首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Albinism, which is commonly inherited as an autosomal recessive trait, is characterized by a reduction or absence of melanin in the eyes, skin, and hair. To date, more than 20 causal genes for albinism have been identified; thus, the accurate diagnosis of albinism requires next‐generation sequencing (NGS). In this study, we analyzed 46 patients who tested negative for oculocutaneous albinism (OCA)1–4 and Hermansky‐Pudlak syndrome (HPS)1 based on conventional analysis, in addition to 28 new Japanese patients, using NGS‐based targeted resequencing. We identified a genetic background for albinism in 18 of the 46 patients (39%), who were previously tested negative according to the conventional analysis. In addition, we unveiled a genetic predisposition toward albinism in 23 of the 28 new patients (82%). We identified six patients with rare subtypes of albinism, including HPS3, HPS4, and HPS6, and found 12 novel pathological mutations in albinism‐related genes. Furthermore, most patients who were not diagnosed with albinism by the NGS analysis showed mild manifestations of albinism without apparent eye symptoms and harbored only one heterozygous mutation, occasionally in combination with skin‐color associated gene variants.  相似文献   

2.
Melanin, the major determinant of skin colour, is a tyrosine‐based heteropolymer of indeterminate molecular weight. In vivo, melanin synthesis occurs within highly specialized organelles called melanosomes. Coated vesicles encapsulating the enzyme tyrosinase and tyrosinase related proteins, fuse with premelanosomes that contain structural proteins to form mature melanosomes. Coated vesicles and premelanosomes have been shown to have only melanin monomers but not the polymer. Our earlier results have clearly shown that the presence of proteins other than tyrosinase are critical for the post‐tyrosinase steps of melanin polymerization at acidic pH. Proteins in melanosomes are difficult to purify because of their firm association with melanin. Thus, with progressive melanization, melanoproteins become progressively insoluble. In this paper, we discuss the isolation and purification of melanosomal proteins and their role in melanin polymerization. We have hypothesized that the initiation of polymerization and the binding of melanin to proteins are two discrete events and we have developed assays to quantify these events. Purified melanosomal proteins differ in their ability to polymerize melanin monomers. Further, we have also shown that two polypeptides (28 and 45 kDa) purified from melanosomes inhibit melanin polymerization but can bind preformed melanin. In conclusion, melanosomal proteins regulate melanin polymerization and differ in their ability to bind melanin. Polymerization and binding abilities of melanosomal proteins are specific to each protein and melanin–protein interaction is not nonspecific.  相似文献   

3.
4.
The mechanisms that lead to variation in human skin and hair color are not fully understood. To better understand the molecular control of skin and hair color variation, we modulated the expression of Tyrosinase (Tyr), which controls the rate-limiting step of melanogenesis, by expressing a single-copy, tetracycline-inducible shRNA against Tyr in mice. Moderate depletion of TYR was sufficient to alter the appearance of the mouse coat in black, agouti, and yellow coat color backgrounds, even though TYR depletion did not significantly inhibit accumulation of melanin within the mouse hair. Ultra-structural studies revealed that the reduction of Tyr inhibited the accumulation of terminal melanosomes, and inhibited the expression of genes that regulate melanogenesis. These results indicate that color in skin and hair is determined not only by the total amount of melanin within the hair, but also by the relative accumulation of mature melanosomes.  相似文献   

5.
6.
Recent population studies have demonstrated an association with the red‐hair and fair‐skin phenotype with variant alleles of the melanocortin‐1 receptor (MC1R) which result in amino acid substitutions within the coding region leading to an altered receptor activity. In particular, Arg151Cys, Arg160Trp and Asp294His were the most commonly associated variants seen in the south‐east Queensland population with at least one of these alleles found in 93% of those with red hair. In order to study the individual effects of these variants on melanocyte biology and melanocytic pigmentation, we established a series of human melanocyte strains genotyped for the MC1R receptor which included wild‐type consensus, variant heterozygotes, compound heterozygotes and homozygotes for Arg151Cys, Arg160Trp, Val60Leu and Val92Met alleles. These strains ranged from darkly pigmented to amelanotic, with all strains of consensus sequence having dark pigmentation. UV sensitivity was found not to be associated with either MC1R genotype or the level of pigmentation with a range of sensitivities seen across all genotypes. Ultrastructural analysis demonstrated that while consensus strains contained stage IV melanosomes in their terminal dendrites, Arg151Cys and Arg160Trp homozygote strains contained only stage II melanosomes. This was despite being able to show expression of tyrosinase and tyrosinase‐related protein‐1 markers, although at reduced levels and an ability to convert exogenous 3,4‐dihydroxyphenyl‐alanine (DOPA) to melanin in these strains.  相似文献   

7.
Melanin within melanosomes exists as eumelanin or pheomelanin. Distributions of these melanins have been studied extensively within tissues, but less often within individual melanosomes. Here, we apply X‐ray fluorescence analysis with synchrotron radiation to survey the nanoscale distribution of metals within purified melanosomes of mice. The study allows a discovery‐based characterization of melanosomal metals, and, because Cu is specifically associated with eumelanin, a hypothesis‐based test of the ‘casing model’ predicting that melanosomes contain a pheomelanin core surrounded by a eumelanin shell. Analysis of Cu, Ca, and Zn shows variable concentrations and distributions, with Ca/Zn highly correlated, and at least three discrete patterns for the distribution of Cu vs. Ca/Zn in different melanosomes – including one with a Cu‐rich shell surrounding a Ca/Zn‐rich core. Thus, the results support predictions of the casing model, but also suggest that in at least some tissues and genetic contexts, other arrangements of melanin may co‐exist.  相似文献   

8.
The ultrastructural characteristics of melanosomes and premelanosomes observed during the biogenesis of melanosomes in liver pigment cells of the neotenic cave salamander Proteus anguinus (Proteidae) are described. It is well known that amphibian liver pigment cells, also known as Kupffer cells (KC), contain melanosomes and are able to synthesize melanin. Liver pigment cells of P. anguinus contain numerous siderosomes and melanosomes. The melanosomes are grouped together within single‐membrane‐bounded bodies, named as ‘clusters of melanosomes’ or ‘melanosomogenesis centers’. Inside such clusters, different structures are present: (1) filament‐like structures, characteristic of the initial stage of melanosome biogenesis, (2) medium electron‐dense melanosomes in different stages of melanization, (3) melanosomes with an electron‐dense cortical area and a less electron‐dense medullar area, and (4) uniformly highly electron‐dense mature melanosomes or melanin granules. Histochemical and cytochemical dihydroxyphenylalanine (DOPA) oxidase reactions in pigment cells were positive. Our results confirm the ability of amphibian KC to synthesize melanin and contribute to this little known subject.  相似文献   

9.
Melanin, which is responsible for virtually all visible skin, hair, and eye pigmentation in humans, is synthesized, deposited, and distributed in subcellular organelles termed melanosomes. A comprehensive determination of the protein composition of this organelle has been obstructed by the melanin present. Here, we report a novel method of removing melanin that includes in-solution digestion and immobilized metal affinity chromatography (IMAC). Together with in-gel digestion, this method has allowed us to characterize melanosome proteomes at various developmental stages by tandem mass spectrometry. Comparative profiling and functional characterization of the melanosome proteomes identified approximately 1500 proteins in melanosomes of all stages, with approximately 600 in any given stage. These proteins include 16 homologous to mouse coat color genes and many associated with human pigmentary diseases. Approximately 100 proteins shared by melanosomes from pigmented and nonpigmented melanocytes define the essential melanosome proteome. Proteins validated by confirming their intracellular localization include PEDF (pigment-epithelium derived factor) and SLC24A5 (sodium/potassium/calcium exchanger 5, NCKX5). The sharing of proteins between melanosomes and other lysosome-related organelles suggests a common evolutionary origin. This work represents a model for the study of the biogenesis of lysosome-related organelles.  相似文献   

10.
Through a process known as melanogenesis, melanocyte produces melanin in specialized organelles termed melanosomes, which regulates pigmentation of the skin, eyes, and hair. Gp96 is a constitutively expressed heat shock protein in the endoplasmic reticulum whose expression is further upregulated upon ultraviolet irradiation. However, the roles and mechanisms of this chaperone in pigmentation biology are unknown. In this study, we found that knockdown of gp96 by RNA interference significantly perturbed melanin synthesis and blocked late melanosome maturation. Gp96 knockdown did not impair the expression of tyrosinase, an essential enzyme in melanin synthesis, but compromised its catalytic activity and melanosome translocation. Further, mice with melanocyte‐specific deletion of gp96 displayed decreased pigmentation. A mechanistic study revealed that the defect in melanogenesis can be rescued by activation of the canonical Wnt pathway, consistent with the critical roles of gp96 in chaperoning Wnt‐coreceptor LRP6. Thus, this work uncovered the essential role of gp96 in regulating melanogenesis.  相似文献   

11.
A key feature of the pigment melanin is its high binding affinity for trace metal ions. In modern vertebrates trace metals associated with melanosomes, melanin‐rich organelles, can show tissue‐specific and taxon‐specific distribution patterns. Such signals preserve in fossil melanosomes, informing on the anatomy and phylogenetic affinities of fossil vertebrates. Fossil and modern melanosomes, however, often differ in trace metal chemistry; in particular, melanosomes from fossil vertebrate eyes are depleted in Zn and enriched in Cu relative to their extant counterparts. Whether these chemical differences are biological or taphonomic in origin is unknown, limiting our ability to use melanosome trace metal chemistry to test palaeobiological hypotheses. Here, we use maturation experiments on eye melanosomes from extant vertebrates and synchrotron rapid scan‐x‐ray fluorescence analysis to show that thermal maturation can dramatically alter melanosome trace element chemistry. In particular, maturation of melanosomes in Cu‐rich solutions results in significant depletion of Zn, probably due to low pH and competition effects with Cu. These results confirm fossil melanosome chemistry is susceptible to alteration due to variations in local chemical conditions during diagenesis. Maturation experiments can provide essential data on melanosome chemical taphonomy required for accurate interpretations of preserved chemical signatures in fossils.  相似文献   

12.
Various changes appear in hair by aging, and graying is the most remarkable one. Changes in melanocytes have been well studied as the cause; however, little is known about the change in melanosomes which have a role of carrying melanin pigments into hair shafts. Using pigmented hairs of Japanese females from their age of 4–75, I isolated melanosomes and observed them. As a result, I found a significant change in the morphology of hair melanosomes with age. They were ellipsoidal on the whole and there was no age dependence in the major axis, while the minor axis significantly increased and its frequency distribution broadened with age. The anticipated volume of the melanosome of the oldest person hairs was about twice larger than that of child hairs. This enlargement of melanosome seems to be a cause of the age‐related color change in pigmented hairs from brown to black.  相似文献   

13.
Human skin hyperpigmentation disorders occur when the synthesis and/or distribution of melanin increases. The distribution of melanin in the skin is achieved by melanosome transport and transfer. The transport of melanosomes, the organelles where melanin is made, in a melanocyte precedes the transfer of the melanosomes to a keratinocyte. Therefore, hyperpigmentation can be regulated by decreasing melanosome transport. In this study, we found that an extract of Saururus chinensis Baill (ESCB) and one of its components, manassantin B, inhibited melanosome transport in Melan‐a melanocytes and normal human melanocytes (NHMs). Manassantin B disturbed melanosome transport by disrupting the interaction between melanophilin and myosin Va. Manassantin B is neither a direct nor an indirect inhibitor of tyrosinase. The total melanin content was not reduced when melanosome transport was inhibited in a Melan‐a melanocyte monoculture by manassantin B. Manassantin B decreased melanin content only when Melan‐a melanocytes were co‐cultured with SP‐1 keratinocytes or stimulated by α‐MSH. Therefore, we propose that specific inhibitors of melanosome transport, such as manassantin B, are potential candidate or lead compounds for the development of agents to treat undesirable hyperpigmentation of the skin.  相似文献   

14.
Melanin in the human retinal pigment epithelium (RPE) is believed to play an important photoprotective role. However, unlike in skin, melanosomes in the RPE are rather long‐lived organelles, which increases their risk of modifications resulting from significant fluxes of light and high oxygen tension. In this work, we subjected purified bovine RPE melanosomes to prolonged aerobic exposure with intense visible and near ultraviolet radiation and studied the effects of irradiation on the melanosome's capacity to inhibit peroxidation of lipids induced by iron/ascorbate. We found that control, untreated melanosomes show a concentration‐dependent inhibition of the accumulation of lipid hydroperoxides and the accompanying consumption of oxygen, but photolysed melanosomes lose their antioxidant efficiency and even became prooxidant. The prooxidant action of partially photobleached melanosomes was observed for pigment granules with a melanin content reduced by about 50% compared with untreated melanosomes, as determined by electron spin resonance spectroscopy. We have previously shown that a similar loss in the content of the RPE melanin occurs during human lifetime, which may suggest that the normal antioxidant properties of human RPE melanin become compromised with aging.  相似文献   

15.
Iridescent colors in feathers are some of the brightest in nature, and are produced by coherent light scattering from periodic arrangements of melanosomes (melanin‐containing organelles). Hollow melanosomes, an evolutionary innovation largely restricted to birds, contain an optically powerful combination of high and low refractive indices (from the melanin and air, respectively) that enables production of brighter and more saturated colors than solid melanosomes. However, despite their significance to avian color and potential utility as optical biomaterials, little is known about the ontogeny of either the melanosomes themselves or the nanostructures they comprise. We used light and electron microscopy to characterize nanostructural development in regenerating feathers of wild turkeys, a species with iridescent color produced by a hexagonally close‐packed array of hollow melanosomes. We found that melanosomes form as solid bodies in melanocytes. Later in development, largely after placement in developing barbules, their interiors dissolve and leave hollow cores. These now hollow melanosomes are initially disorganized in the barbule, but become close‐packed as they are pulled to the edge of the barbule, likely through a combination of forces including depletion–attraction. These data suggest that these structurally colored tissues are self‐assembled and represent novel pathways of development. J. Morphol. 276:378–384, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
The diversity of pigmentation in the skin, hair, and eyes of humans has been largely attributed to the diversity of pH in melanosomes with acidic pH being proposed to suppress melanin production. Tyrosinase has an optimum pH of 7.4 and its activity is suppressed greatly at lower pH values. The first step of eumelanogenesis is the oxidation of tyrosine to dopachrome (DC) via dopaquinone. However, how eumelanogenesis is controlled by pH beyond this stage is not known. In this study, we examined the effects of pH (5.3–7.3) on the conversion of DC to 5,6‐dihydroxyindole (DHI) and 5,6‐dihydroxyindole‐2‐carboxylic acid (DHICA) and the subsequent oxidation of DHI and DHICA to form eumelanin. The effects of Cu2+ ions on those reactions were also compared. The results indicate that an acidic pH greatly suppresses the late stages of eumelanogenesis and that Cu2+ ions accelerate the conversion of DC to DHICA and its subsequent oxidation.  相似文献   

17.
Humans with Hermansky-Pudlak Syndrome (HPS) or ocular albinism (OA1) display abnormal aspects of organelle biogenesis. The multigenic disorder HPS displays broad defects in biogenesis of lysosome-related organelles including melanosomes, platelet dense granules, and lysosomes. A phenotype of ocular pigmentation in OA1 is a smaller number of macromelanosomes, in contrast to HPS, where in many cases the melanosomes are smaller than normal. In these studies we define the role of the Mregdsu gene, which suppresses the coat color dilution of Myo5a, melanophilin, and Rab27a mutant mice in maintaining melanosome size and distribution. We show that the product of the Mregdsu locus, melanoregulin (MREG), interacts both with members of the HPS BLOC-2 complex and with Oa1 in regulating melanosome size. Loss of MREG function facilitates increase in the size of micromelanosomes in the choroid of the HPS BLOC-2 mutants ruby, ruby2, and cocoa, while a transgenic mouse overexpressing melanoregulin corrects the size of retinal pigment epithelium (RPE) macromelanosomes in Oa1ko/ko mice. Collectively, these results suggest that MREG levels regulate pigment incorporation into melanosomes. Immunohistochemical analysis localizes melanoregulin not to melanosomes, but to small vesicles in the cytoplasm of the RPE, consistent with a role for this protein in regulating membrane interactions during melanosome biogenesis. These results provide the first link between the BLOC pathway and Oa1 in melanosome biogenesis, thus supporting the hypothesis that intracellular G-protein coupled receptors may be involved in the biogenesis of other organelles. Furthermore these studies provide the foundation for therapeutic approaches to correct the pigment defects in the RPE of HPS and OA1.  相似文献   

18.
The color of hair, skin, and eyes in animals mainly depends on the quantity, quality, and distribution of the pigment melanin, which occurs in two types: black to brown eumelanin and yellow to reddish pheomelanin. Microanalytical methods to quantify the amounts of eumelanin and pheomelanin in biological materials were developed in 1985. The methods are based on the chemical degradation of eumelanin to pyrrole‐2,3,5‐tricarboxylic acid and of pheomelanin to aminohydroxyphenylalanine isomers, which can be analyzed and quantitated by high performance liquid chromatography. This review summarizes and compares eumelanin and pheomelanin contents in various pigmented tissues obtained from humans, mice, and other animals. These methods have become valuable tools to study the functions of melanin, the control of melanogenesis, and the actions and interactions of pigmentation genes. The methods have also found applications in many clinical studies. High levels of pheomelanin are found only in yellow to red hairs of mammals and in red feathers of birds. It remains an intriguing question why lower vertebrates such as fishes do not synthesize pheomelanin. Detectable levels of pheomelanin are detected in human skin regardless of race, color, and skin type. However, eumelanin is always the major constituent of epidermal melanin, and the skin color appears to be determined by the quantity of melanin produced but not by the quality.  相似文献   

19.
Analysis of melanins and melanosomes in eight hair and skin samples taken of adult pigmented Argentine llamas (Lama glama L.) has been carried out. In each sample, eumelanins, pheomelanins and alkali-soluble melanins were identified. The total amount of melanins and the amount of eumelanins both decreased from black to reddish brown colour, while pheomelanins were found to be present in small quantities in each sample. Eumelanosomes were round and oval-shaped, displaying transverse striations clearly visible at low magnification. Dark brown samples revealed all four melanosomes stages. Stages I and II melanosomes appeared as large, asymmetrical vacuoles containing numerous microvesicles randomly scattered within an amorphous proteinaceous material (vesiculo-globular bodies). Stage III melanosomes had microgranular melanin deposits in the microvesicles and in the matrix. The fully melanized melanosomes (stage IV) were primarily round-shaped, showing an irregular outline and the electron-dense pigment was arranged to form large clusters. In light brown melanocytes, numerous melanosomes at different maturation stages could be found. Premelanosomes appeared ovoid, containing amorphous proteinaceous material and spotty and microgranular deposits. Mature melanosomes were fully melanized, homogeneously electron-dense, ovoid granules.  相似文献   

20.
Melanins are an important factor determining the vulnerability of mammalian skin to UV radiation and thus to UV-induced skin cancers. Transgenic mice overexpressing hepatocyte growth factor/scatter factor (HGF/SF) have extra-follicular dermal melanocytes, notably in the papillary upper dermis, and are susceptible to UV-induced melanoma. Pigmented HGF/SF neonatal mice are more susceptible than albino HGF/SF animals to UVA -induced melanoma, indicating an involvement of melanin in melanoma formation. This raises the question of the effect of transgenic HGF/SF on melanization. We developed a methodology to accurately quantitate both the production of melanin and the efficiency of melanogenesis in normal, and HGF/SF transgenic mice in vivo. Skin and hair shafts of 5 day old and adult (3 week old) C57BL/6-HGF/SF and corresponding C57BL/6 wild type mice were investigated by electron paramagnetic resonance spectroscopy (EPR) to quantitate melanin, by transmission electron microscopy (TEM) for the presence of melanosomes, and by standard histology and by Western blotting and zymography to determine the expression and activity of melanogenesis-related proteins. Eumelanin but no phaeomelanin was detected in transgenic C57BL/6-HGF and C57BL/6 wild type mice. Transgenic HGF/SF overexpression did not change the type of melanin produced in the skin or hair, did not affect the terminal content of melanin production in standard samples of hair and did not influence hair cycle/morphogenesis-related changes in skin thickness. No melanocytes were found in the epidermis and no melanosomes were found in epidermal keratinocytes. HGF/SF transgenic mice thus lack the epidermal melanin UV-protection found in constitutively dark human skin. We conclude that melanocytes in the HGF/SF transgenic mouse, particularly in the papillary dermis, are vulnerable to UVA which interacts with eumelanin but not phaeomelanin to induce melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号