共查询到10条相似文献,搜索用时 4 毫秒
1.
A coupled model of photosynthesis-transpiration based on the stomatal behavior for maize (Zea mays L.) grown in the field 总被引:1,自引:0,他引:1
Yu Gui-Rui Kobayashi Tatsuaki Zhuang Jie Wang Qiu-Feng Qu Le-Qing 《Plant and Soil》2003,249(2):401-415
The study presents a theoretical basis of a stomatal behavior-based coupled model for estimating photosynthesis, A, and transpiration, E. Outputs of the model were tested against data observed in a maize (Zea mays L.) field. The model was developed by introducing the internal conductance, g
ic, to CO2 assimilation, and the general equation of stomatal conductance, g
sw, to H2O diffusion, into models of CO2 and H2O diffusion through the stomata of plant leaves. The coupled model is easier for practical use since the model only includes environmental variables, such as ambient CO2 concentration, leaf temperature, humidity and photosynthetic photon flux received at the leaves within the canopy. Moreover, concept of g
ic, and factors controlling A and E were discussed, and applicability of the model was examined with the data collected in the maize field. 相似文献
2.
Epidermal conductance, stomatal density and stomatal size among genotypes of Sorghum bicolor (L.) Moench 总被引:1,自引:2,他引:1
Abstract. The ability of a plant to survive severe water deficits depends on its ability to restrict water loss through the leaf epidermis after stomata attain minimum aperture. At this stage, the rate of water loss is regulated by the epidermal conductance (gc ). Low gc would be a useful selection criterion to identify genotypes with enhanced survival capability. Consequently, variation in gc among Sorghum bicolor (L.) Moench genotypes was evaluated. Since there is little conclusive evidence linking g c with leaf waxiness, alternative hypotheses relating g c to stomatal trails were also examined. Epidermal conductance varied from 6.3 to 17.6mmol m−2 s−1 among sorghum genotypes. It was unrelated to stomatal pore length which varied with genotype and to pore depth which was similar for all genotypes measured. However, g c , increased with increasing stomatal density. This indicates that stomatal density plays a direct role in water loss even at very low conductances. The association of low stomatal density with low g c is consistent with the hypothesis that at the smallest stomata aperture, water loss from the epidermis above guard cell teichodes becomes a significant source of leaf water loss. Since low g c is directly related to crop survival under severe water deficits, it is recommended that genotypes with low g c . be selected using the selection criterion of stomatal density. 相似文献
3.
Z.F. Hao X.H. Li C.X. Xie M.S. Li D.G. Zhang L. Bai & S. H. Zhang 《The Annals of applied biology》2008,153(1):73-83
Unravelling the molecular basis of drought tolerance will provide novel opportunities for improving crop yield under water-limited conditions. The present study was conducted to identify quantitative trait loci (QTLs) controlling anthesis–silking interval (ASI), ear setting percentage (ESP) and grain yield (GY). The mapping population included 234 F2 plants derived from the cross X178 (drought tolerant) × B73 (drought susceptible). The corresponding F2:3 progenies, along with their parents, were evaluated for the above-mentioned traits under both well-watered and water-stressed field conditions in three different trials carried out in central and southern China. Interval mapping and composite interval mapping identified 45 and 65 QTLs for the investigated traits, respectively. Two QTL clusters influencing ASI and ESP on chromosomes 1 (bin 1.03) and 9 (bins 9.03–9.05) were identified in more than two environments, showing sizeable additive effects and contribution to phenotypic variance; these two QTL clusters influenced GY only in one environment. No significant interaction was detected between the two genomic regions. A comparative analysis of these two QTL clusters with the QTLs controlling maize drought tolerance previously described in three mapping populations confirmed and extended their relevance for marker-assisted breeding to improve maize production under water-limited conditions. 相似文献
4.
D. L. Bouranis S. N. Chorianopoulou A. Dionias G. Liakopoulos D. Nikolopoulos 《Plant biosystems》2016,150(2):264-273
Seven-day-old maize (Zea mays) plants were grown hydroponically for 10 days in S-deprived nutrient solution. The distribution profiles according to the position on the stem of the S-deprived laminas’ stomatal conductance, transpiration rate, photosynthetic rate, dry mass, water content, and specific surface area were monitored relative to control among others. Photochemical efficiency of photosystem II remained unaffected by the deprivation, as well as the specific surface area of all but the embryonic laminas after d2. In S-deficient plants, the embryonic (L0) and the uppermost lamina or the one below it presented mostly significant changes. The response ratios (Rr) of the L0 stomatal conductance oscillated; the oscillation started with an increase at d2. The corresponding Rr values of L0 transpiration and photosynthetic rates started oscillating at d4 in the same fashion. At d8, an increasing gradient appeared in water-content Rr values from L1 to the uppermost lamina. At d10, all but the embryonic laminas presented significantly reduced Rr values in water content. Changes in dry mass and surface area of laminas were synchronized. In control, the transpiration rate expressed per DM unit remained constant during the examined period, while under the deprivation it followed a power function of surface area. 相似文献
5.
Ivr2, a candidate gene for a QTL of vacuolar invertase activity in maize leaves. Gene-specific expression under water stress 总被引:7,自引:0,他引:7
Pelleschi S Guy S Kim JY Pointe C Mahé A Barthes L Leonardi A Prioul JL 《Plant molecular biology》1999,39(2):373-380
Water shortage produced an early and large stimulation of acid- soluble invertase activity in adult maize leaves whereas cell wall invertase activity remained constant. This response was closely related to the mRNA level for only one of the invertase gene (Ivr2), encoding a vacuolar isoform. In parallel, four quantitative trait loci (QTLs) were detected for invertase activity under control and nine under stressful conditions. One QTL in control and one in stressed plants was located near to the lvr2 gene on chromosome 5. Other QTLs for invertase activity were found close to carbohydrate QTLs; some of them formed stress clusters. 相似文献
6.
玉米离体根尖的多层滤纸床液体静止培养方法 总被引:7,自引:1,他引:7
设计建立了适于玉米根尖离体培养的多层滤纸床液体静止培养方法,培养的适宜体系为:1/4MS大量元素改良+1/2MS微量元素+IBA0.1-0.3mg/L,黑暗培养。该方法避免了传统液体培养通气状况不良的问题,玉米根的生长速度可达到1-2cm/d,分支和生长正常。该方法在控制条件下快速繁殖根系,成本低廉,简便易行,是根系发育和生理研究的理想实验体系。 相似文献
7.
玉米雄穗分枝数与主轴长的QTL鉴定 总被引:8,自引:0,他引:8
在包含103个SSR标记的连锁图谱基础上, 运用复合区间作图法检测玉米组合(N87-1×9526 )F3家系在正常与干旱胁迫环境下的雄穗分枝数与主轴长性状QTL。雄穗分枝数在正常环境下被检测到2个QTL座位, 分别位于第5和7连锁群上; 在胁迫环境下被检测到4个QTL座位分别位于 2、5、7和10连锁群上, 其中位于第5和7连锁群上的QTL不仅具有一致性而且与本作图群体中曾检测到的耐旱相关性状QTL存在连锁。雄穗主轴长在正常环境下被检测到2个QTL位于第2和第6连锁群上, 在干旱胁迫环境下被检测到了3个QTL分别于第2、4和10连锁群上, 其中位于第2染色体上的QTL是两种环境下所共同检测到的QTL。分析QTL的遗传作用方式表明, 雄穗分枝数以部分加性效应为主, 而雄主轴长全部表现为显性和超显性。 相似文献
8.
Identification of genetic variants associated with maize flowering time using an extremely large multi‐genetic background population 下载免费PDF全文
Yong‐xiang Li Chunhui Li Peter J. Bradbury Xiaolei Liu Fei Lu Cinta M. Romay Jeffrey C. Glaubitz Xun Wu Bo Peng Yunsu Shi Yanchun Song Dengfeng Zhang Edward S. Buckler Zhiwu Zhang Yu Li Tianyu Wang 《The Plant journal : for cell and molecular biology》2016,86(5):391-402
Flowering time is one of the major adaptive traits in domestication of maize and an important selection criterion in breeding. To detect more maize flowering time variants we evaluated flowering time traits using an extremely large multi‐ genetic background population that contained more than 8000 lines under multiple Sino‐United States environments. The population included two nested association mapping (NAM) panels and a natural association panel. Nearly 1 million single‐nucleotide polymorphisms (SNPs) were used in the analyses. Through the parallel linkage analysis of the two NAM panels, both common and unique flowering time regions were detected. Genome wide, a total of 90 flowering time regions were identified. One‐third of these regions were connected to traits associated with the environmental sensitivity of maize flowering time. The genome‐wide association study of the three panels identified nearly 1000 flowering time‐associated SNPs, mainly distributed around 220 candidate genes (within a distance of 1 Mb). Interestingly, two types of regions were significantly enriched for these associated SNPs – one was the candidate gene regions and the other was the approximately 5 kb regions away from the candidate genes. Moreover, the associated SNPs exhibited high accuracy for predicting flowering time. 相似文献
9.
Accumulation rate of ABA in detached maize roots correlates with root water potential regardless of age and branching order 总被引:3,自引:0,他引:3
How much ABA can be supplied by the roots is a key issue for modelling the ABA-mediated influence of drought on shoot physiology. We quantified accumulation rates of ABA ( S ABA ) in maize roots that were detached from well-watered plants and dehydrated to various extents by air-drying. S ABA was estimated from changes in ABA content in root segments incubated at constant relative water content (RWC). Categories of root segments, differing in age and branching order, were compared (root branches, and nodal roots subdivided into root tips, subapical unbranched sections, and mature sections). All categories of roots accumulated ABA, including turgid and mature tissues containing no apex. S ABA measured in turgid roots changed with root age and among root categories. This variability was largely accounted for by differences in water content among different categories of turgid roots. The response of S ABA to changes in root water potential ( Ψ root ) induced by dehydration was common to root tips, nodal roots and branches of several ages, while this was not the case if root dehydration was expressed in terms of RWC. Differences among root categories in the response of S ABA to RWC were due to different RWC values among categories at a given Ψ root , and not to differences in the response of S ABA to Ψ root . 相似文献
10.
Understanding the variability of plant WUE and its control mechanism can promote the comprehension to the coupling relationship of water and carbon cycle in terrestrial ecosystem, which is the foundation for developing water-carbon coupling cycle model. In this paper, we made clear the differences of net assimilation rate, transpiration rate, and WUE between the two species by comparing the experiment data of soybean (Glycine max Merr.) and maize (Zea mays L.) plants under water and soil nutrient stresses. WUE of maize was about two and a half times more than that of soybean in the same weather conditions. Enhancement of water stresses led to the marked decrease of Am and Em of two species, but water stresses of some degree could improve WUE, and this effect was more obvious for soybean. WUE of the two species changed with psiL in a second-order curve relation, and the WUE at high fertilization was higher than that at low fertilization, this effect was especially obvious for maize. Moreover, according to the synthetic model of photosynthesis-transpiration based on stomatal behavior (SMPTSB) presented by Yu et al. (2001), the WUE model and its applicability were discussed with the data measured in this experiment. The WUE estimated by means of the model accorded well with the measured values. However, this model underestimated the WUE for maize slightly, thus further improvement on the original model was made in this study. Finally, by discussing some physiological factors controlling Am and WUE, we made clear the physiological explanation for differences of the relative contributions of stomata- and mesophyll processes to control of Am and WUE, and the applicability of WUE model between the two species. Because the requirement to stomatal conductance by unit change of net assimilation rate is different, the responses of opening-closing activity of stomata to environmental stresses are different between the two species. To obtain the same level of net assimilation rate, soybean has to open its stomata more widely to keep small stomatal resistance, as compared with maize. 相似文献