首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Roots naturally exert axial and radial pressures during growth, which alter the structural arrangement of soil at the root–soil interface. However, empirical models suggest soil densification, which can have negative impacts on water and nutrient uptake, occurs at the immediate root surface with decreasing distance from the root. Here, we spatially map structural gradients in the soil surrounding roots using non‐invasive imaging, to ascertain the role of root growth in early stage formation of soil structure. X‐ray computed tomography provided a means not only to visualize a root system in situ and in 3‐D but also to assess the precise root‐induced alterations to soil structure close to, and at selected distances away from the root–soil interface. We spatially quantified the changes in soil structure generated by three common but contrasting plant species (pea, tomato, and wheat) under different soil texture and compaction treatments. Across the three plant types, significant increases in porosity at the immediate root surface were found in both clay loam and loamy sand soils and not soil densification, the currently assumed norm. Densification of the soil was recorded, at some distance away from the root, dependent on soil texture and plant type. There was a significant soil texture × bulk density × plant species interaction for the root convex hull, a measure of the extent to which root systems explore the soil, which suggested pea and wheat grew better in the clay soil when at a high bulk density, compared with tomato, which preferred lower bulk density soils. These results, only revealed by high resolution non‐destructive imagery, show that although the root penetration mechanisms can lead to soil densification (which could have a negative impact on growth), the immediate root–soil interface is actually a zone of high porosity, which is very important for several key rhizosphere processes occurring at this scale including water and nutrient uptake and gaseous diffusion.  相似文献   

3.
1 Root‐feeding insects are now considered to play a greater role in ecosystem processes than previously thought, yet little is known about their specific interactions with host plants compared with above‐ground insect herbivores. Methodological difficulties associated with studying these insects in the soil, together with the lack of empirical and theoretical frameworks, have conventionally hindered progress in this area. 2 This paper reviews recent empirical and theoretical developments that have been adopted for studying root‐feeding insects, focusing on the non‐invasive techniques of X‐ray tomography and acoustic field detection and how these can be integrated with new mathematical modelling approaches. 3 X‐ray tomography has been used for studying the movements of several insects within the soil and has helped to characterize the host plant location behaviour of the clover root weevil, Sitona lepidus. Acoustic detection of soil insects has been used in various managed systems, ranging from nursery containers to citrus groves. 4 Mathematical modelling plays a complementary role for investigating root‐feeding insects, illustrated by a number of published models. A model is presented for the movement of S. lepidus in the soil, which suggests that these insects undergo Lévy movements, similar to those recently demonstrated for above‐ground organisms. 5 The future directions and challenges for investigating root‐feeding insects are discussed in the context of the wider ecosystem, incorporating both above and below‐ground organisms.  相似文献   

4.
Several studies have suggested that the majority of iron (Fe) and zinc (Zn) in wheat grains are associated with phytate, but a nuanced approach to unravel important tissue‐level variation in element speciation within the grain is lacking. Here, we present spatially resolved Fe‐speciation data obtained directly from different grain tissues using the newly developed synchrotron‐based technique of X‐ray absorption near‐edge spectroscopy imaging, coupling this with high‐definition μ‐X‐ray fluorescence microscopy to map the co‐localization of essential elements. In the aleurone, phosphorus (P) is co‐localized with Fe and Zn, and X‐ray absorption near‐edge structure imaging confirmed that Fe is chelated by phytate in this tissue layer. In the crease tissues, Zn is also positively related to P distribution, albeit less so than in the aleurone. Speciation analysis suggests that Fe is bound to nicotianamine rather than phytate in the nucellar projection, and that more complex Fe structures may also be present. In the embryo, high Zn concentrations are present in the root and shoot primordium, co‐occurring with sulfur and presumably bound to thiol groups. Overall, Fe is mainly concentrated in the scutellum and co‐localized with P. This high resolution imaging and speciation analysis reveals the complexity of the physiological processes responsible for element accumulation and bioaccessibility.  相似文献   

5.
Root systems are important for global models of below‐ground carbon and nutrient cycling. Notoriously difficult sampling methods and the fractal distribution of root diameters in the soil make data being used in these models especially susceptible to error resulting from under‐sampling. We applied the concept of species accumulation curves to root data to quantify the extent of under‐sampling inherent to minirhizotron and soil coring sampling for both root uptake and carbon content studies. Based on differences in sample size alone, minirhizotron sampling missed approximately one third of the root diameters observed by soil core sampling. Sample volumes needed to encounter 90% of root diameters averaged 2481 cm3 for uptake studies and 5878 cm3 for root carbon content studies. These results show that small sample volumes encounter a non‐representative sample of the overall root pool, and provide future guidelines for determining optimal sample volumes in root studies.  相似文献   

6.
7.
While the rhizosphere presents a different chemical, physical and biological environment to bulk soil, most experimental and modelling investigations of plant growth and productivity are based on bulk soil parameters. In this study, water and nutrient acquisition by wheat (Triticum aestivum L.) roots was investigated using rhizosphere- and root-system-scale modelling. The physical and chemical properties of rhizosphere soil could be influenced by phospholipid surfactants in the root mucilage. Two models were compared: a 2-dimensional (2D) Finite Element Method rhizosphere model, and a 3-dimensional (3D) root architecture model, ROOTMAP. ROOTMAP was parameterised to reproduce the results of the detailed 2D model, and was modified to include a rhizosphere soil volume. Lecithin (a phospholipid surfactant) could be exuded into the rhizosphere soil volume, decreasing soil water content and hydraulic conductivity at any given soil water potential, and decreasing phosphate adsorption to soil particles. The rhizosphere-scale modelling (5 × 5 mm2 soil area, 10 mm root length, uptake over 12 h) predicted a reduction in water uptake (up to 16% at 30 kPa) and an increase in phosphate uptake (up to 4%) with lecithin exudation into the rhizosphere, but little effect on nitrate uptake, with only a small reduction in dry soil (1.6% at 200 kPa). The 3D root model reproduced the water (y = 1.013x, R2 = 0.996), nitrate (y = 1x, R2 = 1) and phosphate (y = 0.978x, R2 = 0.998) uptake predictions of the rhizosphere model, providing confidence that a whole root system model could reproduce the dynamics simulated by a Finite Element Method rhizosphere model. The 3D root architecture model was then used to scale-up the rhizosphere dynamics, simulating the effect of lecithin exudation on water, nitrate and phosphate acquisition by a wheat root system, growing over 41 d. When applied to growing and responsive roots, lecithin exudation increased P acquisition by up to 13% in nutrient-rich, and 49% in relatively nutrient-poor soil. A comparison of wheat (Triticum aestivum L.) and lupin (Lupinus angustifolius L.) root architectures, suggested an interaction between the P acquisition benefit of rhizosphere lecithin and root architecture, with the more highly-branched wheat root structure acquiring relatively more P in the presence of lecithin than the sparsely-branched lupin root system.  相似文献   

8.
Seeds of many coastal plants can survive exposure to seawater and may be dispersed long distances by the ocean. The salt tolerance or avoidance strategies of seeds are poorly understood, even though these traits may fundamentally influence dispersal and recruitment in coastal dunes. This research aimed to demonstrate how salt exclusion or localization within germinating seeds may affect salt tolerance. To determine the response of seeds to external salinity during imbibition (water uptake), it was necessary to quantify uptake and spatially resolve the internal distribution of salt. Flame photometry was used to quantify salt concentration in imbibing seeds and a new application of full‐spectrum X‐ray mapping allowed visualization of the spatial distribution and relative abundance of salt. As external salinity increased, salt‐sensitive Spyridium globulosum (Rhamnaceae) seeds accumulated sodium and chlorine in the seed embryo, while potassium was increasingly displaced and germination was reduced. Conversely, salt‐tolerant Ficinia nodosa (Cyperaceae) seeds avoided ion uptake and germination was not affected by imbibition in high sodium chloride (NaCl) concentrations. These results provide insight into mechanisms of salt tolerance/avoidance during imbibition and early germination and suggest that oceanic dispersal can be a viable explanation for the distribution of some plant species. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 129–142.  相似文献   

9.
Fine root dynamics control a dominant flux of carbon from plants and into soils and mediate potential uptake and cycling of nutrients and water in terrestrial ecosystems. Understanding of these patterns is needed to accurately describe critical processes like productivity and carbon storage from ecosystem to global scales. However, limited observations of root dynamics make it difficult to define and predict patterns of root dynamics across broad spatial scales. Here, we combine species‐specific estimates of fine root dynamics with a model that predicts current distribution and future suitable habitat of temperate tree species across the eastern United States (US). Estimates of fine root lifespan and turnover are based on empirical observations and relationships with fine root and whole‐plant traits and apply explicitly to the fine root pool that is relatively short‐lived and most active in nutrient and water uptake. Results from the combined model identified patterns of faster root turnover rates in the North Central US and slower turnover rates in the Southeastern US. Portions of Minnesota, Ohio, and Pennsylvania were also predicted to experience >10% increases in root turnover rates given potential shifts in tree species composition under future climate scenarios while root turnover rates in other portions of the eastern US were predicted to decrease. Despite potential regional changes, the average estimates of root lifespan and turnover for the entire study area remained relatively stable between the current and future climate scenarios. Our combined model provides the first empirically based, spatially explicit, and spatially extensive estimates of fine root lifespan and turnover and is a potentially powerful tool allowing researchers to identify reasonable approximations of forest fine root turnover in areas where no direct observations are available. Future efforts should focus on reducing uncertainty in estimates of root dynamics by better understanding how climate and soil factors drive variability in root dynamics of different species.  相似文献   

10.
Most zoological systematics studies are currently based on morphological features, molecular traits or a combination of both to reconstruct animals’ phylogenetic history. Increasingly, morphological studies of museum specimens are using X‐ray computed tomography to visualize internal morphology, because of its ‘non‐destructive’ nature. However, it is not known whether CT can fragment the size of DNA extracted from museum specimens, as has been demonstrated to occur in living cells. This question is of paramount importance for collections based research because X‐rays may reduce the amount of data obtainable from specimens. In our study, we tested whether exposure of museum bird skins to typical CT X‐ray energies (for visualization of the skeleton) increased DNA strand fragmentation, a key factor for the success of downstream molecular applications. For the present study, we extracted DNA from shavings of 24 prepared and dried bird skins (100+ years) footpads before and after CT scanning. The pre‐ and post‐CT fragmentation profiles were assessed using a capillary electrophoresis high‐precision instrument (Agilent Bioanalyzer). Comparison of the most common strand length in each DNA sample (relative mass) revealed no significant difference unexposed and exposed tissue (paired t‐test p = 0.463). In conclusion, we found no further quantifiable degradation of DNA strand length under standard X‐ray exposure obtained from our bird skins sample. Differences in museum preservation techniques probably had a greater effect on variation of pre‐CT DNA fragmentation.  相似文献   

11.
X‐ray‐induced luminescence computed tomography (XLCT) is an emerging molecular imaging. Challenges in improving spatial resolution and reducing the scan time in a whole‐body field of view (FOV) still remain for practical in vivo applications. In this study, we present a novel XLCT technique capable of obtaining three‐dimensional (3D) images from a single snapshot. Specifically, a customed two‐planar‐mirror component is integrated into a cone beam XLCT imaging system to obtain multiple optical views of an object simultaneously. Furthermore, a compressive sensing based algorithm is adopted to improve the efficiency of 3D XLCT image reconstruction. Numerical simulations and experiments were conducted to validate the single snapshot X‐ray‐induced luminescence computed tomography (SS‐XLCT). The results show that the 3D distribution of the nanophosphor targets can be visualized much faster than conventional cone beam XLCT imaging method that was used in our comparisons while maintaining comparable spatial resolution as in conventional XLCT imaging. SS‐XLCT has the potential to harness the power of XLCT for rapid whole‐body in vivo molecular imaging of small animals.  相似文献   

12.
The formation and development of belowground organs is difficult to study. X‐ray computed tomography (CT) provides the possibility to analyse and interpret subtle volumetric changes of belowground organs such as tubers, storage roots and nodules. Here, we report on the establishment of a method based on a voxel dimension of 240 μm and precision (standard deviation) of 30 μL that allows interpreting growth differences among potato tubers happening within 3 h. Plants were not stressed by the application of X‐ray radiation, which was shown both by morphological comparison with control plants and by analysis of lipid peroxidation as a measure of oxidative stress. Diel (24 h) tuber growth fluctuations of three potato genotypes were monitored in soil‐filled pots of 10 L. In contrast to the results from previous reports, most tubers grew at similar rates during day and night. Tuber growth was not related to the developmental stage of plants and tubers. Pronounced differences were observed between average growth rates in different tubers within a plant. These results are discussed in the context of restrictions of past methods to study tuber growth and in the context of their potential for the characterization of the formation and development of other belowground plant organs.  相似文献   

13.
Vegetation in water‐limited ecosystems relies strongly on access to deep water reserves to withstand dry periods. Most of these ecosystems have shallow soils over deep groundwater reserves. Understanding the functioning and functional plasticity of species‐specific root systems and the patterns of or differences in the use of water sources under more frequent or intense droughts is therefore necessary to properly predict the responses of seasonally dry ecosystems to future climate. We used stable isotopes to investigate the seasonal patterns of water uptake by a sclerophyll forest on sloped terrain with shallow soils. We assessed the effect of a long‐term experimental drought (12 years) and the added impact of an extreme natural drought that produced widespread tree mortality and crown defoliation. The dominant species, Quercus ilex, Arbutus unedo and Phillyrea latifolia, all have dimorphic root systems enabling them to access different water sources in space and time. The plants extracted water mainly from the soil in the cold and wet seasons but increased their use of groundwater during the summer drought. Interestingly, the plants subjected to the long‐term experimental drought shifted water uptake toward deeper (10–35 cm) soil layers during the wet season and reduced groundwater uptake in summer, indicating plasticity in the functional distribution of fine roots that dampened the effect of our experimental drought over the long term. An extreme drought in 2011, however, further reduced the contribution of deep soil layers and groundwater to transpiration, which resulted in greater crown defoliation in the drought‐affected plants. This study suggests that extreme droughts aggravate moderate but persistent drier conditions (simulated by our manipulation) and may lead to the depletion of water from groundwater reservoirs and weathered bedrock, threatening the preservation of these Mediterranean ecosystems in their current structures and compositions.  相似文献   

14.

Background and aims

Soil compaction strongly affects water uptake by roots. The aim of the work was to examine soil—plant interactions with focus on the impact of distribution of compacted soil layers on growth and water uptake by wheat roots.

Methods

The growth-chamber experiment was conducted on wheat growth in soil with compacted soil layers. The system for maintaining constant soil water potential and measurement of daily water uptake from variously compacted soil layers was used.

Results

Layered soil compaction differentiated vertical root distribution to higher extent for root length than root mass. The propagation rate of a water extraction front was the highest through layers of moderately compacted soil. The root water uptake rate was on average 67 % higher from moderately than heavily compacted soil layers. Correlations between water uptake and the length of thick roots were increasing with increasing level of soil compaction.

Conclusions

The study shows that root amount, water uptake, propagation of water extraction and shoot growth strongly depend on the existence of compacted layers within soil profile. The negative effects of heavily compacted subsoil layer on water uptake were partly compensated by increased uptake from looser top soil layers and significant contribution of thicker roots in water uptake.  相似文献   

15.
The interactions between plants and arbuscular mycorrhizal fungi (AMF) maintain a crucial link between macroscopic organisms and the soil microbial world. These interactions are of extreme importance for the diversity of plant communities and ecosystem functioning. Despite this importance, only recently has the structure of plant–AMF interaction networks been studied. These recent studies, which used genetic data, suggest that these networks are highly structured, very similar to plant–animal mutualistic networks. However, the assembly process of plant–AMF communities is still largely unknown, and an important feature of plant–AMF interactions has not been incorporated: they occur at an extremely localized scale. Studying plant–AMF networks in a spatial context seems therefore a crucial step. This paper studies a plant–AMF spatial co‐occurrence network using novel methodology based on information theory and a unique set of spatially explicit species‐level data. We apply three null models of which only one accounts for spatial effects. We find that the data show substantial departures from null expectations for the two non‐spatial null models. However, for the null model considering spatial effects, there are few significant co‐occurrences compared with the other two null models. Thus, plant–AMF spatial co‐occurrences seem to be mostly explained by stochasticity, with a small role for other factors related to plant–AMF specialization. Furthermore, we find that the network is not significantly nested or modular. We conclude that this plant–AMF spatial co‐occurrence network lacks substantial structure and, therefore, plants and AMF species do not track each other over space. Thus, random encounters seem more important in the first step of the assembly of plant–AMF communities. Synthesis The symbiotic interaction between plants and arbuscular mycorrhizal fungi (AMF) is crucial for ecosystem functioning. However, the factors affecting the assembly of plant‐AMF communities are poorly understood. An important factor of the assembly of plant‐AMF communities has been overlooked: plant‐AMF interactions occur at a localized spatial scale. Our study investigated the importance of space in the structure of plant‐AMF communities. We studied a plant‐AMF spatial co‐occurrence network using a unique set of spatially explicit data and applied three null models. We found that plant‐AMF spatial co‐occurrences seem to be mostly explained by stochasticity. In particular, our study shows that this plant‐AMF spatial co‐occurrence network lacks substantial structure and, therefore, plants and AMF species do not track each other over space. Thus, random encounters seem to drive the assembly of plant‐AMF communities.  相似文献   

16.
Influence of root density on the critical soil water potential   总被引:1,自引:1,他引:0  
Estimation of root water uptake in crops is important for making many other agricultural predictions. This estimation often involves two assumptions: (1) that a critical soil water potential exists which is constant for a given combination of soil and crop and which does not depend on root length density, and (2) that the local root water uptake at given soil water potential is proportional to root length density. Recent results of both mathematical modeling and computer tomography show that these assumptions may not be valid when the soil water potential is averaged over a volume of soil containing roots. We tested these assumptions for plants with distinctly different root systems. Root water uptake rates and the critical soil water potential values were determined in several adjacent soil layers for horse bean (Vicia faba) and oat (Avena sativa) grown in lysimeters, and for field-grown cotton (Gossypium L.), maize (Zea mays) and alfalfa (Medicago sativa L.) crops. Root water uptake was calculated from the water balance of each layer in lysimeters. Water uptake rate was proportional to root length density at high soil water potentials, for both horse bean and oat plants, but root water uptake did not depend on root density for horse bean at potentials lower than −25 kPa. We observed a linear dependency of a critical soil water potential on the logarithm of root length density for all plants studied. Soil texture modified the critical water potential values, but not the linearity of the relationship. B E Clothier Section editor  相似文献   

17.
The readily available global rock phosphate (P) reserves may run out within the next 50–130 years, causing soils to have a reduced P concentration which will affect plant P uptake. Using a combination of mathematical modelling and experimental data, we investigated potential plant‐based options for optimizing crop P uptake in reduced soil P environments. By varying the P concentration within a well‐mixed agricultural soil, for high and low P (35.5–12.5 mg L?1 respectively using Olsen's P index), we investigated branching distributions within a wheat root system that maximize P uptake. Changing the root branching distribution from linear (evenly spaced branches) to strongly exponential (a greater number of branches at the top of the soil) improves P uptake by 142% for low‐P soils when root mass is kept constant between simulations. This causes the roots to emerge earlier and mimics topsoil foraging. Manipulating root branching patterns, to maximize P uptake, is not enough on its own to overcome the drop in soil P from high to low P. Further mechanisms have to be considered to fully understand the impact of P reduction on plant development.  相似文献   

18.
In High Arctic ecosystems, plant growth and reproduction are limited by low soil moisture and nutrient availability, low soil and air temperatures, and a short growing season. Mycorrhizal associations facilitate plant nutrient acquisition and water uptake and may therefore be particularly ecologically important in nutrition‐poor and dry environments, such as parts of the Arctic. Similarly, endophytic root associates are thought to play a protective role, increasing plants' stress tolerance, and likely have an important ecosystem function. Despite the importance of these root‐associated fungi, little is known about their host specificity in the Arctic. We investigated the host specificity of root‐associated fungi in the common, widely distributed arctic plant species Bistorta vivipara, Salix polaris and Dryas octopetala in the High Arctic archipelago Svalbard. High‐throughput sequencing of the internal transcribed spacer 1 (ITS1) amplified from whole root systems generated no evidence of host specificity and no spatial autocorrelation within two 3 m × 3 m sample plots. The lack of spatial structure at small spatial scales indicates that Common Mycelial Networks (CMNs) are rare in marginal arctic environments. Moreover, no significant differences in fungal OTU richness were observed across the three plant species, although their root system characteristics (size, biomass) differed considerably. Reasons for lack of host specificity could be that association with generalist fungi may allow arctic plants to more rapidly and easily colonize newly available habitats, and it may be favourable to establish symbiotic relationships with fungi possessing different physiological attributes.  相似文献   

19.
Life‐history attributes can impose differences on root system structures and properties related to nutrient and water uptake. Here, we assess whether plants with different post‐fire regenerative strategies (resprouters, seeders and seeder–resprouters) differ in the topological and morphological properties of their root systems (external path, altitude, magnitude, topological index, specific root length, root length, root‐to‐shoot biomass ratio, length of the main axis of the root system and link length). To achieve these objectives, we sampled individuals from eight woody species in a shrubland located in the western Mediterranean Basin. We sampled the adult root systems using manual field excavation with the aid of an air compressor. The results indicate that resprouters have a higher root‐to‐shoot ratio, confirming their higher ability to store water, starch and nutrients and to invest in the belowground biomass. Moreover, this pattern would allow them to explore deeper parts of the soil layers. Seeder species would benefit from a higher specific root length, pointing to increased relative root growth and water uptake rates. This study confirms that seeders and resprouters may differ in nutrient and water uptake ability according to the characteristics of their root system. Species that can both resprout and establish seedlings after fire had different patterns of root system structure; in particular, root:shoot ratio was more similar to resprouters and specific root length was closer to seeders, supporting the distinct functional performance of this type of species.  相似文献   

20.
Coelho  Eugenio F.  Or  Dani 《Plant and Soil》1999,206(2):123-136
Information on root distribution and uptake patterns is useful to better understand crop responses to irrigation and fertigation, especially with the limited wetted soil volumes which develop under drip irrigation. Plant water uptake patterns play an important role in the success of drip irrigation system design and management. Here the root systems of corn were characterized by their length density (RLD) and root water uptake (RWU). Comparisons were made between the spatial patterns of corn RWU and RLD under surface and subsurface drip irrigation in a silt loam soil, considering a drip line on a crop row and between crop rows. Water uptake distribution was measured with an array of TDR probes at high spatial and temporal resolution. Root length density was measured by sampling soil cores on a grid centered on crop row. Roots were separated and an estimation of root geometrical attributes was made using two different image analysis programs. Comparisons of these programs yielded nearly identical estimates of RLD. The spatial patterns of RWU and RLD distributions, respectively normalized to the total uptake and root length, were generally similar only for drip line on a crop row, but with some local variations between the two measures. Both RLD and RWU were adequately fitted with parametric models based on semi-lognormal and normal Gaussian bivariate density functions (Coelho and Or, 1996; Soil Sci. Soc. Am. J. 60, 1039–1049).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号