首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding how wheat (Triticum aestivum L.) plants under high temperature (HT) regulate lipid composition is critical to developing climate‐resilient varieties. We measured 165 glycerolipids and sterol derivatives under optimum and high day and night temperatures in wheat leaves using electrospray ionization‐tandem mass spectrometry. Levels of polar lipid fatty acyl chain unsaturation were lower in both heat‐tolerant genotype Ventnor and susceptible genotype Karl 92 under HT, compared with optimum temperature. The lower unsaturation was predominantly because of lower levels of 18:3 acyl chains and higher levels of 18:1 and 16:0 acyl chains. Levels of 18:3‐containing triacylglycerols increased threefold/more under HT, consistent with their possible role in sequestering fatty acids during membrane lipid remodelling. Phospholipids containing odd‐numbered or oxidized acyl chains accumulated in leaves under HT. Sterol glycosides (SG) and 16:0‐acylated sterol glycosides (ASG) were higher under HT than optimum temperatures. Ventnor had lower amounts of phospholipids with oxidized acyl chains under HT and higher amounts of SG and 16:0‐ASG than Karl 92. Taken together, the data demonstrate that wheat leaf lipid composition is altered by HT, in which some lipids are particularly responsive to HT, and that two wheat genotypes, chosen for their differing physiological responses to HT, differ in lipid profile under HT.  相似文献   

2.
Identifying lipids that experience coordinated metabolism during heat stress would provide information regarding lipid dynamics under stress conditions and assist in developing heat‐tolerant wheat varieties. We hypothesized that co‐occurring lipids, which are up‐regulated or down‐regulated together through time during heat stress, represent groups that can be explained by coordinated metabolism. Wheat plants (Triticum aestivum L.) were subjected to 12 days of high day and/or night temperature stress, followed by a 4‐day recovery period. Leaves were sampled at four time points, and 165 lipids were measured by electrospray ionization‐tandem mass spectrometry. Correlation analysis of lipid levels in 160 leaf samples from each of two wheat genotypes revealed 13 groups of lipids. Lipids within each group co‐occurred through the high day and night temperature stress treatments. The lipid groups can be broadly classified as groups containing extraplastidic phospholipids, plastidic glycerolipids, oxidized glycerolipids, triacylglycerols, acylated sterol glycosides and sterol glycosides. Current knowledge of lipid metabolism suggests that the lipids in each group co‐occur because they are regulated by the same enzyme(s). The results suggest that increases in activities of desaturating, oxidizing, glycosylating and acylating enzymes lead to simultaneous changes in levels of multiple lipid species during high day and night temperature stress in wheat.  相似文献   

3.
The contents and composition of lipids in citrus leaves in relation to their general resistance to infection by strains of Xanthomonas campestris pv. citri (Xcc) were determined. The composition and contents of total polar lipids and phospholipids and the degree of fatty acid unsaturation were significantly different between resistant and susceptible species. Leaves from resistant plants had less phospholipids, but more free sterols than those from susceptible plants. The predominant fatty acids in the phospholipids were palmitic (16:0), linoleic (18:2) and α-linolenic acid (18:3). The degree of fatty acid unsaturation was higher in susceptible plants than in resistant plants. Major phospholipids in citrus leaves were phosphatidylchloline (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylinositol (PI). β-Sitosterol, campesterol and lanosterol were major sterols in the leaves of citrus plants with resistant species having a higher ratio of free sterols to total phospholipids than susceptible species. Differences in lipid metabolism may contribute to differences in Xcc-resistance of citrus leaves.  相似文献   

4.
This study aimed to evaluate the effect of Cd exposure (100 μmol/L) on polar lipid composition, and to examine the level of fatty acid unsaturation in maize (Zea mays L.). In roots, the level of 16:0 and monounsaturated fatty acids (16:1 + 18:1) decreased in phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In contrast, the proportion of unsaturated 18-C fatty acid species showed an opposite response to Cd. The content, on the other hand, of PC, PE, digalactosyldiacylglycerol (DGDG), and steryl lipids increased in roots (2.9-, 1.6-, 5.3-, and 1.7-fold increase, respectively). These results suggest that a more unsaturated fatty acid composition than found in control plants with a concomitant increase in polar lipids may favor seedling growth during Cd exposure. However, the observed increase in the steryl lipid (SL) : phospholipid (PL) ratio (twofold), the decrease in monogalactosyldiacylglycerol (MGDG) : DGDG ratio, as well as the induction of lipid peroxidation in roots may represent symptoms of membrane injury. In shoots, the unsaturation level was markedly decreased in PC and phosphatidylglycerol (PG) after Cd exposure, but showed a significant increase in sulfoquinovosyldiacylglycerol (SQDG), MGDG and DGDG. The content of PG and MGDG was decreased by about 65%, while PC accumulated to higher levels (4.4-fold increase). Taken together, these changes in the polar lipid unsaturation and composition are likely to be due to alterations in the glycerolipid pathway. These results also support the idea that the increase in overall unsaturation plays some role in enabling the plant to withstand the metal exposure.  相似文献   

5.
MALDI imaging mass spectrometry (IMS) was used to characterize lipid species within sections of human eyes. Common phospholipids that are abundant in most tissues were not highly localized and observed throughout the accessory tissue, optic nerve, and retina. Triacylglycerols were highly localized in accessory tissue, whereas sulfatide and plasmalogen glycerophosphoethanolamine (PE) lipids with a monounsaturated fatty acid were found enriched in the optic nerve. Additionally, several lipids were associated solely with the inner retina, photoreceptors, or retinal pigment epithelium (RPE); a plasmalogen PE lipid containing DHA (22:6), PE(P-18:0/22:6), was present exclusively in the inner retina, and DHA-containing glycerophosphatidylcholine (PC) and PE lipids were found solely in photoreceptors. PC lipids containing very long chain (VLC)-PUFAs were detected in photoreceptors despite their low abundance in the retina. Ceramide lipids and the bis-retinoid, N-retinylidene-N-retinylethanolamine, was tentatively identified and found only in the RPE. This MALDI IMS study readily revealed the location of many lipids that have been associated with degenerative retinal diseases. Complex lipid localization within retinal tissue provides a global view of lipid organization and initial evidence for specific functions in localized regions, offering opportunities to assess their significance in retinal diseases, such as macular degeneration, where lipids have been implicated in the disease process.  相似文献   

6.
Lipid droplets are accumulations of neutral lipids surrounded by a monolayer of phospholipids and associated proteins. Recent proteomic analysis of isolated droplets suggests that they are part of a dynamic organelle system that is involved in membrane traffic as well as packaging and distributing lipids in the cell. To gain a better insight into the function of droplets, we used a combination of mass spectrometry and NMR spectroscopy to characterize the lipid composition of this compartment. In addition to cholesteryl esters and triacylglycerols with mixed fatty acid composition, we found that approximately 10-20% of the neutral lipids were the ether lipid monoalk(en)yl diacylglycerol. Although lipid droplets contain only 1-2% phospholipids by weight, >160 molecular species were identified and quantified. Phosphatidylcholine (PC) was the most abundant class, followed by phosphatidylethanolamine (PE), phosphatidylinositol, and ether-linked phosphatidylcholine (ePC). Relative to total membrane, droplet phospholipids were enriched in lysoPE, lysoPC, and PC but deficient in sphingomyelin, phosphatidylserine, and phosphatidic acid. These results suggest that droplets play a central role in ether lipid metabolism and intracellular lipid traffic.  相似文献   

7.
Middle‐aged offspring of nonagenarians, as compared to their spouses (controls), show a favorable lipid metabolism marked by larger LDL particle size in men and lower total triglyceride levels in women. To investigate which specific lipids associate with familial longevity, we explore the plasma lipidome by measuring 128 lipid species using liquid chromatography coupled to mass spectrometry in 1526 offspring of nonagenarians (59 years ± 6.6) and 675 (59 years ± 7.4) controls from the Leiden Longevity Study. In men, no significant differences were observed between offspring and controls. In women, however, 19 lipid species associated with familial longevity. Female offspring showed higher levels of ether phosphocholine (PC) and sphingomyelin (SM) species (3.5–8.7%) and lower levels of phosphoethanolamine PE (38:6) and long‐chain triglycerides (TG) (9.4–12.4%). The association with familial longevity of two ether PC and four SM species was independent of total triglyceride levels. In addition, the longevity‐associated lipid profile was characterized by a higher ratio of monounsaturated (MUFA) over polyunsaturated (PUFA) lipid species, suggesting that female offspring have a plasma lipidome less prone to oxidative stress. Ether PC and SM species were identified as novel longevity markers in females, independent of total triglycerides levels. Several longevity‐associated lipids correlated with a lower risk of hypertension and diabetes in the Leiden Longevity Study cohort. This sex‐specific lipid signature marks familial longevity and may suggest a plasma lipidome with a better antioxidant capacity, lower lipid peroxidation and inflammatory precursors, and an efficient beta‐oxidation function.  相似文献   

8.
Plants of garden pea ( Pisum sativum L.) were exposed to charcoal-filtered air with or without addition of 65 ± 5 l−1 ozone. Plants were harvested daily for 9 days and lipids were extracted from the second-oldest leaf. Visible injury of this leaf was evident from day 5 on, while the differences in lipids between ozone and control treatments were observed earlier. Ozone caused large decreases in the contents of monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG), a slower decrease in the content of phosphatidylcholine (PC), but an increase in the content of phosphatidylethanolamine (PE) per leaf area, compared with exposure to charcoal-filtered air. The content of phosphatidylglycerol (PG) was unaffected by ozone. Compared with charcoal-filtered air, fumigation with ozone resulted in a decrease in the proportion of linolenic acid (18:3) of the total lipid extract, with a concomitant increase in the proportion of linoleic acid (18:2). For individual lipids, ozone caused a similar pattern of decreased 18:3 and increased 18:2 in MGDG, SQDG, PC and PE, while the fatty acid composition of DGDG was unaffected. In PG, ozone decreased the proportions of 18:3 and trans -Δ3-decenoic acid (16:1trans), balanced by increased proportions of palmitic and oleic acids. The contents of chlorophylls and carotenoids were unaffected by ozone. Our results show that moderately elevated levels of ozone cause significant changes in the polar lipid composition of garden pea leaves and in the level of unsaturation of the lipid acyl groups and, furthermore, that ozone has different effects, which could be direct or indirect, on chloroplast lipids (MGDG, DGDG, SQDG, PG acylated with 16:1trans) and cytosolic membrane lipids.  相似文献   

9.
10.
The extractable lipid composition of Mesorhizobium ciceri strain HAMBI 1750 grown in a phosphate sufficient medium (79CA) is reported. Cardiolipin (CL—27% of total lipids), phosphatidylglycerol (PG—18%), phosphatidylethanolamine (PE—1%), phosphatidylcholine (PC—30%) and two methylated derivatives of PE, i.e. phosphatidyl-N, N-dimethylethanolamine (DMPE—1%) and phosphatidyl-N-monomethylethanolamine (MMPE—1%), were found to make up the phospholipids of the analysed bacteria. Nonphosphorus, ornithine-containing lipid (OL—10%) was also detected. Polar groups of phospholipids were predominantly acylated with cis-11,12-methyleneoctadecanoyl (lactobacillic) residues, whereas the ornithine lipid contained mainly 3-hexadecanoyloxy-11,12-methyleneoctadecanoic acid bound to the α-amino group.  相似文献   

11.
The lipid composition of sea urchin gametes and embryos was examined in detail by micro thin-layer chromatography (tlc) and gas-liquid chromatography (glc). Lipids of unfertilized eggs contain 53.7% triglycerides, 33.2% phospholipids, and 9.4% cholesterol, while spermatozoa lipids consist of 65.0% phospholipids, 15.5% cholesterol, and no triglycerides. Phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), diphosphatidylglycerol (DPG), and lysophosphatidylcholine (LPC) were identified among the phospholipids of both eggs and spermatozoa. The major part of egg and embryo PE was present as plasmalogen. After fertilization and the first cleavage, phospholipid content decreased from 33.2 to 29.4%, but the amount of phospholipids returned to the 33.2% level by the blastula stage and reached 39.7% by the pluteus stage. Lipid class composition showed no qualitative changes during development, but concentrations of PE, PS, LPC, and cholesterol increased, while those of PC, PI, and triglycerides decreased during the process. The principal fatty acids of neutral and polar lipid fractions are 14:0, 16:0, 18:1, 18:4, 20:1, 20:4, and 20:5. Their relative content underwent some changes during development.  相似文献   

12.
Murine leukemia EL4 cells were modified by supplementation of culture media with fatty acids for 24 h. A plasma membrane-enriched fraction was prepared from substituted and normal cells. Analyses were performed to determine fatty acyl composition, phospholipid headgroup composition and cholesterol content. The two major membrane phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) were isolated by thin-layer chromatography and ESR measurements were done on liposomes prepared from these lipids as well as on the intact plasma membrane preparations. Slight perturbations in overall plasma membrane lipid composition were observed when EL4 cells were supplemented with a single exogenous fatty acid. This may be consistent with the idea that the incorporation of exogenous fatty acid induces compensatory changes in membrane lipid composition. On the other hand, we observed no significant difference in two ESR motional parameters between the unsubstituted control and various fatty acid-substituted plasma membranes. ESR measurements carried out on PE and PC liposomes derived from 17:0- and 18:2c-substituted membranes also failed to detect major differences between these liposomes and those made from normal EL4 phospholipids. In the case of liposomes prepared from 18:2t,-substituted membranes, the order parameter was significantly changed from the normal. However, the change was in opposite directions in PE and PC, perhaps accounting for the fact that no change parameter is seen in intact 18:2t-substituted plasma membrane. Measurements of order parameter (S) in mixed lipid vesicles showed that at up to 50 mol% mixture of a synthetic PC with plasma membrane PC, the value of S was only marginally different from that of the plasma membrane PC vesicles. We interpret these data as an indication that the two ESR parameters used are not sufficiently sensitive to detect changes due to modifications of the acyl chain composition of a complex biological membrane.  相似文献   

13.
Highly purified plasma membranes (PM) were obtained from barley (Hordeum vulgare L. cv. Kristina) leaves and roots, spinach (Spinacia oleracea L. cv. Viking II) leaves, and cauliflower (Brassica oleracea) inflorescences by partitioning in an aqueous polymer two-phase system. The sterol and polar lipid composition of the PM, including the fatty acid composition of the glycerolipids, was determined. Dominating lipids were free sterols, glucocerebroside, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), although large variations in content were observed between the PM of the different species and organs. Thus, the spinach leaf PM contained only 7% (mol %) free sterol compared to over 30% free sterol in the other PM analysed, with the barley root PM as the other extreme (57% free sterol). On the other hand, sterol derivatives were more abundant in the spinach leaf PM, containing 13% acylated sterol glycosides. Cerebroside constituted 16% of the lipids in the barley leaf PM but only 3% in cauliflower. The phospholipids PC and PE ranged from 25 and 24%, respectively, in the spinach leaf PM to 8 and 7%, respectively, in the barley root PM. As a result of the large variations in sterol and phospholipid content, the ratio of free sterol to phospholipid varied from 2.2 in the barley root PM to only 0.1 in the spinach leaf PM. Sitosterol, campesterol and stigmasterol were the completely dominating sterols in the barley and cauliflower PM, whereas the unique sterol composition of spinach was dominated by spinasterol. Palmitic (16:0), linoleic (18:2) and linolenic (18:3) acid were the major glycerolipid fatty acids. The fatty acid composition of the barley root PM was the most saturated (44% 16:0, 13% 18:3), whereas that of the cauliflower PM was the most unsaturated (21% 16:0,42% 18:3). Thus, very large variations were observed in both total lipid and fatty acid composition of the PM investigated, which represent both mono— and dicotyledons, as well as both photosynthetic and non-photosynthetic tissue. The consequences of this large diversity in composition of the lipid bilayer for the function of integral PM proteins are discussed.  相似文献   

14.
Azospirillum-plant association is accompanied by biochemical changes in roots which, in turn, promote plant-growth and tolerance to water stress. To shed light on the possible factors underlying these effects, roots from Azospirillum brasilense Sp245-inoculated Triticum aestivum seedlings growing in darkness under osmotic stress were analyzed for phospholipid (PL) composition, fatty acid (FA) distribution profiles and degree of unsaturation of the major PL classes. Azospirillum inoculation diminished ion leakage and increased 2,3,5-tripheniltetrazolium reducing ability in roots of well irrigated and water-stressed wheat seedlings. Total root PL content remained unaltered in all treatments. Six PL classes were detected, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) comprising over 80% of the total. While water stress increased PC content and diminished that of PE, none of these changes were observed either under Azospirillum inoculation alone or when both treatments were combined. The major FAs found in both PC and PE were 16:0, 18:0, 18:1, 18:2, and 18:3. Higher PC and lower PE unsaturation than in well irrigated controls were observed in roots from Azospirillum-inoculated, water-stressed seedlings. Azospirillum inoculation could contribute to protect wheat seedlings from water stress through changes in the FA distribution profiles of PC and PE major root phospholipids.  相似文献   

15.
包宏 《植物学报》1999,16(5):598-601
测定了吊兰(Chlorophytum comosum)在干旱、正常浇水和渍水三种供水条件下叶片的磷脂组成、膜脂和总磷脂的脂肪酸组成,以及磷脂中4种主要组分PG、PE、PC和PI的脂肪酸组成,观察到干旱使磷脂中PE的相对含量增加,PE脂肪酸中16:0明显减少,而膜脂,总磷脂和PC、PI中饱和脂肪酸增加,但PG脂肪酸组成变化很小。  相似文献   

16.
水分逆境对吊兰叶片脂质组成的影响   总被引:1,自引:0,他引:1  
包宏 《植物学通报》1999,16(5):598-601
测定了吊兰( Chlorophytum comosum) 在干旱、正常浇水和渍水三种供水条件下叶片的磷脂组成、膜脂和总磷脂的脂肪酸组成,以及磷脂中4 种主要组分PG、PE、PC 和PI的脂肪酸组成,观察到干旱使磷脂中PE 的相对含量增加,PE 脂肪酸中16 :0 明显减少,而膜脂、总磷脂和PC、PI中饱和脂肪酸增加,但PG脂肪酸组成变化很小  相似文献   

17.
Acyl lipids and pigments were analyzed in young plants of garden pea, spring wheat and spinach exposed to < 5 or 65 nl l?1 ozone 12 h per day for 6 days. In one set of experiments, the plants were exposed to 14CO2 for 2 h 3 days prior to ozone exposure. The plants responded differently to the moderately enhanced level of ozone used Spinach was not at all sensitive while in both pea and wheat, leaves of different ages differed in ozone sensitivity. In pea, ozone sensitivity increased with leaf age. In the second and third oldest leaves, the amounts of galactolipids per leaf area and the proportions of 18:3 of the total lipid extract and of phosphatidylglycerol decreased. In the second oldest leaf, ozone also caused a decreased proportion of 18:3 of monogalactosyldiacylglycerol. In the fourth oldest leaf, lipid composition and galactolipid unsaturation was unaffected, but ozone caused decreased leaf expansion resulting in increased acyl lipid content per leaf area. In both the first and second leaves of wheat, ozone fumigation caused a marked decrease in the content of monogalactosyldiacylglycerol and in the first leaf, the contents of phosphatidylcholine and phosphatidylethanolamine increased. The proportion of 18:3 in phosphatidylcholine was larger in ozone-fumigated than in control plants, while the reverse applied for phosphatidylglycerol. In the oldest sampled leaves of pea and wheat, ozone caused an increase in the radioactivity associated with β-carotene, indicating increased turnover. Thus, while spinach was unaffected, in both pea and wheat ozone caused a decrease in the proportion of chloroplast membrane lipids to non-chloroplast membrane lipids in older leaves while younger leaves were less sensitive.  相似文献   

18.
Using capillary gas-liquid chromatography, we have analyzed the alteration in the total fatty acid, phospholipid and neutral lipid compositions of the monkey erythrocyte, after infection by the malarial parasite Plasmodium knowlesi. Data based on fatty acid quantitation show that the phospholipid composition is altered, with particularly large increases in phosphatidylcholine (PC) and phosphatidylethanolamine (PE), the most abundant phospholipids in normal and P. knowlesi-schizont-infected cells. Unesterified fatty acids were found to be less abundant in infected cells. The total fatty acid content of the cell is increased 6-fold during infection, and total fatty acid composition is also changed: the infected cells are richer in palmitate (+23%), oleate (+29%) and linoleate (+89%), but contained less stearate (-27%) and arachidonate (-40%). The determination of the fatty acid composition of individual phospholipids, neutral lipids and unesterified fatty acids showed that choline-containing phospholipids (PC and sphingomyelin) were not as altered in their fatty acid pattern as anionic phospholipids (PE, phosphatidylserine (PS) and phosphatidylinositol (PI) and lysophosphatidylcholine (lysoPC). Specific alterations in the fatty acid compositions of individual phospholipids were detected, whereas the rise in linoleic acid was the only change during infection that was recovered in each phospholipid (except PC), neutral lipid and unesterified fatty acids. The fatty acid composition of the neutral lipids and unesterified fatty acids was particularly modified: the only rise in arachidonic acid level was observed in these lipid classes after infection. The total plasmalogen level of the erythrocyte is decreased in infected cells (-60%), but their level is increased in PI.  相似文献   

19.
The lipids of the adults and of several immature stages of the southwestern corn borer, Diatraea grandiosella, were studied after they were fed natural corn stalks or artificial diets. Linoleic acid (18:2) was the major fatty acid of the neutral lipids in both the natural and the artificial diets, but aleic acid (18:1) was the principal neutral lipid in all insect stages. Also, linoleic acid and oleic acid were the principal acids in the insect phospholipids of all stages. The content of linoleic acid in the natural diet was also high, but that in the artificial diet appeared to be much too low for insect requirements. Phosphatidyl choline (PC) and phosphatidyl ethanolamine (PE) were the major phospholipids in all growth stages. Thus, in larvae diapausing in the field, the unsaturated fatty acid content of PC was 59·3 per cent, primarily 16:1 and 18:1, and PE was 87·4 per cent, primarily 18:1, 18:2, and 18:3, and the fatty acids in the number 1- and 2-positions of PC were 53·6 and 97·2 per cent unsaturated, respectively. The haemolymph of diapausing southwestern corn borer larvae contained primarily glycerides but also had some PC and PE. Fat body from diapausing larvae contained primarily 16:0, 16:1, and 18:1 in a ratio of 1 : 1 : 2. Thus lipids of the southwestern corn borer do not reflect dietary lipids as closely as do other insects studied.  相似文献   

20.
Methyl Jasmonate Reduces Water Stress in Strawberry   总被引:15,自引:0,他引:15  
The effect of methyl jasmonate (MJ) on changes of oxygen-scavenging enzyme activities and membrane lipid composition was studied in strawberry leaves under water stress. Under water stress, MJ treatment reduced the increase of peroxidase (EC 1.11.1.7; POD) activity, maintained higher catalase (EC 1.11.1.6; CAT) and superoxide dismutase (EC 1.15.1.1; SOD) activities, and ascorbic acid content. In addition, MJ treatment reduced transpiration and membrane-lipid peroxidation as expressed by malondialdehyde (MDA) content, lessened the reduction of membrane lipids, glycolipids [monogalactosyl diglyceride (MGDG), digalactosyl diglyceride (DGDG)], and phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylinositol (PI)]. In water-deficit conditions, MJ treatment also alleviated the decline in the degree of fatty acid unsaturation and the ratio of linolenic (18:3) to linoleic acid (18:2). These results indicate that MJ treatment appears to alter the metabolism of strawberry plants rendering the tissue better able to withstand water stress. Received June 16, 1999; accepted October 1, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号