首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
木本植物木质部解剖特征与水分运输和干旱适应策略密切相关,但目前对华北低山丘陵区常用树种这方面的研究仍然不足。为研究这一地区植物木质部解剖特征与抗旱性的关系,研究以抗旱树种和非抗旱树种各5种为研究对象,通过测定与木质部横截面导管、薄壁组织相关的大量解剖学性状和非结构性碳浓度,比较两类树种木质部解剖特征的差异和解剖性状间的关联,以探究这些树种水力学的干旱适应策略差异。结果显示:1)10个树种的16个木质部性状均有较大变异性;2)两类树种间的平均导管直径和导管密度无显著差异,但抗旱树种导管壁厚度、最大导管直径、旁管薄壁组织比例和轴向薄壁组织比例以及非结构性碳(NSC)浓度显著大于非抗旱树种;3)抗旱树种的导管壁厚度与平均导管直径、最大导管直径和潜在最大导水率均呈显著正相关关系,最大导管直径与潜在最大导水率呈显著正相关关系,但非抗旱树种不存在这些关系。本研究抗旱树种同时具有较大的最大导管直径和较厚的导管壁,在保证较高的水分运输效率的同时又具备一定的抗栓塞能力,较多的旁管薄壁组织和NSC也为抗旱树种提供了更大的木质部水储存和栓塞修复能力。  相似文献   

2.
Treatment of erect stems of Prosopis with near phytotoxic levels of 2,4-D or 2,4,5-T causes the formation of an unusual wood with narrow, thick-walled vessels and axial parenchyma in which cell wall thickening is inhibited. Although reduced in diameter, the vessels formed during 2,4-D and 2,4,5-T treatment are so numerous that there is no significant difference between phenoxyacetic acid and control seedling groups with regard to total area of xylem occupied by vessels. The preferential maturation of xylem vessels over parenchyma and the transformation of fusiform initials into septate parenchyma strands in phenoxyacetic acid-treated Prosopis resemble the structural changes reported to occur after girdling in the cambial tissue of other arborescent angiosperms. Bending experiments indicate that tension-wood fibers of Prosopis differentiate in response to an auxin deficiency. However, xylogenesis in erect stems treated with TIBA is affected such that a significantly higher proportion of the cambial cell population becomes axial xylem parenchyma.  相似文献   

3.
 The freezing behavior of xylem ray parenchyma cells in several woody species, Ficus elastica, F. microcarpa, Mangifera indica, Hibiscus Rosa-sinensis, and Schefflera arboricola, that are native to non-frost tropical and subtropical zones, was investigated by differential thermal analysis (DTA), cryo-scanning electron microscopy (cryo-SEM) and freeze-replica electron microscopy. Although profiles after DTA did not exhibit clear evidence of supercooling in the xylem ray parenchyma cells, electron microscopy revealed that the majority of xylem ray parenchyma cells in all of the woody species examined were supercooled to around –10°C upon freezing temperatures and were not frozen extracellularly. It seems likely that DTA failed to reveal the low temperature exotherm (LTE), that is produced by breakdown of supercooling in the xylem ray parenchyma cells as a consequence of the overlap between the high temperature exotherm and the LTE in each case. The xylem ray parenchyma cells in these woody species were very sensitive to dehydration, and supercooling had, to some extent, a protective effect against freezing injury. It is suggested that the capacity for supercooling of xylem ray parenchyma cells of tropical and subtropical woody species might be the result of inherent structural characteristics, such as rigid cell walls and compact xylem tissues, rather than the result of positive adaptation to freezing temperatures. The present and previous results together indicate that the responses of xylem ray parenchyma cells in a wide variety of hardwood species to freezing temperatures can be explained as a continuum, the specifics of which depend upon the temperatures of the growing conditions. Received: 24 January 1997 / Accepted: 13 May 1997  相似文献   

4.
Vascular tissue in the stem and roots of woody plants can conduct light   总被引:1,自引:0,他引:1  
The role of vascular tissue in conducting light was analysed in 21 species of woody plants. Vessels, fibres (both xylem and phloem fibres) and tracheids in woody plants are shown to conduct light efficiently along the axial direction of both stems and roots, via their lumina (vessels) or cell walls (fibres and tracheids). Other components, such as sieve tubes and parenchyma cells, are not efficient axial light conductors. Investigation of the spectral properties of the conducted light indicated that far-red light was conducted most efficiently by vascular tissue. Light gradients in the axial direction were also investigated and revealed that conducted light leaked out of the light-conducting structures to the surrounding living tissues. These properties of the conducted light suggest a close relationship with metabolic activities mediated by phytochromes. The results therefore indicate not only that signals from the external light environment can enter the interior of stems above ground and are conducted by vascular tissue towards roots under ground, but also that the light conducted probably contributes directly to photomorphogenic activities within them.  相似文献   

5.
The morphological variation and structure-function relationships of xylem parenchyma still remain open to discussion. We analyzed the three-dimensional structure of a poorly known type of xylem parenchyma with disjunctive walls in the tropical hardwood Okoubaka aubrevillei (Santalaceae). Disjunctive cells occurred among the apotracheal parenchyma cells and at connections between axial and ray parenchyma cells. The disjunctive cells were partly detached one from another, but their tubular structures connected them into a continuous network of axial and ray parenchyma. The connecting tubules had thick secondary walls and simple pits with plasmodesmata at the points where one cell contacted a tubule of another cell. The imperforate tracheary elements of the ground tissue were seven times longer than the axial parenchyma strands, a fact that supports a hypothesis that parenchyma cells develop disjunctive walls because they are pulled apart and partly separated during the intrusive growth of fibers. We discuss unresolved details of the formation of disjunctive cell walls and the possible biomechanical advantage of the wood with disjunctive parenchyma: the proportion of tissue that improves mechanical strength is increased by the intrusive elongation of fibers (thick-walled tracheids), whereas the symplastic continuum of the parenchyma is maintained through formation of disjunctive cells.  相似文献   

6.
For the single species of Austmbaileya (Austrobaileyaceae), quantitative and qualitative data are offered on the basis of a mature stem and a root of moderate diameter. Data available hitherto have been based on stems of small to moderate diameter, and roots have not previously been studied. Scanning electron microscope (SEM) photographs are utilized for roots, and show compound starch grains. Roots lack sclerenchyma but have relatively narrow vessels and abundant ray tissue. Recent phylogenies group Austrobaileyaceae with the woody families Illiciaceae, Schisandraceae, and Trimeniaceae (these four may be considered Illiciales), and somewhat less closely with the vesselless families Amborellaceae and Winteraceae and the aquatic families Cambombaceae and Nymphaeaceae. The vessel-bearing woody families above share vessels with scalariform perforation plates; bordered bars on plates; pit membrane remnants present in perforations; lateral wall pitting of vessels mostly alternate and opposite; tracheids and/or septate fibre-tracheids present; axial parenchyma vasicentric (sometimes abaxial); rays Heterogeneous Type I; ethereal oil cells present; stomata paracytic or variants of paracytic. Although comparisons between vessel-bearing and vesselless families must depend on fewer features, Amborellaceae and Winteraceae have no features incompatible with their inclusion in an expanded Illiciales.  相似文献   

7.
Although cellular injury in some woody plants has been correlated with freezing of supercooled water, there is no direct evidence that intracellular ice formation is responsible for the injury. In this study we tested the hypothesis that injury to xylem ray parenchyma cells in supercooling tissues is caused by intracellular ice formation. The ultrastructure of freezing-stress response in xylem ray parenchyma cells of flowering dogwood (Cornus florida L.) was determined in tissue prepared by freeze substitution. Wood tissue was collected in the winter, spring, and summer of 1992. Specimens were cooled from 0 to -60[deg]C at a rate of 5[deg]C h-1. Freezing stress did not affect the structural organization of wood tissue, but xylem ray parenchyma cells suffered severe injury in the form of intracellular ice crystals. The temperatures at which the ice crystals were first observed depended on the season in which the tissue was collected. Intracellular ice formation was observed at -20, -10, and -5[deg]C in winter, spring, and summer, respectively. Another type of freezing injury was manifested by fragmented protoplasm with indistinguishable plasma membranes and damaged cell ultrastructure but no evidence of intracellular ice. Intracellular cavitation may be a source of freezing injury in xylem ray parenchyma cells of flowering dogwood.  相似文献   

8.
The effect of secondary growth on the distribution of the axial hydraulic conductance within the Prunus root system was investigated. Secondary growth resulted in a large increase in both the number (from about 10 to several thousand) and diameter of xylem vessels (from a few micrometres to nearly 150 µm). For fine roots (<3 mm), an increase in root diameter was correlated with a slight increase in the number of xylem vessels and a large increase in their diameter. Conversely, for woody roots, an increase in root diameter was associated with a dramatic increase in the number of xylem vessels, but little or no change in vessel diameter. The theoretical axial conductivity (Kh, m4.s-1.MPa-1) of root segments was calculated with the Poiseuille-Hagen equation from measurements of vessel diameter. Kh measured using the tension-induced technique varies over several orders of magnitude (7.4᎒-11 to 5.7᎒-7 m4.s-1.MPa-1) and shows large discrepancies with theoretical calculated Kh. We concluded that root diameter is a pertinent and useful parameter to predict the axial conductance of a given root, provided the root type is known. Indeed, the relationship between measured Kh and root diameter varies according to the root type (fine or woody), due to differences in the xylem produced by secondary growth. Finally, we show how the combination of branching pattern and axial conductance may limit water flow through root systems. For Prunus, the main roots do not appear to limit water transfer; the axial conductance of the main axes is at least 10% higher than the sum of the axial conductance of the branches.  相似文献   

9.
Functional relationships between wood density and measures of xylem hydraulic safety and efficiency are ambiguous, especially in wet tropical forests. In this meta-analysis, we move beyond wood density per se and identify relationships between xylem allocated to fibers, parenchyma, and vessels and measures of hydraulic safety and efficiency. We analyzed published data of xylem traits, hydraulic properties and measures of drought resistance from neotropical tree species retrieved from 346 sources. We found that xylem volume allocation to fiber walls increases embolism resistance, but at the expense of specific conductivity and sapwood capacitance. Xylem volume investment in fiber lumen increases capacitance, while investment in axial parenchyma is associated with higher specific conductivity. Dominant tree taxa from wet forests prioritize xylem allocation to axial parenchyma at the expense of fiber walls, resulting in a low embolism resistance for a given wood density and a high vulnerability to drought-induced mortality. We conclude that strong trade-offs between xylem allocation to fiber walls, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Moreover, the benefits of xylem allocation to axial parenchyma in wet tropical trees might not outweigh the consequential low embolism resistance under more frequent and severe droughts in a changing climate.  相似文献   

10.
The very different evolutionary pathways of conifers and angiosperms are very informative precisely because their wood anatomy is so different. New information from anatomy, comparative wood physiology, and comparative ultrastructure can be combined to provide evidence for the role of axial and ray parenchyma in the two groups. Gnetales, which are essentially conifers with vessels, have evolved parallel to angiosperms and show us the value of multiseriate rays and axial parenchyma in a vessel-bearing wood. Gnetales also force us to re-examine optimum anatomical solutions to conduction in vesselless gymnosperms. Axial parenchyma in vessel-bearing woods has diversified to take prominent roles in storage of water and carbohydrates as well as maintenance of conduction in vessels. Axial parenchyma, along with other modifications, has superseded scalariform perforation plates as a safety mechanism and permitted angiosperms to succeed in more seasonal habitats. This diversification has required connection to rays, which have concomitantly become larger and more diverse, acting as pathways for photosynthate passage and storage. Modes of growth such as rapid flushing, vernal leafing-out, drought deciduousness and support of large leaf surfaces become possible, advantaging angiosperms over conifers in various ways. Prominent tracheid-ray pitting (conifers) and axial parenchyma/ray pitting to vessels (angiosperms) are evidence of release of photosynthates into conductive cells; in angiosperms, this system has permitted vessels to survive hydrologic stresses and function in more seasonal habitats. Flow in ray and axial parenchyma cells, suggested by greater length/width ratios of component cells, is confirmed by pitting on end walls of elongate cells: pits are greater in area, more densely placed, and are often bordered. Bordered pit areas and densities on living cells, like those on tracheids and vessels, represent maximal contact areas between cells while minimizing loss of wall strength. Storage cells in rays can be distinguished from flow cells by size and shape, by fewer and smaller pits and by contents. By lacking secondary walls, the entire surfaces of phloem ray and axial phloem parenchyma become conducting areas across which sugars can be translocated. The intercontinuous network of axial parenchyma and ray parenchyma in woods is confirmed; there are no “isolated” living cells in wood when three-dimensional studies are made. Water storage in living cells is reported anatomically and also in the form of percentile quantitative data which reveal degrees and kinds of succulence in angiosperm woods, and norms for “typically woody” species. The diversity in angiosperm axial and ray parenchyma is presented as a series of probable optimal solutions to diverse types of ecology, growth form, and physiology. The numerous homoplasies in these anatomical modes are seen as the informative results of natural experiments and should be considered as evidence along with experimental evidence. Elliptical shape of rays seems governed by mechanical considerations; unusually long (vertically) rays represent a tradeoff in favor of flexibility versus strength. Protracted juvenilism (paedomorphosis) features redirection of flow from horizontal to vertical by means of rays composed predominantly or wholly of upright cells, and the reasons for this anatomical strategy are sought. Protracted juvenilism, still little appreciated, occurs in a sizeable proportion of the world’s plants and is a major source of angiosperm diversification.  相似文献   

11.
12.
Post-fire sprouting of dormant buds in resprouter plants is facilitated by stored carbohydrate reserves, with starch being the critical reserve. Starch is mainly stored in xylem parenchyma ray tissue of woody underground organs, such as burls, lignotubers, and roots. We carried out a comparative analysis of the pattern of starch storage and the proportion of parenchymatic ray tissue in the upper root or cotyledonary region of seedlings from seeder and resprouter forms within two Cape Erica (Ericaceae) species: E. coccinea L. and E. calycina L., which were raised in the greenhouse under controlled irrigation. We also explored the root-to-shoot allocation patterns of seeder and resprouter seedlings in these two species. Resprouter seedlings of both species showed higher relative amounts of upper-root starch and upper-root storage tissue as well as a higher root-to-shoot allocation than their seeder counterparts. Pronounced swelling of the upper root region suggests ontogenetic development of a lignotuber in the resprouter forms of the two Erica species. The distinct allocation of starch in roots seems to be genetically determined and would account for the apparent differences in the root-to-shoot allocation patterns between both regeneration forms from the early seedling stage.  相似文献   

13.
The structures of secondary xylem of 6 species of Caragana, which grow in desert regions of Northwest of China, are described in details. The main quantitative characters are compared with species. And a key to the identification of wood structures of 6 species is given. The main similarities of secondary xylem of these 6 species are as follows: vessels per mm2 very numerous, percentage of multiple vessels high; vessel elements very short, perforations simple and in almost horizontal end walls; intervessel bordered pits alternate and vestured, and vessels with spiral thickenings. Libriform fibres are very short, and usually with thick end walls, and with simple pits. Rays are heigh to very low, and with multiseriate and uniseriate, and with heterogeneous type Ⅰ and Ⅱ. In addition, there are differences in other characters, e.g. vessel distribution, amount of axial parenchyma and distribution, ray frequency, crystals present or absent, and crystal distribution, if present. These differences can be used as the anatomical characters to identify the wood structures of the 6 species. In this article we also discuss the relation between the structure of xylem elements and the environmental influences.  相似文献   

14.
Hebanthe eriantha (Poir.) Pedersen, a climbing species of the Amaranthaceae increases in stem thickness by forming successive cambia. The family is dominated by herbaceous species and is constantly under discussion due to its disputed nature of the meristem. In the young stem small alternate segments of vascular cambium cease to divide and new arc of cambium initiates outside to it. The newly formed arcs connect with pre-existing alternate segments of cambium to complete the ring. On the contrary, in thick stems, instead of small segments, complete ring of cambium is replaced by new one. These new alternate segments/cambia originate from the parenchyma cells located outside to the phloem produced by previous cambium. Cambium is storied and exclusively composed of fusiform initials while ray cells remain absent at least in the early part of the secondary growth. However, large heterocellular rays are observed in 15-mm diameter stems but their frequency is much lower. In some of the rays, ray cells become meristematic and differentiate into radially arranged xylem and phloem elements. In fully grown plants, stems are composed of several successive rings of secondary xylem alternating with secondary phloem. Secondary xylem is diffuse-porous and composed of vessels, fibres, axial parenchyma while exceptionally large rays are observed only in the outermost regions of thick stems. Vessel diameter increases progressively from the centre towards the periphery of stems. Although the origin of successive cambia and composition of secondary xylem of H. eriantha remains similar to other herbaceous members of Amaranthaceae, the occurrence of relatively wider and thick-walled vessels and large rays in fully grown plants is characteristic to climbing habit.  相似文献   

15.
Cumbie , B. G., and Dan Mertz . (U. Missouri, Columbia.) Xylem anatomy of Sophora (Leguminosae) in relation to habit . Amer. Jour. Bot. 49(1): 33–40. Illus. 1962.—A comparison of 8 tree, shrub, and herbaceous species of Sophora showed considerable variation in structural organization of the secondary xylem in relation to habit. A reduction in duration of cambial activity has been accompanied by a decrease in conspicuousness of storied structure, more frequent arrangement of vessels in multiples, the formation of narrower rays, and a striking reduction in amount of axial xylem parenchyma. On the other hand, relatively minor changes in size of xylem elements have resulted from decreased cambial activity, as shown by comparing the first-formed secondary xylem elements of woody and herbaceous species. In many structural features, shrubs were found to be more or less intermediate between the tree and herbaceous species, at least in the early stages of development. These observations indicate that the often repeated generalization that the organization of herbaceous stems resembles that of the first year's growth in closely related woody species is not always applicable.  相似文献   

16.
1. The terminal shoot (or current-year shoot), as one of the most active parts on a woody plant, is a basic unit determining plant height and is potentially influenced by a variety of environmental factors. It has been predicted that tissues amount and their allocation in plant stems may play a critical role in determining plant size in alpine regions. The primary structure in terminal shoots is a key to our understanding treeline formation. The existing theories on treeline formation, however, are still largely lacking of evidence at the species level, much less from anatomy for the terminal shoot.2. The primary structures within terminal shoot were measured quantitatively for 100 species from four elevation zones along the eastern slope of Gongga Mountain, southwestern China; one group was sampled from above the treeline. An allometric approach was employed to examine scaling relationships interspecifically, and a principal components analysis (PCA) was performed to test the relation among primary xylem, ground tissue, species growth form and altitude.3. The results showed that xylem tissue size was closely correlated with ground tissue size isometrically across species, while undergoing significant y- or/and x-intercept shift in response to altitudinal belts. Further, a conspicuous characteristic of terminal shoot was its allocation of contrasting tissues between primary xylem and ground tissues with increasing elevation. The result of the PCA showed correlations between anatomical variation, species growth form/height classes and environment.4. The current study presents a comparative assessment of the allocation of tissue in terminal shoot across phylogenically and ecologically diverse species, and analyzes tissue, function and climate associations with plant growth forms and height classes among species. The interspecific connection between primary xylem ratio and plant size along an elevation gradient suggests the importance of primary xylem in explaining the treeline formation.  相似文献   

17.
The diversity of expression in axial parenchyma (or lack of it) in woods is reviewed and synthesized with recent work in wood physiology, and questions and hypotheses relative to axial parenchyma anatomy are offered. Cell shape, location, abundance, size, wall characteristics and contents are all characteristics for the assessment of the physiological functions of axial parenchyma, a tissue that has been neglected in the consideration of how wood histology has evolved. Axial parenchyma occurrence should be considered with respect to mechanisms for the prevention and reversal of embolisms in tracheary elements. This mechanism complements cohesion–tension‐based water movement and root pressure as a way of maintaining flow in xylem. Septate fibres can substitute for axial parenchyma (‘axial parenchyma absent’) and account for water movement in xylem and for the supply of carbohydrate abundance underlying massive and sudden events of foliation, flowering and fruiting, as can fibre dimorphism and the co‐occurrence of septate fibres and axial parenchyma. Rayless woods may or may not contain axial parenchyma and are informative when analysing parenchyma function. Interconnections between ray and axial parenchyma are common, and so axial and radial parenchyma must be considered as complementary parts of a network, with distinctive but interactive functions. Upright ray cells and more numerous rays per millimetre enhance interconnection and are more often found in woods that contain tracheids. Vesselless woods in both gymnosperms and angiosperms have axial parenchyma, the distribution of which suggests a function in osmotic water shifting. Water and photosynthate storage in axial parenchyma may be associated with seasonal changes and with succulent or subsucculent modes of construction. Apotracheal axial parenchyma distribution often demonstrates storage functions that can be read independently of osmotic water shifting capabilities. Axial parenchyma may serve to both enhance mechanical strength or, when parenchyma is thin‐walled, as a tissue that adapts to volume change with a change in water content. Other functions of axial parenchyma (contributing resistance to pathogens; a site for the recovery of physical damage) are considered. The diagnostic features of axial parenchyma and septate fibres are reviewed in order to clarify distinctions and to aid in cell type identification. Systematic listings are given for particular axial parenchyma conditions (e.g. axial parenchyma ‘absent’ with septate fibres substituting). A knowledge of the axial parenchyma information presented here is desirable for a full understanding of xylem function. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 291–321.  相似文献   

18.
Summary Vessel dimensions (total diameter and length) were determined in tropical and subtropical plants of different growth forms with an emphasis upon lianas (woody vines). The paint infusion and compressed air methods were used on 38 species from 26 genera and 16 families in the most extensive survey of vessel length made to date. Within most stems there was a skewed frequency distribution of vessel lengths and diameter, with many short and narrow vessels and few long and wide ones. The longest vessel found (7.73 m) was in a stem of the liana (woody vine) Pithecoctenium crucigerum. Mean vessel length for 33 species of lianas was 0.38 m, average maximum length was 1.45 m. There was a statistically significant inter-species correlation between maximum vessel length and maximum vessel diameter. Among liana stems and among tree+shrub stems there were statistically significant correlations between stem xylem diameter and vessel dimensions. Lianas with different adaptations for climbing (tendril climbers, twiners, scramblers) were similar in their vessel dimensions except that scramblers tended to have shorter (but not narrower) vessels. Within one genus, Bauhinia, tendril climbing species had greater maximum vessel lengths and diameters than tree and shrub species. The few long and wide vessels of lianas are thought to hydraulically compensate for their narrow stem diameters. The many narrow and short vessels, which are present in the same liana stems, may provide a high resistance auxiliary transport system.  相似文献   

19.
Stem anatomy and development of medullary phloem are studied in the dwarf subshrub Cressa cretica L. (Convolvulaceae). The family Convolvulaceae is dominated by vines or woody climbers, which are characterized by the presence of successive cambia, medullary- and included phloem, internal cambium and presence of fibriform vessels. The main stems of the not winding C. cretica shows presence of medullary (internal) phloem, internal cambium and fibriform vessels, whereas successive cambia and included phloem are lacking. However, presence of fibriform vessels is an unique feature which so far has been reported only in climbing members of the family. Medullary phloem develops from peri-medullary cells after the initiation of secondary growth and completely occupies the pith region in fully grown mature plants. In young stems, the cortex is wide and formed of radial files of tightly packed small and large cells without intercellular air spaces. In thick stems, cortical cells become compressed due to the pressure developed by the radial expansion of secondary xylem, a feature actually common to halophytes. The stem diameter increases by the activity of a single ring of vascular cambium. The secondary xylem is composed of vessels (both wide and fibriform), fibres, axial parenchyma cells and uni-seriate rays. The secondary phloem consists of sieve elements, companion cells, axial and ray parenchyma cells. In consequence, Cressa shares anatomical characteristics of both climbing and non-climbing members. The structure of the secondary xylem is correlated with the habit and comparable with that of other climbing members of Convolvulaceae.  相似文献   

20.
High-throughput single-cell RNA sequencing (scRNA-seq) has advantages over traditional RNA-seq to explore spatiotemporal information on gene dynamic expressions in heterogenous tissues. We performed Drop-seq, a method for the dropwise sequestration of single cells for sequencing, on protoplasts from the differentiating xylem of Populus alba×Populus glandulosa. The scRNA-seq profiled 9,798 cells, which were grouped into 12 clusters. Through characterization of differentially expressed genes in each cluster and RNA in situ hybridizations, we identified vessel cells, fiber cells, ray parenchyma cells and xylem precursor cells. Diffusion pseudotime analyses revealed the differentiating trajectory of vessels, fiber cells and ray parenchyma cells and indicated a different differentiation process between vessels and fiber cells, and a similar differentiation process between fiber cells and ray parenchyma cells. We identified marker genes for each cell type (cluster) and key candidate regulators during developmental stages of xylem cell differentiation. Our study generates a high-resolution expression atlas of wood formation at the single cell level and provides valuable information on wood formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号