首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Several plant genes have their first intron in the 5′ untranslated region (5′ UTR), and such 5′ UTR introns often show several biological functions, including the intron-mediated enhancement of protein expression through an increase of mRNA level (IME), intron-dependent spatial expression, and intron-mediated enhancement of translation. Here, we show another function of the 5′ UTR intron, i.e., the 5′ UTR intron-mediated enhancement of constitutive splicing. The NtFAD3 gene, which encodes a tobacco microsome ω-3 fatty acid desaturase, has a 552 nucleotide-long 5′ UTR intron (intron 1), and the other seven introns are located in the coding sequence. The splicing of the 5′ half region of the NtFAD3 was studied through an in vivo splicing assay using Arabidopsis leaf explants. The low splicing efficiency of intron 2 was much improved when the assay construct harbored intron 1. Deletion of intron 1 and the replacement of intron 1 to the NtFAD3 intron 8 decreased the splicing efficiency of intron 2. The splicing enhancers were redundant and dispersed in the 5′ splice site-proximal, 284-nucleotides region of intron 1. In addition, the interaction among the cis-elements, i.e., the splicing enhancers in the intron 1 and exon 2, were necessary for the efficient splicing of intron 2. The 5′ UTR intron-mediated constitutive splicing was partially inhibited when an SR-like protein, SR45, was deficient. These results indicated a novel function of the 5′ UTR intron, namely an enhancement of the constitutive splicing.  相似文献   

5.
6.
7.
8.
Chloroplast mRNA translation is regulated by the 5′‐untranslated region (5′‐UTR). Chloroplast 5′‐UTRs also support translation of the coding regions of heterologous genes. Using an in vitro translation system from tobacco chloroplasts, we detected no translation from a human immunodeficiency virus tat coding region fused directly to the tobacco chloroplast psbA 5′‐UTR. This lack of apparent translation could have been due to rapid degradation of mRNA templates or synthesized protein products. Replacing the psbA 5′‐UTR with the E. coli phage T7 gene 10 5′‐UTR, a highly active 5′‐UTR, and substituting synonymous codons led to some translation of the tat coding region. The Tat protein thus synthesized was stable during translation reactions. No significant degradation of the added tat mRNAs was observed after translation reactions. These results excluded the above two possibilities and confirmed that the tat coding region prevented its own translation. The tat coding region was then fused to the psbA 5′‐UTR with a cognate 5′‐coding segment. Significant translation was detected from the tat coding region when fused after 10 or more codons. That is, translation could be initiated from the tat coding region once translation had started, indicating that the tat coding region inhibits translational initiation but not elongation. Hence, cooperation/compatibility between the 5′‐UTR and its coding region is important for translational initiation.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Catechol‐O‐methyltransferase (COMT) is a ubiquitously expressed enzyme that maintains basic biologic functions by inactivating catechol substrates. In humans, polymorphic variance at the COMT locus has been associated with modulation of pain sensitivity and risk for developing psychiatric disorders. A functional haplotype associated with increased pain sensitivity was shown to result in decreased COMT activity by altering mRNA secondary structure‐dependent protein translation. However, the exact mechanisms whereby COMT modulates pain sensitivity and behavior remain unclear and can be further studied in animal models. We have assessed Comt1 gene expression levels in multiple brain regions in inbred strains of mice and have discovered that Comt1 is differentially expressed among the strains, and this differential expression is cis‐regulated. A B2 short interspersed nuclear element (SINE) was inserted in the 3′‐untranslated region (3′‐UTR) of Comt1 in 14 strains generating a common haplotype that correlates with gene expression. Experiments using mammalian expression vectors of full‐length cDNA clones with and without the SINE element show that strains with the SINE haplotype (+SINE) have greater Comt1 enzymatic activity. +SINE mice also exhibit behavioral differences in anxiety assays and decreased pain sensitivity. These results suggest that a haplotype, defined by a 3′‐UTR B2 SINE element, regulates Comt1 expression and some mouse behaviors.  相似文献   

17.
18.
19.
A transient expression system based on a deleted version of Cowpea mosaic virus (CPMV) RNA‐2, termed CPMV‐HT, in which the sequence to be expressed is positioned between a modified 5′ UTR and the 3′ UTR has been successfully used for the plant‐based expression of a wide range of proteins, including heteromultimeric complexes. While previous work has demonstrated that alterations to the sequence of the 5′ UTR can dramatically influence expression levels, the role of the 3′ UTR in enhancing expression has not been determined. In this work, we have examined the effect of different mutations in the 3′UTR of CPMV RNA‐2 on expression levels using the reporter protein GFP encoded by the expression vector, pEAQexpress‐HT‐GFP. The results showed that the presence of a 3′ UTR in the CPMV‐HT system is important for achieving maximal expression levels. Removal of the entire 3′ UTR reduced expression to approximately 30% of that obtained in its presence. It was found that the Y‐shaped secondary structure formed by nucleotides 125–165 of the 3′ UTR plays a key role in its function; mutations that disrupt this Y‐shaped structure have an effect equivalent to the deletion of the entire 3′ UTR. Our results suggest that the Y‐shaped secondary structure acts by enhancing mRNA accumulation rather than by having a direct effect on RNA translation. The work described in this paper shows that the 5′ and 3′ UTRs in CPMV‐HT act orthogonally and that mutations introduced into them allow fine modulation of protein expression levels.  相似文献   

20.
Summary: The Drosophila fushi tarazu (ftz) mRNA is one of the shortest‐lived metazoan mRNAs, and its instability is crucial for proper development of the embryo. Previously, we identified two cis‐acting elements that are required for ftz mRNA degradation, one within the 5′ one‐third and another in the 3′UTR of the message. Here we focus on the 3′UTR element termed FIE3 (ftz instability e lement in the 3 ′UTR). To investigate the developmental regulation of the FIE3‐dependent degrading activity we measured the abundance of an FIE3‐containing mRNA in ovaries, unfertilized eggs, and different larval and adult tissues. We found that FIE3‐degrading activity is present at all developmental stages and tissues examined, except in the ovary. Activation of the FIE3‐dependent mRNA decay is independent of fertilization because it could be triggered by egg activation. Finally, we provide evidence that mutation of conserved elements within FIE3 had no effect on mRNA instability. genesis 30:59–64, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号