首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Incorporating male sterility into hybrid seed production reduces its cost and ensures high varietal purity. Despite these advantages, male‐sterile lines have not been widely used to produce tomato (Solanum lycopersicum) hybrid seeds. We describe the development of a biotechnology‐based breeding platform that utilized genic male sterility to produce hybrid seeds. In this platform, we generated a novel male‐sterile tomato line by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9)‐mediated mutagenesis of a stamen‐specific gene SlSTR1 and devised a transgenic maintainer by transforming male‐sterile plants with a fertility‐restoration gene linked to a seedling‐colour gene. Offspring of crosses between a hemizygous maintainer and the homozygous male‐sterile plant segregated into 50% non‐transgenic male‐sterile plants and 50% male‐fertile maintainer plants, which could be easily distinguished by seedling colour. This system has great practical potential for hybrid seed breeding and production as it overcomes the problems intrinsic to other male‐sterility systems and can be easily adapted for a range of tomato cultivars and diverse vegetable crops.  相似文献   

2.
We have developed a novel hybridization platform that utilizes nuclear male sterility to produce hybrids in maize and other cross‐pollinating crops. A key component of this platform is a process termed Seed Production Technology (SPT). This process incorporates a transgenic SPT maintainer line capable of propagating nontransgenic nuclear male‐sterile lines for use as female parents in hybrid production. The maize SPT maintainer line is a homozygous recessive male sterile transformed with a SPT construct containing (i) a complementary wild‐type male fertility gene to restore fertility, (ii) an α‐amylase gene to disrupt pollination and (iii) a seed colour marker gene. The sporophytic wild‐type allele complements the recessive mutation, enabling the development of pollen grains, all of which carry the recessive allele but with only half carrying the SPT transgenes. Pollen grains with the SPT transgenes exhibit starch depletion resulting from expression of α‐amylase and are unable to germinate. Pollen grains that do not carry the SPT transgenes are nontransgenic and are able to fertilize homozygous mutant plants, resulting in nontransgenic male‐sterile progeny for use as female parents. Because transgenic SPT maintainer seeds express a red fluorescent protein, they can be detected and efficiently separated from seeds that do not contain the SPT transgenes by mechanical colour sorting. The SPT process has the potential to replace current approaches to pollen control in commercial maize hybrid seed production. It also has important applications for other cross‐pollinating crops where it can unlock the potential for greater hybrid productivity through expanding the parental germplasm pool.  相似文献   

3.
A chemical male sterility system based on anther‐localized conversion of the inactive d ‐enantiomer of the herbicide, glufosinate (2‐amino‐4‐(methylphosphinyl)‐butanoate) to the phytotoxic l is described. Highly pure d ‐glufosinate was isolated in >98% enantiomeric excess from the racemate via fermentation with a strain of Escherichia coli expressing the PAT (l ‐glufosinate N‐acetyl transferase) gene and purification of the unreacted d ‐enantiomer from the broth by ion exchange. A modified (F58K, M213S) form of the d ‐amino acid oxidase (DAAO) (EC 1.4.3.3) from Rhodosporidium toruloides was designed, tested in vitro and found to efficiently oxidize d ‐glufosinate to its 2‐oxo derivative [2‐oxo‐4‐(methylphosphinyl)‐butanoic acid]. Tobacco (Nicotiana tabacum) plants were transformed to express this modified oxidase under control of the TAP1 tapetum‐specific promoter. A number of the resultant transgenic lines exhibited complete male sterility that persisted for two or more weeks immediately following foliar treatment with 75 or 200 g/ha of d ‐glufosinate without exhibiting obvious phytotoxic symptoms or any measurable decline in female fertility. Similarly, plants containing the same construct and, additionally, a PAT gene expressed from a plastocyanin promoter exhibited significantly reduced male fertility and no reduction in female fertility following foliar application of racemic glufosinate. Thus, foliar application of d ‐glufosinate either purified or as the commercial herbicide, combined with anther expression of a modified DAAO promises to provide a cost‐effective conditional chemical male sterility system with the characteristics necessary for practical F1 hybrid seed production.  相似文献   

4.
5.
Hybrid zones may serve as bridges permitting gene flow between species, including alleles influencing the evolution of breeding systems. Using greenhouse crosses, we assessed the likelihood that a hybrid zone could serve as a conduit for transfer of nuclear male‐sterility alleles between a gynodioecious species and a hermaphroditic species with very rare females in some populations. Segregation patterns in progeny of crosses between rare females of hermaphroditic Schiedea menziesii and hermaphroditic plants of gynodioecious Schiedea salicaria heterozygous at the male‐sterility locus, and between female S. salicaria and hermaphroditic plants from the hybrid zone, were used to determine whether male‐sterility was controlled at the same locus in the parental species and the hybrid zone. Segregations of females and hermaphrodites in approximately equal ratios from many of the crosses indicate that the same nuclear male‐sterility allele occurs in the parent species and the hybrid zone. These rare male‐sterility alleles in S. menziesii may result from gene flow from S. salicaria through the hybrid zone, presumably facilitated by wind pollination in S. salicaria. Alternatively, rare male‐sterility alleles might result from a reversal from gynodioecy to hermaphroditism in S. menziesii, or possibly de novo evolution of male sterility. Phylogenetic analysis indicates that some species of Schiedea have probably evolved separate sexes independently, but not in the lineage containing S. salicaria and S. menziesii. High levels of selfing and expression of strong inbreeding depression in S. menziesii, which together should favour females in populations, argue against a reversal from gynodioecy to hermaphroditism in S. menziesii.  相似文献   

6.
The development and adoption of hybrid seed technology have led to dramatic increases in agricultural productivity. However, it has been a challenge to develop a commercially viable platform for the production of hybrid wheat (Triticum aestivum) seed due to wheat's strong inbreeding habit. Recently, a novel platform for commercial hybrid seed production was described. This hybridization platform utilizes nuclear male sterility to force outcrossing and has been applied to maize and rice. With the recent molecular identification of the wheat male fertility gene Ms1, it is now possible to extend the use of this novel hybridization platform to wheat. In this report, we used the CRISPR/Cas9 system to generate heritable, targeted mutations in Ms1. The introduction of biallelic frameshift mutations into Ms1 resulted in complete male sterility in wheat cultivars Fielder and Gladius, and several of the selected male‐sterile lines were potentially non‐transgenic. Our study demonstrates the utility of the CRISPR/Cas9 system for the rapid generation of male sterility in commercial wheat cultivars. This represents an important step towards capturing heterosis to improve wheat yields, through the production and use of hybrid seed on an industrial scale.  相似文献   

7.
8.
Summary A new improved method for hybrid seed production was successfully tested. This method is based on using a cytoplasmic male sterile line possessing a lethal gene with action that can be easily inhibited and a female sterile pollenizer. The lethal gene ensures 100% purity of the F1 crop. The female sterile pollenizer provides a permanent abundant flowering with excess of pollen grains that leads to increased hybrid seed production without additional labour expenses. The described scheme is applicable for other crops as well.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Increasing drought resistance without sacrificing grain yield remains an ongoing challenge in crop improvement. In this study, we report that O ryza s ativa CCCH‐t andem z inc f inger protein 5 (OsTZF5) can confer drought resistance and increase grain yield in transgenic rice plants. Expression of OsTZF5 was induced by abscisic acid, dehydration and cold stress. Upon stress, OsTZF5‐GFP localized to the cytoplasm and cytoplasmic foci. Transgenic rice plants overexpressing OsTZF5 under the constitutive maize ubiquitin promoter exhibited improved survival under drought but also growth retardation. By introducing OsTZF5 behind the stress‐responsive OsNAC6 promoter in two commercial upland cultivars, Curinga and NERICA4, we obtained transgenic plants that showed no growth retardation. Moreover, these plants exhibited significantly increased grain yield compared to non‐transgenic cultivars in different confined field drought environments. Physiological analysis indicated that OsTZF5 promoted both drought tolerance and drought avoidance. Collectively, our results provide strong evidence that OsTZF5 is a useful biotechnological tool to minimize yield losses in rice grown under drought conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号