首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
2.
3.
4.
5.
Mitogen activated protein kinase kinase kinase 18 (MAPKKK18) mediated signaling cascade plays important roles in Arabidopsis drought stress tolerance. However, the post‐translational modulation patterns of MAPKKK18 are not characterized. In this study, we found that the protein level of MAPKKK18 was tightly controlled by the 26S proteasome. Ubiquitin ligases RGLG1 and RGLG2 ubiquitinated MAPKKK18 at lysine residue K32 and K154, and promoted its degradation. Deletion of RGLG1 and RGLG2 stabilized MAPKKK18 and further enhanced the drought stress tolerance of MAPKKK18‐overexpression plants. Our data demonstrate that RGLG1 and RGLG2 negatively regulate MAPKKK18‐mediated drought stress tolerance in Arabidopsis.  相似文献   

6.
The ubiquitin‐proteasome system (UPS) is a rapid regulatory mechanism for selective protein degradation in plants and plays crucial roles in growth and development. There is increasing evidence that the UPS is also an integral part of plant adaptation to environmental stress, such as drought, salinity, cold, nutrient deprivation and pathogens. This review focuses on recent studies illustrating the important functions of the UPS components E2s, E3s and subunits of the proteasome and describes the regulation of proteasome activity during plant responses to environment stimuli. The future research hotspots and the potential for utilization of the UPS to improve plant tolerance to stress are discussed.  相似文献   

7.
基于HMM的齿肋赤藓VOZ转录因子的预测与分析   总被引:1,自引:0,他引:1       下载免费PDF全文
VOZ(Vascular plant One Zinc finger protein)作为与植物的进化与发育密切相关的基因,在极端耐旱荒漠苔藓植物齿肋赤藓(Syntrichia caninervis)中对VOZ基因进行挖掘和分析有利于更好的揭示VOZ基因的进化关系,且可作为抗逆基因进行更为深入的分子生物学研究。在VOZ转录因子蛋白中VOZ-domain是一个保守的DNA结合结构功能域,利用VOZ-domain多序列联配构建隐马尔可夫模型序列谱能够很好的进行家族成员的识别和预测。利用拟南芥、小立碗藓和水稻等植物已知的转录因子序列信息构建HMM序列谱模型,对荒漠苔藓齿肋赤藓转录组进行比对搜索。最终得到一条新的齿肋赤藓VOZ转录因子ScVOZ1(NCBI/EBI检索号:HG764415),序列长度为1 495 bp,具有完整的VOZ-domain结构域。生物信息学分析表明其具有转录调控功能和核定位潜能。多序列比对、进化和保守基序分析表明,ScVOZ1蛋白序列与小立碗藓VOZ家族和拟南芥AtVOZ1相似度较高。本研究为进一步研究ScVOZ1基因的功能以及其进化起源奠定了基础。  相似文献   

8.
Zinc, oxidant-triggered cell signaling, and human health   总被引:5,自引:0,他引:5  
  相似文献   

9.
10.
11.
Light responses mediated by the photoreceptors play crucial roles in regulating different aspects of plant growth and development. An E3 ubiquitin ligase complex CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)1/SUPPRESSOR OF PHYA (SPA), one of the central repressors of photomorphogenesis, is critical for maintaining skotomorphogenesis. It targets several positive regulators of photomorphogenesis for degradation in darkness. Recently, we revealed that basic helix‐loop‐helix factors, HECATEs (HECs), function as positive regulators of photomorphogenesis by directly interacting and antagonizing the activity of another group of repressors called PHYTOCHROME‐INTERACTING FACTORs (PIFs). It was also shown that HECs are partially degraded in the dark through the ubiquitin/26S proteasome pathway. However, the underlying mechanism of HEC degradation in the dark is still unclear. Here, we show that HECs also interact with both COP1 and SPA proteins in darkness, and that HEC2 is directly targeted by COP1 for degradation via the ubiquitin/26S proteasome pathway. Moreover, COP1‐mediated polyubiquitylation and degradation of HEC2 are enhanced by PIF1. Therefore, the ubiquitylation and subsequent degradation of HECs are significantly reduced in both cop1 and pif mutants. Consistent with this, the hec mutants partially suppress photomorphogenic phenotypes of both cop1 and pifQ mutants. Collectively, our work reveals that the COP1/SPA‐mediated ubiquitylation and degradation of HECs contributes to the coordination of skoto/photomorphogenic development in plants.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号