首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought tolerance by reducing root metabolic costs, permitting greater root growth and water acquisition from drying soil. To test this hypothesis, recombinant inbred lines with high and low RCA were observed under water stress in the field and in soil mesocosms in a greenhouse. In the field, lines with high RCA had 30% more shoot biomass at flowering compared with lines with low RCA under water stress. Root length density in deep soil was significantly greater in the high RCA lines compared with the low RCA lines. Mid‐day leaf relative water content in the high RCA lines was 10% greater than in the low RCA lines under water stress. The high RCA lines averaged eight times the yield of the low RCA lines under water stress. In mesocosms, high RCA lines had less seminal root respiration, deeper rooting, and greater shoot biomass compared with low RCA lines under water stress. These results support the hypothesis that RCA is beneficial for drought tolerance in maize by reducing the metabolic cost of soil exploration.  相似文献   

2.
Root cortical burden influences drought tolerance in maize   总被引:1,自引:0,他引:1  

Background and Aims

Root cortical aerenchyma (RCA) increases water and nutrient acquisition by reducing the metabolic costs of soil exploration. In this study the hypothesis was tested that living cortical area (LCA; transversal root cortical area minus aerenchyma area and intercellular air space) is a better predictor of root respiration, soil exploration and, therefore, drought tolerance than RCA formation or root diameter.

Methods

RCA, LCA, root respiration, root length and biomass loss in response to drought were evaluated in maize (Zea mays) recombinant inbred lines grown with adequate and suboptimal irrigation in soil mesocosms.

Key Results

Root respiration was highly correlated with LCA. LCA was a better predictor of root respiration than either RCA or root diameter. RCA reduced respiration of large-diameter roots. Since RCA and LCA varied in different parts of the root system, the effects of RCA and LCA on root length were complex. Greater crown-root LCA was associated with reduced crown-root length relative to total root length. Reduced LCA was associated with improved drought tolerance.

Conclusions

The results are consistent with the hypothesis that LCA is a driver of root metabolic costs and may therefore have adaptive significance for water acquisition in drying soil.  相似文献   

3.
Effect of phosphorus availability on basal root shallowness in common bean   总被引:27,自引:2,他引:25  
Liao  Hong  Rubio  Gerardo  Yan  Xiaolong  Cao  Aiqin  Brown  Kathleen M.  Lynch  Jonathan P. 《Plant and Soil》2001,232(1-2):69-79
Root gravitropism may be an important element of plant response to phosphorus availability because it determines root foraging in fertile topsoil horizons, and thereby phosphorus acquisition. In this study we seek to test this hypothesis in both two dimensional paper growth pouch and three-dimensional solid media of sand and soil cultures. Five common bean (Phaseolus vulgaris L.) genotypes with contrasting adaptation to low phosphorus availability were evaluated in growth pouches over 6 days of growth, and in sand culture and soil culture over 4 weeks of growth. In all three media, phosphorus availability regulated the gravitropic response of basal roots in a genotype-dependent manner. In pouches, sand, and soil, the phosphorus-inefficient genotype DOR 364 had deeper roots with phosphorus stress, whereas the phosphorus-efficient genotype G19833 responded to phosphorus stress by producing shallower roots. Genotypes were most responsive to phosphorus stress in sand culture, where relative root allocation to the 0–3- and 3–6-cm horizons increased 50% with phosphorus stress, and varied 300% (3–6 cm) to 500% (0–3 cm) among genotypes. Our results indicate that (1) phosphorus availability regulates root gravitropic growth in both paper and solid media, (2) responses observed in young seedlings continue throughout vegetative growth, (3) the response of root gravitropism to phosphorus availability varies among genotypes, and (4) genotypic adaptation to low phosphorus availability is correlated with the ability to allocate roots to shallow soil horizons under phosphorus stress.  相似文献   

4.
Root hairs confer a competitive advantage under low phosphorus availability   总被引:23,自引:3,他引:20  
Bates  Terence R.  Lynch  Jonathan P. 《Plant and Soil》2001,236(2):243-250
Root hairs are presumably important in the acquisition of immobile soil resources such as phosphorus. The density and length of root hairs vary substantially within and between species, and are highly regulated by soil phosphorus availability, which suggests that at high nutrient availability, root hairs may have a neutral or negative impact on fitness. We used a root-hairless mutant of the small herbaceous dicot Arabidopsis thaliana to assess the effect of root hairs on plant competition under contrasting phosphorus regimes. Wildtype plants were grown with hairless plants in a replacement series design at high (60 m phosphate in soil solution) and low (1 m phosphate in soil solution) phosphorus availability. At high phosphorus availability, wildtype and mutant plants were equal in growth, phosphorus acquisition, fecundity and relative crowding coefficient (RCC). At low phosphorus availability, hairless plants accumulated less biomass and phosphorus, and produced less seed when planted with wildtype plants. Wildtype plants were unaffected by the presence of hairless plants in mixed genotype plantings. Wildtype plants had RCC values greater than one while hairless plants had RCC values less than one. We conclude that root hairs increase the competitiveness of plants under low phosphorus availability but do not reduce growth or competitiveness under high phosphorus availability.  相似文献   

5.
Vanlauwe  B.  Sanginga  N  Merckx  R. 《Plant and Soil》2001,231(2):201-210
Crop and tree roots are crucial in the nutrient recycling hypotheses related to alley cropping systems. At the same time, they are the least understood components of these systems. The biomass, total N content and urea-derived N content of the Senna and maize roots in a Senna-maize alley cropping system were followed for a period of 1.5 years (1 maize-cowpea rotation followed by 1 maize season) to a depth of 90 cm, after the application of 15N labeled urea. The highest maize root biomass was found in the 0–10 cm layer and this biomass peaked at 38 and 67 days after planting the 1994 maize (DAP) between the maize rows (112 kg ha–1, on average) and at 38, 67 and 107 DAP under the maize plants (4101 kg ha–1, on average). Almost no maize roots were found below 60 cm at any sampling date. Senna root biomass decreased with time in all soil layers (from 512 to 68 kg ha–1 for the 0–10 cm layer between 0 and 480 DAP). Below 10 cm, at least 62% of the total root biomass consisted of Senna roots and this value increased to 87% between 60 and 90 cm. Although these observations support the existence of a Senna root `safety net' between the alleys which could reduce nutrient leaching losses, the depth of such a net may be limited as the root biomass of the Senna trees in the 60–90 cm layer was below 100 kg ha–1, equivalent to a root length density of only < 0.05 cm cm–3. The proportion of maize root N derived from the applied urea (%Ndfu) decreased significantly with time (from 21% at 21 DAP to 8% at 107 DAP), while %Ndfu of the maize roots at the second harvest (480 DAP) was only 0.6%. The %Ndfu of the Senna roots never exceeded 4% at any depth or sampling time, but decreased less rapidly compared to the %Ndfu of the maize roots. The higher %Ndfu of the maize roots indicates that maize is more efficient in retrieving urea-derived N. The differences in dynamics of the %Ndfu also indicate that the turnover of N through the maize roots is much faster than the turnover of N through the Senna roots. The recovery of applied urea-N by the maize roots was highest in the top 0–10 cm of soil and never exceeded 0.4% (at 38 DAP) between the rows and 7.1% (at 67 DAP) under the rows. Total urea N recovery by the maize roots increased from 1.8 to 3.2% during the 1994 maize season, while the Senna roots never recovered more than 0.8% of the applied urea-N at any time during the experimental period. These values are low and signify that the roots of both plants will only marginally affect the total recovery of the applied urea-N. Measurement of the dynamics of the biomass and N content of the maize and Senna roots helps to explain the observed recovery of applied urea-N in the aboveground compartments of the alley cropping system.  相似文献   

6.
Postma JA  Lynch JP 《Annals of botany》2011,107(5):829-841

Background and Aims

The formation of root cortical aerenchyma (RCA) reduces root respiration and nutrient content by converting living tissue to air volume. It was hypothesized that RCA increases soil resource acquisition by reducing the metabolic and phosphorus cost of soil exploration.

Methods

To test the quantitative logic of the hypothesis, SimRoot, a functional–structural plant model with emphasis on root architecture and nutrient acquisition, was employed. Sensitivity analyses for the effects of RCA on the initial 40 d of growth of maize (Zea mays) and common bean (Phaseolus vulgaris) were conducted in soils with varying degrees of phosphorus availability. With reference to future climates, the benefit of having RCA in high CO2 environments was simulated.

Key Results

The model shows that RCA may increase the growth of plants faced with suboptimal phosphorus availability up to 70 % for maize and 14 % for bean after 40 d of growth. Maximum increases were obtained at low phosphorus availability (3 µm). Remobilization of phosphorus from dying cells had a larger effect on plant growth than reduced root respiration. The benefit of both these functions was additive and increased over time. Larger benefits may be expected for mature plants. Sensitivity analysis for light-use efficiency showed that the benefit of having RCA is relatively stable, suggesting that elevated CO2 in future climates will not significantly effect the benefits of having RCA.

Conclusions

The results support the hypothesis that RCA is an adaptive trait for phosphorus acquisition by remobilizing phosphorus from the root cortex and reducing the metabolic costs of soil exploration. The benefit of having RCA in low-phosphorus soils is larger for maize than for bean, as maize is more sensitive to low phosphorus availability while it has a more ‘expensive’ root system. Genetic variation in RCA may be useful for breeding phosphorus-efficient crop cultivars, which is important for improving global food security.  相似文献   

7.
The distribution of root biomass and physical and chemical properties of the soils were studied in a semideciduous and in a lower montane rain forest in Panama. Roots and soil samples were taken by means of soil cores (25 cm deep) and divided into five, 5-cm deep sections. Soils were wet-sieved to retrieve the roots that were classified in four diameter classes: very fine roots (<1 mm), fine roots (1–2 mm), medium roots (2–5 mm) and coarse roots (5–50 mm). Soil samples were analyzed for organic carbon, total nitrogen, available phosphorus, exchangeable bases, cation exchange capacity, pH, aluminium and exchangeable acidity. Total root biomass measured with the soil corer (roots <50 mm in diameter) was not different between the forests (9.45 t ha-1), while biomass of very fine roots was larger in the mountains (2.00 t ha-1) than in the lowlands (1.44 t ha-1). The soils in the semideciduous forest were low in available phosphorus, while in the mountains, soils had low pH, high exchangeable aluminium and exchangeable acidity, and low concentration of exchangeable bases. Phosphorus was in high concentration only in the first 5 cm of the soil. In both forests, there was an exponential reduction of root biomass with increasing depth, and most of the variation in the vertical distribution of roots less than 2 mm in diameter was explained by the concentration of nitrogen in the soils. The results of this study support the hypothesis that a large root biomass in montane forests is related to nutrients in low concentration and diluted in organic soils with high CEC and low bulk density, and that fine root biomass in tropical forests in inversely related to calcium availability but not a phosphorus as has been suggested for other forests.  相似文献   

8.
漓江水陆交错带典型立地根系分布与土壤性质的关系   总被引:1,自引:0,他引:1  
李青山  王冬梅  信忠保  李扬  任远 《生态学报》2014,34(8):2003-2011
研究根系与土壤关系是发掘河岸带生态退化等问题内在原因的重要途径。在漓江流域水陆交错带选取缓坡、陡坡、江心洲、人工岸坡4种典型立地类型,对不同土层深度的根长密度、根系生物量、比根长,以及根系特征与土壤有机质、全氮、有效磷的关系进行了研究,旨在为漓江流域生态修复过程中植被恢复、植被配置、快速绿化材料选取提供科学依据。结果表明:(1)同一立地类型0—10 cm土层和10—20 cm土层比根长差异性不显著。0—10 cm到10—20 cm土层,各立地类型根长密度和根系生物量密度均减小,但不同立地类型根长密度和根系生物量密度的差异程度逐渐缩小,表明地形、地表植物类型及生长状况对根长密度分布的影响也随土层深度的增加而逐渐减小。细根根长和生物量随着土壤深度的增加而减小。(2)土壤有机质含量差异性显著,分布规律为人工岸坡陡坡江心洲缓坡;土壤全氮含量从大到小依次是人工岸坡、陡坡、缓坡、江心洲,其值分别为:3.12、2.33、1.56、1.32 g/kg;土壤全氮与土壤有机质呈显著正相关。江心洲和缓坡有效磷含量远远大于人工岸坡和陡坡,原因是漓江水长期受人为洗漱影响,导致受江水干扰大的立地类型有效磷含量高。(3)根长密度、比根长、根系生物量与有机质、全氮含量呈正相关,与有效磷含量呈负相关,说明土壤根系越丰富,越有利于增加土壤有机质和全氮含量,但遏制了土壤有效磷。细根长度、生物量与根长密度在0.01水平(双侧)上显著正相关,与根系生物量密度呈负相关。  相似文献   

9.
唐国  胡雷  宋小艳  李香真  王长庭 《生态学报》2022,42(15):6250-6264
根系是草原生态系统中最重要的碳库之一,分析高寒草甸植物群落生物量和地下不同径级根系碳分配特征及根系的生长特征对降雨变化的响应,有利于了解全球变化背景下高寒草甸植物根系、土壤碳氮循环及其过程。采用微根管技术原位监测5种降雨处理下(增雨50%:1.5P、自然降雨:1.0P、减雨30%:0.7P、减雨50%:0.5P、减雨90%:0.1P)高寒草甸植物群落和根系属性(现存量、生产量、死亡量、根系寿命和周转速率)的变化特征,结果表明:(1)降雨变化对地上植物群落生物量无显著影响,但0.5P和0.1P显著增加禾本科生物量(P<0.05)。(2)总根系现存量在处理间无显著差异,但随着降雨量减少呈先增加后降低的趋势。土层间不同径级根系现存量差异显著,0-10 cm土层1.5P和0.7P1级根现存量显著增加,2级和3级根现存量显著降低;在10-20 cm土层,1.0P2级根系现存量显著高于其余处理(P<0.05)。(3)总根生产量与死亡量随降雨减少而降低,在0-10 cm土层,1.0P总根生产量和死亡量最高,0.1P显著降低了1级根生产量(P<0.05)。(4)0.1P显著增加10-20 cm土层1级根和总根寿命(P<0.05)。(5)根系周转随降雨量减少呈降低趋势,但无显著差异(P>0.05)。(6)结构方程模型进一步表明:根系现存量和生产量受土层和水分的直接影响,土层和养分对根系周转有负效应。综上所述,降雨量的变化并未显著改变地下总根系生物量,但少量降雨变化(0.7P、1.5P)会降低植物对2、3级根生物量的分配,投入更多资源以促进1级根的生长;而水分下降至轻度水分胁迫(0.1P),植物会减少地下各径级根系生物量的分配,保持低根系生物量消耗和低根系生长来维持其正常的生长状态,完成其正常的生态功能。  相似文献   

10.
Suboptimal phosphorus availability is a primary constraint for terrestrial plant growth. Seminal roots play an important role in acquisition of nutrients by plant seedlings. The length and number of seminal roots may be particularly important in acquisition of immobile nutrients such as phosphorus by increasing soil exploration. The objective of this study was to identify quantitative trait loci (QTL) controlling seminal root growth in response to phosphorus stress in maize, and to characterize epistatic interactions among QTL. Seminal root length and number were evaluated in 162 recombinant inbred lines derived from a cross between B73 and Mo17 in seedlings grown in a controlled environment. B73 and Mo17 significantly differed for seminal root length under low phosphorus, but not under adequate phosphorus conditions. Seminal root length of the population grown under low phosphorus ranged from 0 to 79.2 cm with a mean of 32.3 cm; while seminal root length of plants grown under high phosphorus ranged from 0.67 to 59.0 cm with a mean of 23.4 cm. Under low phosphorus, one main-effect QTL was associated with seminal root length and three QTL with seminal root number; under high phosphorus, two QTL with seminal root length and three QTL for seminal root number. These accounted for 11, 25.4, 22.8, and 24.1% of the phenotypic variations for seminal root length and number at low phosphorus, and seminal root length and number at high phosphorus, respectively. Di-genic epistatic loci were detected for seminal root length at low phosphorus (two pairs) seminal root number at low phosphorus (eight pairs), seminal root length at high phosphorus (four pairs), and seminal root number at high phosphorus (two pairs), which accounted for 23.2, 50.6, 32.2, and 20.3% of the total variations, respectively. Seminal root traits observed here were positively yet weakly correlated with shoot biomass in the field under low phosphorus, although no coincident QTL were detected. These results suggest that epistatic interactions are important in controlling genotypic variation associated with seedling seminal root traits.  相似文献   

11.
Despite the obvious importance of roots to agro‐ecosystem functioning, few studies have attempted to examine the effects of warming on root biomass and distribution, especially under different tillage systems. In this study, we performed a field warming experiment using infrared heaters on winter wheat, in long‐term conventional tillage and no‐tillage plots, to determine the responses of root biomass and distribution to warming. Soil monoliths were collected from three soil depths (0–10, 10–20, and 20–30 cm). Results showed that root biomass was noticeably increased under both till and no‐till tillage systems (12.1% and 12.9% in 2011, and 9.9% and 14.5% in 2013, in the two tillage systems, respectively) in the 0–30 cm depth, associated with a similar increase in shoot biomass. However, warming‐induced root biomass increases occurred in the deeper soil layers (i.e., 10–20 and 20–30 cm) in till, while the increase in no‐till was focused in the surface layer (0–10 cm). Differences in the warming‐induced increases in root biomass between till and no‐till were positively correlated with the differences in soil total nitrogen (R2 = .863, < .001) and soil bulk density (R2 = .853, < .001). Knowledge of the distribution of wheat root in response to warming should help manage nutrient application and cycling of soil C‐N pools under anticipated climate change conditions.  相似文献   

12.
This research adds to the limited data on coarse and fine root biomass for blue oak (Quercus douglasii Hook and Arn.), a California deciduous oak species found extensively throughout the interior foothills surrounding the Central Valley. Root systems of six blue oak trees were analyzed using three methods — backhoe excavation, quantitative pits, and soil cores. Coarse root biomass ranged from 7 to 177 kg per tree. Rooting depth for the main root system ranged from 0.5 to 1.5 m, with an average of 70% of excavated root biomass located above 0.5 m. Of the total biomass in excavated central root systems, primary roots (including burls) accounted for 56% and large lateral roots (> 20 mm diameter) accounted for 36%. Data from cores indicated that most biomass outside of the root crown was located in fine roots and that fine root biomass decreased with depth. At surface depths (0–20 cm), small-fine (< 0.5 mm diameter) roots accounted for 71%, large-fine (0.5–2.0 mm) for 25%, and coarse (> 2 mm) for 4% of total root biomass collected with cores. Mean fine root biomass density in the top 50 cm was 0.43 kg m−3. Fine root biomass did not change with increasing distance from the trees (up to approximately 5 m). Thus, fine roots were not concentrated under the tree canopies. Our results emphasize the importance of the smallest size class of roots (<0.5 mm), which had both higher N concentration and, in the area outside the central root system, greater biomass than large fine (0.5–2.0 mm) or coarse (> 2.0 mm) roots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
He  Yong  Liao  Hong  Yan  Xiaolong 《Plant and Soil》2003,248(1-2):247-256
A localized supply of phosphorus may affect root morphology and architecture, and thereby affect phosphorus uptake by rice plants. In the present study, we attempted to test this hypothesis using two rice cultivars representing upland and lowland ecotypes grown in specially designed split and stratified soil cultures with a low-phosphorus red soil. Our data indicate that a localized supply of phosphorus increased both total root length and root fineness, particularly in the high-phosphorus zone. In split culture, plants roots tended to preferentially grow on the high-phosphorus zone, with about 70–75% of the total root length allocated to the high-phosphorus compartment. The total root length on the high-phosphorus side in the split-phosphorus treatment was significantly longer than that in the homogenously high-phosphorus treatment, implying that a phosphorus-deficiency signal from the low-phosphorus side may stimulate the growth of the roots located in the high-phosphorus zone. In stratified soil culture, changes in root morphology and architecture were also observed as indicated by increased total root length, root fineness and relative root allocation in the high-phosphorus layers, again suggesting altered root morphology and preferential root proliferation in the high-phosphorus regions. The induced changes in root morphology and architecture by localized phosphorus supply may have both physiological significance and practical implications in that plants can meet the demand for phosphorus with parts of the roots reaching the high-phosphorus zone, hence localized fertilization methods such as side dressing or banded application of phosphorus fertilizers may both minimize phosphorus fixation by the soil and increase phosphorus uptake efficiency from the fertilizers.  相似文献   

14.
在塔克拉玛干沙漠腹地,采用分层分段挖掘法对不同灌溉量条件下(每株每次灌水35、24.5和14 kg)梭梭(Haloxylon ammodendron)幼苗根系的分布特征进行了研究。结果表明: 1)随着灌溉量的减少,梭梭幼苗根系生物量的分布格局有向深层发展的趋势,在不同灌溉量条件下地下垂直各层生物量与土壤垂直深度呈显著的负对数关系;2)各灌溉量梭梭幼苗的最大水平根长为垂直根长的2倍,但不同灌溉量根系生物量的水平分布趋势一致;3)吸收根生物量的垂直分布与土壤含水量的垂直变化基本一致,均呈“单峰型”曲线,但灌溉量不同,吸收根生物量峰值在土壤中出现的位置也不同,随着灌溉量的减少,吸收根集中分布区有向深层发展的趋势;4)根长、根表面积和根体积随着土壤深度的增加均呈“单峰型”曲线,灌溉量愈小,根长、根表面积和根体积的峰值愈位于土壤的深层;5)根冠比和垂直根深与株高之比随着灌溉量的减少而呈增加的趋势。  相似文献   

15.
马守臣  徐炳成  李凤民  黄占斌 《生态学报》2008,28(12):6172-6179
通过田间试验研究了不同时期根修剪处理对冬小麦(Triticum aestivum)根系大小与分布、根系效率、水分利用效率及产量形成的影响。设置4个根修剪处理:越冬期小剪根(WS)、越冬期大剪根(WB),返青期小剪根(GS)、返青期大剪根(GB),未剪根小麦作为对照(CK)。结果表明,到花期时,各根修剪处理小麦的在0~120cm总根量均显著小于对照。与对照相比各根修剪处理主要是显著地减少了上层土壤中的根量。但WS和GS两小剪根处理和对照相比在中层土壤中有较大的根量;花后各处理小麦旗叶的气孔导度和蒸腾速率均显著大于对照。这说明根修剪处理减少了小麦表层的根量,从而削弱了表土干旱信号对作物与外界气体交换的抑制作用。花期时各根修剪小麦的净光合速率均显著高于对照,而单位面积上的根呼吸速率均显著小于对照,根修剪处理提高了小麦的根系效率,使更多的光合产物用于籽粒生产,从而提高了小麦的收获指数。根修剪还提高了小麦的水分利用效率,其中WS、WB、GS处理的水分利用效率显著高于对照。但是GB处理的水分利用效率却没有显著提高。因此,本研究进一步证明了由不同年代品种得到的推测,认为在旱地农业中,通过遗传育种或采用适当农艺措施优化根系分布,既可以减少生长前期作物对水分的过度消耗,又能够削弱花后表土过度干旱对作物生长抑制作用,同时降低根系对同化产物的消耗,对作物产量及水分利用效率的提高具有积极的作用。  相似文献   

16.
Abstract We estimated the below‐ground net plant productivity (BNPP) of different biomass components in an intensively and continuously 45‐ha grazed site and in a neighbouring exclosure ungrazed for 16 years for a natural mountain grassland in central Argentina. We measured approximately twice as much dead below‐ground biomass in the grazed site as in the ungrazed site, with a strong concentration of total below‐ground biomass towards the upper 10 cm of the soil layer in both sites. The main contribution to total live biomass was accounted for by very fine (<0.5 mm) and fine roots (0.5–1.0 mm) both at the grazed (79%) and at the ungrazed (81%) sites. We measured more dead biomass for almost all root components, more live biomass of rhizomes, tap roots and bulbs, and less live biomass of thicker roots (>1 mm) in the grazed site. The seasonal variation of total live below‐ground biomass mainly reflected climate, with the growing season being limited to the warmer and wetter portion of the year, but such variation was higher in the grazed site. Using different methods of estimation of BNPP, we estimated maximum values of 1241 and 723 g m?2 year?1 for the grazed and ungrazed sites, respectively. We estimated that very fine root productivity was almost twice as high at the grazed site as at the ungrazed one, despite the fact that both sites had similar total live biomass, and root turnover rate was twofold at the grazed site.  相似文献   

17.
Root hydraulic conductivity has been shown to decrease under phosphorus (P) deficiency. This study Investigated how the formation of aerenchyma is related to this change. Root anatomy, as well as root hydraulic conductivity was studied In maize (Zea mays L.) roots under different phosphorus nutrition conditions. Plant roots under P stress showed enhanced degradation of cortical cells and the aerenchyma formation was associated with their reduced root hydraulic conductivity, supporting our hypothesis that air spaces that form in the cortex of phosphorusstressed roots Impede the radial transport of water in a root cylinder. Further evidence came from the variation In aerenchyma formation due to genotypic differences. Five maize inbred lines with different porosity in their root cortex showed a significant negative correlation with their root hydraulic conductivity. Shoot relative water content was also found lower In P-deficient maize plants than that in P-sufficient ones when such treatment was prolonged enough, suggesting a limitation of water transport due to lowered root hydraulic conductivity of P-deficient plants.  相似文献   

18.
Biochar is beneficial for improving soil quality and crop productivity. However, the long‐term effects of biochar addition on temporal dynamics of plant shoot and root growth, and the changes in soil properties and nitrogen (N) leaching are still obscure. Here, based on a long‐term (7 years) biochar field experiment with rice in northwest China, we investigated the effects of two biochar rates (0 and 9 t ha?1 year?1) and two N fertilizer rates (0 and 300 kg N ha?1 year?1) on shoot and root growth, root morphology, N leaching, and soil physicochemical properties. The results showed that both biochar and N fertilizer significantly promoted rice growth, with their interaction significant only in some cases. Both fertilizers enhanced rice shoot biomass and N accumulation in various growth stages as well as increased grain yield. Nitrogen fertilizer significantly promoted root growth regardless of biochar application. However, biochar application without N fertilizer increased root biomass and length during the whole growth period, except in the booting stage; biochar with N application promoted root growth at tillering, reduced root biomass but maintained root length with low root diameter and high specific root length during the jointing and booting stages, and then delayed root senescence in the grain filling stage. Long‐term applications of biochar and N fertilizer reduced 10%–12% bulk density of topsoil compared to the control treatment with no N fertilizer and no biochar. Long‐term biochar application also improved soil total organic carbon and concentrations of available N, phosphorus, and potassium. In addition, biochar and N fertilizer applied together significantly reduced nitrate and ammonium concentration in leachate at different soil depths. In conclusion, biochar could regulate root growth, root morphology, soil properties, and N leaching to increase rice N fertilizer‐use efficiency.  相似文献   

19.
The mechanism responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation in sudangrass (Sorghum vulgare Pers.) was investigated in a phosphorus-deficient sandy soil (0.5 micrograms phosphorus per gram soil) amended with increasing levels of phosphorus as superphosphate (0, 28, 56, 228 micrograms per gram soil). The root phosphorus content of 4-week-old plants was correlated with the amount of phosphorus added to the soil. Root exudation of amino acids and reducing sugars was greater for plants grown in phosphorus-deficient soil than for those grown in the phosphorus-treated soils. The increase in exudation corresponded with changes in membrane permeability of phosphorus-deficient roots, as measured by K+ (86Rb) efflux, rather than with changes in root content of reducing sugars and amino acids. The roots of phosphorus-deficient plants inoculated at 4 weeks with Glomus fasciculatus were 88% infected after 9 weeks as compared to less than 25% infection in phosphorus-sufficient roots; these differences were correlated with root exudation at the time of inoculation. For plants grown in phosphorus-deficient soil, infection by vesicular-arbuscular mycorrhizae increased root phosphorus which resulted in a decrease in root membrane permeability and exudation compared to nonmycorrhizal plants. It is proposed that, under low phosphorus nutrition, increased root membrane permeability leads to net loss of metabolites at sufficient levels to sustain the germination and growth of the mycorrhizal fungus during pre- and postinfection. Subsequently, mycorrhizal infection leads to improvement of root phosphorus nutrition and a reduction in membrane-mediated loss of root metabolites.  相似文献   

20.
半干旱草地长期封育进程中针茅植物根系格局变化特征   总被引:6,自引:3,他引:3  
苏纪帅  赵洁  井光花  魏琳  刘建  程积民  张金娥 《生态学报》2017,37(19):6571-6580
以云雾山不同封育年限草地针茅植物根系和土壤为研究对象,对其根系特征、土壤特性及两者关系进行研究,以探讨分析封育对针茅根系格局的影响。结果表明:(1)针茅植物根系生物量、根长密度、根表面积和根体积在封育初期轻微下降,之后缓慢上升,并在封育30 a草地得到显著增加。(2)随封育年限增加,各根系指标在3种针茅物种间的组成格局具有类似变化规律,具体表现为:长芒草在放牧草地所占比例最高,之后逐渐降低,并在封育30 a草地消失;大针茅所占比例呈先升后降变化规律,并在封育22 a草地达到最大值;甘青针茅仅出现于封育30 a草地,且占据优势地位。(3)大针茅和甘青针茅0—0.6 mm径级根系比例高于大针茅,使其根系直径显著低于大针茅,比根长和比根面积显著高于大针茅;此外,长芒草根组织密度显著高于长芒草和甘青针茅。(4)长期封育在显著提高土壤水分、养分含量和土壤氮磷比的同时显著降低土壤碳氮比,但对微生物生物量碳、氮无明显影响。(5)针茅根系特征与土壤指标的关联性分析显示针茅根系受土壤氮资源的显著影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号