diets reduced, these effects. We conclude that these NRTI antiretroviral drugs modulate the local interactions between perinodal adipocytes and activated lymphoid cells. Local interactions, and hence the selective hypertrophy of node-containing adipose depots, may be curtailed by dietary manipulation.  相似文献   

2.
C A Mattacks  C M Pond 《Cytokine》1999,11(5):334-346
The contributions of inflammatory and immunosuppressive cytokines and noradrenalin to the control of lipolysis in adipocytes surrounding and remote from lymph nodes were investigated in healthy adult guinea-pigs. A few hours after excision from fasting animals, spontaneous lipolysis in adipocytes from around the popliteal and mesenteric lymph nodes and omental "milky spots" was significantly lower than in those from elsewhere in the same depots, and much lower than in perirenal, epididymal or parametrial adipocytes. The perinodal adipocytes were consistently more sensitive to noradrenalin at 10(-8), 10(-7)and 10(-5) M, and their maximum rate of lipolysis was higher. They also responded more strongly to pre-incubation for 24 h with tumour necrosis factor alpha interleukin 6 and interleukin 4 than those elsewhere in the same depots. Tumour necrosis factor alpha and interleukin 6 applied alone stimulated lipolysis, but combined with interleukin 4, they suppressed glycerol release, especially in perinodal adipocytes, thereby creating large within-depot differences. These cytokines had minimal effects on lipolysis in perirenal or gonadal adipocytes.The authors conclude that adipocytes surrounding lymph nodes contribute little to whole-body energy supply during fasting, but are more sensitive than all others to cytokines and to noradrenalin, having higher maximum but lower minimum rates of lipolysis. These properties equip perinodal adipocytes for local interactions with lymphoid tissue.  相似文献   

3.
Adipose depots that contain lymph nodes, and probably intermuscular fat in skeletal and cardiac muscle, are specialized to provision adjacent tissue in a paracrine mode. Perinodal adipocytes respond selectively to various cytokines and incorporate proportionately more polyunsaturated fatty acids. Lipolysis in the adipocytes of node-containing depots can be stimulated via inflammation of the enclosed lymph nodes. Repeated immune stimulation elicits properties characteristic of perinodal adipocytes in those elsewhere in the same depot, and hours later in other node-containing depots, but not in nodeless depots. Such site-specific properties of adipose tissue enable partitioning of dietary and metabolic supplies of fatty acids between competing tissues. Local interactions emancipate the peripheral immune system from competing with other tissues for lipids during immune responses, and may be especially important during periods of high demand, such as strenuous exercise. Biopsies of subcutaneous adipose tissue from sites remote from lymph nodes do not adequately represent the composition of fatty acids available to the immune system in situ, and perhaps that supplied to other tissues. Intermuscular fat in skeletal and cardiac muscle may also indicate paracrine relationships between adipocytes and "end-user" tissues. The concept of paracrine interactions between certain adipocytes and "user" tissue may account for the widespread contiguity between these tissues in vivo.  相似文献   

4.
Adipocytes anatomically associated with lymph nodes (and omental milky spots) have many special properties including fatty acid composition and the control of lipolysis that equip them to interact locally with lymphoid cells. Lymph node lymphocytes and tissue dendritic cells acquire their fatty acids from the contiguous adipocytes. Lymph node-derived dendritic cells suppress lipolysis in perinodal adipocytes but those that permeate the adipose tissue stimulate lipolysis, especially after minor, local immune stimulation. Inflammation alters the composition of fatty acids incorporated into dendritic cells, and that of node-containing adipose tissue, counteracting the effects of dietary lipids. Thus these specialised adipocytes partially emancipate the immune system from fluctuations in the abundance and composition of dietary lipids. Prolonged, low-level immune stimulation induces the local formation of more adipocytes, especially adjacent to the inflamed lymph node. This mechanism may contribute to hypertrophy of the mesentery and omentum in chronic inflammatory diseases such as HIV-infection, and in smokers. Paracrine interactions between adipose and lymphoid tissues are enhanced by diets rich in n-6 fatty acids and attentuated by fish oils. The latter improve immune function and body conformation in animals and people. The partitioning of adipose tissue in many depots, some specialised for local, paracrine interactions with other tissues, is a fundamental feature of mammals.  相似文献   

5.
Single-photon counting fluorimetry was used to record the time course of the expression of interleukin-10 receptors labelled with fluorescent antibodies on the surface of adipocytes over 24h, following an immune challenge to the rat popliteal lymph node. Homologous perinodal and remote-from-node samples from the stimulated and unstimulated popliteal depots were compared in rats fed on plain chow and chow supplemented with 10% w/w suet, fish or vegetable oils. Receptor expression was maximal 6 h after stimulation, and returned to baseline after 24 h, and was similar in the stimulated and unstimulated depots. Fewer receptors were elicited in tissues from rats fed lipid-supplemented diets compared with the control diet, with fewest of all following the fish oil diet. These data suggest that interleukin-10 is involved in local interactions between perinodal adipocytes and lymph node lymphoid cells. Both triacylglycerols and phospholipids contained more polyunsaturates and fewer saturates in perinodal adipose tissue than in samples from sites not associated with lymphoid tissue. These data are consistent with paracrine interactions between perinodal adipocytes and activated lymphoid cells.  相似文献   

6.
Given the strong link between visceral adiposity and (hepatic) insulin resistance as well as liver steatosis, it is crucial to characterize obesity-associated alterations in adipocyte function, particularly in fat depots drained to the liver. Yet these adipose tissues are not easily accessible in humans, and the most frequently studied depot in rodents is the perigonadal, which is drained systemically. In the present study, we aimed to study alterations in lipolysis between mesenteric and perigonadal adipocytes in mice. Basal free fatty acid and glycerol release was significantly lower in perigonadal compared with mesenteric adipocytes isolated from chow-fed C57BL/6J mice. However, this difference completely vanished in high-fat diet-fed mice. Consistently, protein levels of the G(0)/G(1) switch gene 2 (G0S2), which were previously found to be inversely related to basal lipolysis, were significantly lower in mesenteric compared with perigonadal fat of chow-fed mice. Similarly, perilipin was differently expressed between the two depots. In addition, adipocyte-specific overexpression of G0S2 led to significantly decreased basal lipolysis in mesenteric adipose tissue of chow-fed mice. In conclusion, lipolysis is differently regulated between perigonadal and mesenteric adipocytes, and these depot-specific differences might be explained by altered regulation of G0S2 and/or perilipin.  相似文献   

7.
The rate of noradrenaline-stimulated lipolysis is lower in fat-cells from lactating than from pregnant rats; this difference is eliminated by the addition of adenosine deaminase [Aitchison, Clegg & Vernon (1982) Biochem. J. 202, 243-247]. The activity of 5'-nucleotidase, and hence the capacity of the cells to synthesize adenosine, was the same in fat-cells and also stromal cells of adipose tissue from pregnant, lactating and male rats. The response and sensitivity of fat-cells to the anti-lipolytic effects of adenosine were measured by incubating cells in the presence of noradrenaline, adenosine deaminase (to remove endogenous adenosine) and various concentrations of the adenosine analogue N6-phenylisopropyladenosine (PIA). PIA caused a greater inhibition of the rate of noradrenaline-stimulated lipolysis in adipocytes from lactating than from pregnant rats. The concentration of PIA required to inhibit by 50% the rate of noradrenaline-stimulated lipolysis fell from over 100 nM for fat-cells from pregnant rats to 30 nM for fat-cells from lactating rats. The decreased rate of noradrenaline-stimulated lipolysis during lactation was not due to the smaller mean cell volume of adipocytes during this state.  相似文献   

8.
Recent findings have led to a new hypothesis in which it is proposed that the immune system plays a role in regulating the increase in blood glucose levels after a meal. The relevant findings are: (1) the primary lymphoid tissue, the lymph nodes are mostly present within adipose tissue depots throughout the body (there are at least 12 such depots and about 10 (12) lymphocytes, 99% of which are present in lymph nodes); (2) lymphocytes and other immune cells utilize glucose at a high rate but almost all of it is converted to lactate which accumulates in the cells prior to release; (3) glutamine, some of which is synthesized in muscle from glucose, is utilized at a high rate by immune cells, the end-product of which is mainly aspartate, which also accumulates in the cells prior to release; and (4) finally, there is a common blood supply to the lymph node and the adipose tissue depot and the blood flow through the depot and hence the node is increased after a meal. It is proposed that, after a meal, some of the absorbed glucose is taken up from the blood by the lymphocytes and converted to lactate and glutamine is converted to aspartate. These are released slowly into the blood from where they are removed and converted to glycogen by the liver. Hence the immune cells provide a temporary buffer for glucose in the form of lactate and aspartate and, in this way, restrict the rise in blood glucose during and after a meal.  相似文献   

9.
The purpose of this investigation was to explore interactions between adrenergic stimulation, glucocorticoids, and insulin on the lipolytic rate in isolated human adipocytes from subcutaneous and omental fat depots, and to address possible sex differences. Fat biopsies were obtained from 48 nondiabetic subjects undergoing elective abdominal surgery. Lipolysis rate was measured as glycerol release from isolated cells and proteins involved in lipolysis regulation were assessed by immunoblots. Fasting blood samples were obtained and metabolic and inflammatory variables were analyzed. In women, the rate of 8-bromo-cAMP- and isoprenaline-stimulated lipolysis was approximately 2- and 1.5-fold higher, respectively, in subcutaneous compared to omental adipocytes, whereas there was no difference between the two depots in men. Dexamethasone treatment increased the ability of 8-bromo-cAMP to stimulate lipolysis in the subcutaneous depot in women, but had no consistent effects in fat cells from men. Protein kinase A, Perilipin A, and hormone sensitive lipase content in adipocytes was not affected by adipose depot, sex, or glucocorticoid treatment. In conclusion, catecholamine and glucocorticoid regulation of lipolysis in isolated human adipocytes differs between adipose tissue depots and also between sexes. These findings may be of relevance for the interaction between endogenous stress hormones and adipose tissue function in visceral adiposity and the metabolic syndrome.  相似文献   

10.
Lower titers of anti-BSA antibodies were obtained from diffusion chamber cultures of unprimed mesenteric lymph nodes with antigen than in cultures of thoracic and popliteal lymph nodes. The incidence of cultures with no demonstrable antibodies was highest among the mesenteric lymph node cultures. The serological results were parallelled by the incidence of reactive cellular forms in the chambers.  相似文献   

11.
1. Adipocytes were isolated from the interscapular brown fat of male rats maintained at 21 degrees C. These animals were controls, streptozotocin-diabetics or 2-day insulin-treated diabetics. 2. With adipocytes from diabetic animals, maximum rates of noradrenaline-stimulated O2 uptake were decreased by 58%, and the Bmax. of [3H]GDP binding to mitochondria was decreased by 55%. Insulin administration reversed both of these changes. 3. Streptozotocin-diabetes increased basal lipolysis in adipocytes incubated with adenosine deaminase (1 unit/ml), decreased the EC50 (concn. giving 50% of maximum effect) for noradrenaline, but did not change the maximum rate of noradrenaline-stimulated lipolysis. Except for some small differences at very low concentrations (10-100 pM), diabetes or insulin treatment did not alter the sensitivity of noradrenaline-stimulated lipolysis or O2 uptake to the inhibitory effect of N6-phenylisopropyladenosine. It is therefore concluded that the lesion(s) in thermogenesis in diabetes are not attributable to any changes in lipolysis. 4. Blood flow through interscapular brown fat, measured by accumulation of [14C]DDT [14C-labelled 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane] was increased by 2.3-fold 70 min after a single administration of insulin to diabetic rats. This treatment decreased blood flow through epididymal white fat by 58%. 5. Propranolol treatment of diabetic rats muted the ability of insulin treatment to increase the maximum rate of noradrenaline-stimulated O2 uptake, suggesting that this action of insulin may be a secondary one rather than a direct effect of the hormone on the adipocytes.  相似文献   

12.

Background

Production of inflammatory cytokines by mesenteric adipose tissue (MAT) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). Animal models of colitis have demonstrated inflammatory changes within MAT, but it is unclear if these changes occur in isolation or as part of a systemic adipose tissue response. It is also unknown what cell types are responsible for cytokine production within MAT. The present study was designed to determine whether cytokine production by MAT during experimental colitis is depot-specific, and also to identify the source of cytokine production within MAT.

Methods

Experimental colitis was induced in 6-month-old C57BL/6 mice by administration of dextran sulfate sodium (2% in drinking water) for up to 5 days. The induction of cytokine mRNA within various adipose tissues, including mesenteric, epididymal, and subcutaneous, was analyzed by qRT-PCR. These adipose tissues were also examined for histological evidence of inflammation. The level of cytokine mRNA during acute colitis was compared between mature mesenteric adipocytes, mesenteric stromal vascular fraction (SVF), and mesenteric lymph nodes.

Results

During acute colitis, MAT exhibited an increased presence of infiltrating mononuclear cells and fibrotic structures, as well as decreased adipocyte size. The mRNA levels of TNF-α, IL-1β, and IL-6 were significantly increased in MAT but not other adipose tissue depots. Within the MAT, induction of these cytokines was observed mainly in the SVF.

Conclusions

Acute experimental colitis causes a strong site-specific inflammatory response within MAT, which is mediated by cells of the SVF, rather than mature adipocytes or mesenteric lymph nodes.  相似文献   

13.
14.
Adipose tissue develops in and/or around most lymphoid tissues in mammals and birds. Early reports of this widespread association and hypotheses for its functional basis were long ignored in the planning of in vitro studies and the interpretation of in vivo results. Biochemical studies on rodent tissues reveal many site-specific properties of adipocytes anatomically associated with lymph nodes and omental milky spots that equip them to interact locally with lymphoid cells. The paracrine interactions are strongest for the most readily activated lymph nodes and are modulated by dietary lipids. Perinodal adipocytes contribute less than those in the large nodeless depots to whole-body lipid supplies during fasting. Observations on wild animals show that perinodal adipose tissue is selectively conserved even in starvation but does not enlarge greatly in natural obesity. Such paracrine provisioning of peripheral immune responses improves their efficiency and emancipates activated lymphocytes from competition with other tissues for blood-borne nutrients. The relationship is found in extant protherians and metatherians, so it almost certainly arose early in the evolution of mammals, possibly as part of the metabolic reorganisation associated with homeothermy, viviparity, and lactation. Prolonged disruption to paracrine interactions between lymphoid and adipose tissue may contribute to the HIV-associated adipose redistribution syndrome, causing selective hypertrophy of the mesentery, omentum, and other adipose depots that contain much activated lymphoid tissue. Skeletal and cardiac muscle may also have paracrine relationships with anatomically associated adipose tissue, but interactions between contiguous tissues have not been demonstrated directly.  相似文献   

15.
Intraabdominal fat in humans is located in two major depots, the omental and mesenteric. We compared basal and stimulated lipolysis in adipose tissue from these two depots and the subcutaneous abdominal depot of obese women and men. Omental fat cells of women are smaller and have lower rates of basal lipolysis than in men. Basal Iipolysis rates are significantly higher in subcutaneous than intraabdominal adipose tissues of both genders. In men, the incremental lipolytic response to norepinephrine is significantly greater in both intraabdominal fat depots than in the subcutaneous fat, while in women tlie response of tlie mesenteric is lower than tlie omental. In women, but not men, responsiveness to tlie beta agonist isoproterenol is also increased in omental tissue. Thus, in women, omental and mesenteric adipose tissues show distinctly different metabolic properties which may moderate the impact of intraabdominal obesity.  相似文献   

16.
To explore regional differences in triglyceride retention in white adipose tissues of growing male rats, the mass of adipocytes from epididymal, retroperitoneal, inguinal, and mesenteric tissues were followed with time. In order to attempt to explain regional differences, adipose tissue metabolism was studied in vivo and in vitro. (U-14 C) oleic acid in sesame oil was given by gastric gavage to conscious male and female rats, and accumulation and half-life of radioactivity measured. Lipoprotein lipase activity and lipolysis were studied in vitro. Adipocyte triglyceride mass increased linearly in all the depots during 4 months of observation. The increase in mass was more pronounced in retroperitoneal (0.31 μg) and epididymal (0.30 μg) than in mesenteric (0.11 μg) or inguinal (0.05 μg) adipocytes. In the fed state label from (U-14C) oleic acid first increased with time in liver, muscle, and adipose tissues. In the liver radioactivity peaked at 4 hours, and was not measurable in either liver or muscle after a time point between 24 hours to 1 week. In contrast label continued to increase in adipose tissues up to about 16 hours to 24 hours, suggesting transfer of label by recirculation from liver and muscle to adipose tissues. Thereafter the radioactivity decreased. When expressed per adipocyte uptake of label was not significantly different between white adipose tissues. The rate of decrease between 7 days and 4 months was, however, more rapid in mesenteric and inguinal than, particularly, epididymal, and, probably, retroperitoneal adipocytes. These results were partly parallel to in vitro data on lipoprotein lipase activity, which was not different between depots, and the rate of lipolysis, which was higher in mesenteric than other adipocytes. These results suggest that differences in weight increase of adipose tissue regions are due mainly to differences in the rate of mobilization of adipocyte triglycerides. When expressed per gram triglyceride, uptake and mobilization of label were clearly more rapid in mesenteric than other white adipose tissues. This is probably explained by a combination of a higher adipocyte density plus the metabolic characteristics of adipocytes in this depot. Since mesenteric adipose tissue is smaller than the other depots studied, the absolute contribution of this tissue to the energy supply of the body is probably not different from that of other adipose tissues, however. A large uptake and short half life was observed in interscapular adipose tissue. This region contains brown adipocytes, and the results therefore suggest that lipid uptake for thermogenic purposes is of a considerable magnitude. It was concluded that among white adipose tissues, the mesenteric tissue has a rapid turnover of triglyceride. This is probably due to a combination of a high density and specific metabolic characteristics of these adipocytes. Factors in the microenvironment of adipocytes probably contribute to the high turnover either directly, or by modification of cellular characteristics.  相似文献   

17.
In the experiment performed on 127 dogs by means of cytospectrofluorometric analysis, using fluorochrome acridine orange in dynamics up to 1 year, changes in the level of chromatin activation and RNA content have been studied in lymphocytes of the germinative centers and the crown of lymphoid nodules, in the paracortical zone and medullary cords of the regional and contralateral popliteal lymph nodes, after subcutaneous injection of antigen (BCG vaccine, 0.2 mg/kg) into the lateral area of the foot of the left pelvic extremity. The immune response is accompanied with a periodical increase in the level of chromatin activation and RNA content in populations of lymphocytes in the regional and contralateral popliteal lymph nodes with maximum in 6 h, 3-7 days, 1-3 months after the antigen injection. The intensity of these processes has an unequal level in lymphoid cells of various structural components; it is higher in lymphocytes of the contralateral lymph node.  相似文献   

18.
Objective: A high intake of fat in the diet plays a crucial role in promoting obesity and obesity‐related pathologies, and especially visceral obesity is closely associated with obesity‐related complications. Because adipose tissue is anatomically associated with lymph nodes, the secondary lymphoid organ, we hypothesized that fat tissue‐derived factors may influence the cellularity of lymphoid tissue embedded in fat. Methods and Procedures: Mesenteric and inguinal lymph nodes were isolated from obese mice fed a high‐fat diet and control mice fed a regular diet. T‐cell population, activation state, and the extent of apoptosis were determined by flow cytometric analysis or terminal deoxynucleotidyl transferase biotin‐dUTP nick end labeling (TUNEL) assay. Results: The weight of mesenteric lymph nodes and the total number of lymphoid cells in the obese mice significantly decreased compared with those in the control mice; however, no change was observed in the weight of inguinal lymph nodes. The numbers of CD4+ and CD8+ T cells in the mesenteric lymph nodes of obese mice significantly decreased compared with those of the control. Enhanced T‐cell activation and apoptosis were observed in the mesenteric lymph node cells of the obese mice. The treatment of lymph node cells with free fatty acids, oxidative stress, and chylomicrons, which are obesity‐related factors, resulted in lymph node T‐cell activation and apoptosis. Discussion: These results suggest that visceral fat accumulation with a high‐fat diet can cause the atrophy of mesenteric lymph nodes by enhancing activation‐induced lymphoid cell apoptosis. Dietary fat‐induced visceral obesity may be crucial for obesity‐related immune dysfunction.  相似文献   

19.
Dendritic cells (DCs) play a key role in critical illness and are depleted in spleens from septic patients and mice. To date, few studies have characterized the systemic effect of sepsis on DC populations in lymphoid tissues. We analyzed the phenotype of DCs and Th cells present in the local (mesenteric) and distant (inguinal and popliteal) lymph nodes of mice with induced polymicrobial sepsis (cecal ligation and puncture). Flow cytometry and immunohistochemical staining demonstrated that there was a significant local (mesenteric nodes) and partial systemic (inguinal, but not popliteal nodes) loss of DCs from lymph nodes in septic mice, and that this process was associated with increased apoptosis. This sepsis-induced loss of DCs occurred after CD3(+)CD4(+) T cell activation and loss in the lymph nodes, and the loss of DCs was not preceded by any sustained increase in their maturation status. In addition, there was no preferential loss of either mature/activated (MHCII(high)/CD86(high)) or immature (MHCII(low)/CD86(low)) DCs during sepsis. However, there was a preferential loss of CD8(+) DCs in the local and distant lymph nodes. The loss of DCs in lymphoid tissue, particularly CD8(+) lymphoid-derived DCs, may contribute to the alterations in acquired immune status that frequently accompany sepsis.  相似文献   

20.
Previous studies have illustrated the importance of leptin receptor (OB-Rb) mediated action on adipocytes in the regulation of body weight. The aim of the present study was to investigate in male and female rats the effects of high-fat (HF) diet feeding on the expression levels of OB-Rb in different depots of white adipose tissue (WAT), and its relation to fatty acid oxidation capacity. Male and female Wistar rats were fed until the age of 6 months with a normal-fat (NF) or non-isocaloric HF-diet (10 and 45% calories from fat, respectively). At this age, the weight of three different fat depots (retroperitoneal, mesenteric and inguinal) and the expression levels of OB-Rb, PPARα and CPT1 in these depots were measured. HF-diet feeding resulted in an increase in the weight of the different fat depots, the retroperitoneal depot being the one with the greatest increase in both sexes. In this depot, HF-diet feeding resulted in a significant decrease in OB-Rb mRNA levels, more marked in male than in female rats. In the mesenteric depot, the effects of HF-diet feeding on OB-Rb mRNA levels were sex-dependent: they decreased in males rats (associated with a decrease in PPARα and CPT1 mRNA levels), but increased in female rats. In the inguinal depot, OB-Rb expression was not affected by HF-diet feeding. These results show that a chronic intake of an HF-diet altered the expression of OB-Rb in WAT in a depot and sex-dependent manner. The decreased expression of OB-Rb in the internal depots of male rats under HF-diet feeding, with the resulting decrease in leptin sensitivity, can help to explain the higher tendency of males to suffer from obesity-linked disorders under HF-diet conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号