首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  总被引:7,自引:0,他引:7  
Li M  Tang D  Wang K  Wu X  Lu L  Yu H  Gu M  Yan C  Cheng Z 《Plant biotechnology journal》2011,9(9):1002-1013
Panicle architecture is one of the most important agronomical traits that directly contribute to grain yield in rice (Oryza sativa L.). We report herein an in-depth characterization of two allelic larger panicle (lp) mutants that show significantly increased panicle size as well as improved plant architecture. Morphological analyses reveal that panicles of two mutants produced more inflorescence branches, especially the primary branches, and contained more grains. Moreover, mutant plants also display more lodging resistance than the wild type. The grain yield per plant in mutants is also increased, suggesting that mutant plants have useful potential for high grain yield in rice breeding. Map-based cloning reveals that LARGER PANICLE (LP) encodes a Kelch repeat-containing F-box protein. RNA in situ hybridization studies display that LP expression was enriched in the branch primordial region. Subcellular localization analyses demonstrate that LP is an endoplasmic reticulum (ER) localized protein, suggesting that LP might be involved in ER-associated protein degradation (ERAD). Using yeast two-hybrid assay and bimolecular fluorescence complementation analysis, we confirm that LP is an F-box protein and could interact with rice SKP1-like protein in an F-box domain-dependent manner. Quantitative real-time PCR results show that OsCKX2, which encodes cytokinin oxidase/dehydrogenase, is down-regulated evidently in mutants, implying that LP might be involved in modulating cytokinin level in plant tissues. These results suggest that LP plays an important role in regulating plant architecture, particularly in regulating panicle architecture, thereby representing promising targets for genetic improvement of grain production plants.  相似文献   

2.
利用籼粳回交群体分析水稻粒形性状相关QTLs   总被引:10,自引:1,他引:10  
水稻谷粒的外观性状对稻米外观品质存在重要的影响。该研究利用SSR标记,以回交群体Balilla/NTH∥Balilla为作图群体,构建了水稻12条染色体的连锁图,该遗传图谱包括:108个分子标记,平均图距为11.9cM。以构建的遗传图谱为基础,采用区间作图法对谷粒外观性状,包括粒长、粒宽和粒形进行了数量性状基因(QTL)定位。结果表明,粒长、粒宽和粒形在回交群体中均呈近似的正态分布,表现出典型的数量性状特征。QTL定位结果表明,第12染色体上RM101-RM270区间内存在一个与粒长性状相关的QTL,(qGL-12),加性效应约为0.26mm,贡献率为16.7%。在第2和第3染色体上RM154-RM211和RM257-RM175区问内,分别检测到qGW-2和qGW-3两个位点与粒宽性状有关,加性效应为分别为-0.10mm和-0.12mm,贡献率分别为11.5%和16.6%。对于粒形性状,共检测到3个QTLs,qLW-2、qLW-6和qLW-7,分别位于第2、6和7染色体上。其中qLW-2和qLW-7的加性效应分别约为0.09和0.10,两个QTLs分别可解释表型变异的12.7%和18.3%;而qLW-6的加性效应约为-0.13,可解释粒形变异的11.5%。文中还讨论了粒形和稻米外观品质同时改良的可能性。  相似文献   

3.
  总被引:1,自引:0,他引:1  
Generating a new variety of plant with erect-leaf is a critical strategy to improve rice grain yield, as plants with this trait can be dense-planted. The erect-leaf is a significant morphological trait partially regulated by Brassinosteroids (BRs) in rice plants. So far, only a few genes can be used for molecular breeding in rice. Here, we identified OsBAK1 as a potential gene to alter rice architecture. Based on rice genome sequences, four closely related homologs of Arabidopsis BAK1 ( AtBAK1 ) gene were amplified. Phylogenetic analysis and suppression of a weak Arabidopsis mutant bri1-5 indicated that OsBAK1 (Os08g0174700) is the closest relative of AtBAK1. Genetic, physiological, and biochemical analyses all suggest that the function of OsBAK1 is conserved with AtBAK1 . Overexpression of a truncated intracellular domain of OsBAK1 , but not the extracellular domain of OsBAK1 , resulted in a dwarfed phenotype, similar to the rice BR-insensitive mutant plants. The expression of OsBAK1 changed important agricultural traits of rice such as plant height, leaf erectness, grain morphologic features, and disease resistance responses. Our results suggested that a new rice variety with erect-leaf and normal reproduction can be generated simply by suppressing the expression level of OsBAK1 . Therefore, OsBAK1 is a potential molecular breeding tool for improving rice grain yield by modifying rice architecture.  相似文献   

4.
    
Eating quality is of paramount importance to rice (Oryza sativa L.) consumers and soft rice with low amylose content has become popular in China. This study was conducted to evaluate the performance of soft rice grown in the early season (ES) dominated by non-soft rice. Field experiments were conducted in Yongan and Santang, Hunan Province, China from 2016-2018. Results showed that grain amylose content in soft rice cultivars was consistently lower in the ES compared to the late season (LS). The lower grain amylose content in the ES compared to the LS was partly attributed to higher average daily mean temperature during grain filling. No significant relationship was observed between grain yield and seed amylose content in ES rice. Soft rice cultivars produced a similar average grain yield to non-soft rice cultivars in the ES. These results encourage breeders to develop more ES rice cultivars with soft texture to meet the consumer demand for this type of rice.  相似文献   

5.
  总被引:1,自引:0,他引:1  
Double-season rice cropping systems occupy a large portion of the riceproduction area in southern China. Because the problem of insufficient labor,mechanical transplanting (in contrast to the manual transplanting) was becomemore attractive in double-season rice system. However, the decisive yield factorswhich resulting in high grain yield of early-season rice are unclear under mechanical-transplanted conditions. In present study, the field experiments were conducted in the early season in 2017 and repeated in 2018 in Santang Town,Hunan Province, China. Ten early season rice cultivars (Zhuliangyou 819, Lingliangyou 268, Lingliangyou 104, Luliangyou 996, Xiangzaoxian 24, Xiangzaoxian 32, Xiangzaoxian 45, Xiangzaoxian 42, Zhongjiazao 17, and Zhongzao 39)were used as materials in this study. The difference in grain yield and closelyrelated agronomic and physiological traits of ten tested cultivars were compared.The range of yields (t ha–1 at 86% dry matter) in 2017 was 6.2 to 8.7 (mean 7.8)and in 2018 was 6.5 to 8.4 (mean 7.8). Grain weight and pre-heading biomassaccumulation had potent significant positive correlations with the grain yield.The greater pre-heading biomass accumulation was major attributed to higherapparent radiation use efficiency. Our results suggested that early-season rice cultivars to achieve the high grain yield in mechanical-transplanted conditionsdepends on apparent radiation use efficiency in the pre-heading period and highergrain weight.  相似文献   

6.
The plant steroid hormones, brassinosteroids (BRs), and their precursors, phytosterols, play major roles in plant growth, development, and stress tolerance. Here, we review the impressive progress made during recent years in elucidating the components of the sterol and BR metabolic and signaling pathways, and in understanding their mecha- nism of action in both model plants and crops, such as Arabidopsis and rice. We also discuss emerging insights into the regulations of these pathways, their interactions with other hormonal pathways and multiple environmental signals, and the putative nature of sterols as signaling molecules.  相似文献   

7.
Natural Variations in SLG7 Regulate Grain Shape in Rice   总被引:1,自引:0,他引:1  
Rice (Oryza sativa) grain shape, which is controlled by quantitative trait loci (QTL), has a strong effect on yield production and quality. However, the molecular basis for grain development remains largely unknown. In this study, we identified a novel QTL, Slender grain on chromosome 7 (SLG7), that is responsible for grain shape, using backcross introgression lines derived from 9311 and Azucena. The SLG7 allele from Azucena produces longer and thinner grains, although it has no influence on grain weight and yield production. SLG7 encodes a protein homologous to LONGIFOLIA 1 and LONGIFOLIA 2, both of which increase organ length in Arabidopsis. SLG7 is constitutively expressed in various tissues in rice, and the SLG7 protein is located in plasma membrane. Morphological and cellular analyses suggested that SLG7 produces slender grains by longitudinally increasing cell length, while transversely decreasing cell width, which is independent from cell division. Our findings show that the functions of SLG7 family members are conserved across monocots and dicots and that the SLG7 allele could be applied in breeding to modify rice grain appearance.  相似文献   

8.
水稻高温热害的研究现状与进展   总被引:1,自引:0,他引:1  
全球气候变暖环境下,水稻高温热害频发,孕穗-开花期和灌浆期高温已成为制约水稻产量和品质的主要因素之一。本文综述了水稻高温热害的发生特点(鉴定与分级、区域和时间)和高温对水稻生长发育(生理、产量和品质)的影响,总结了水稻高温热害的数量性状座位定位、转录组和蛋白质组分析等分子生物学研究及监测预警与风险评估,重点阐述了高温热害的防御措施,包括选用耐热品种、改善田间管理和喷施外源物质,并对今后水稻高温热害研究进行了展望,以期为水稻高温热害防御和农业减灾增效提供科学支持。  相似文献   

9.
水稻粒形性状的遗传及相关基因定位与克隆研究进展   总被引:2,自引:0,他引:2  
Gao ZQ  Zhan XD  Liang YS  Cheng SH  Cao LY 《遗传》2011,33(4):314-321
作物育种的首要目标是提高产量。水稻粒形是与水稻产量性状直接相关,与品质性状存在着密切关系的数量性状,其评价指标主要是粒长、粒宽、粒厚、长/宽和长/厚。近年来,水稻粒形的数量遗传研究取得了重要进展,并成功定位克隆了一批控制水稻粒形的基因。文章综述了水稻粒形的经典遗传研究、QTL定位、粒形基因的克隆和功能分析以及在水稻超高产育种中的利用。  相似文献   

10.
为探讨不同肥料处理对小麦冠层结构和产量性状的影响,采用随机区组试验设计和大田切片法,研究了豫麦49小麦品种在单施尿素、鸡粪和鸡粪与尿素配施等条件下小麦冠层结构特征、产量构成因素的变化,结果表明:施用鸡粪有利于增加旗叶的叶绿素含量(SPAD),提高群体光合有效辐射(PAR),增大小麦群体的平均叶倾角(MLA),降低群体的冠层开度(DIFN),提高小麦群体的叶面积指数(LAI)和籽粒产量.综合考虑小麦产量、经济系数等因素,3种肥料处理以鸡粪与尿素配施为最佳,配施处理的小麦冠层结构适宜、株型最佳、群体光分布合理.  相似文献   

11.
水稻(Oryza sativa)粒形性状包括粒长、粒宽、粒厚、粒重和长宽比等,是构成水稻产量的重要因素之一。因此,阐明水稻粒形遗传控制的机理,对提高水稻产量具有十分重要的意义。水稻粒形的遗传是多基因共同作用的数量性状遗传,相对于单一基因控制的性状,研究要相对复杂。该文综述了水稻粒形的遗传特点、QTL定位和基因克隆,并展望了粒形遗传的研究前景。  相似文献   

12.
利用水稻重组自交系群体定位谷粒外观性状的数量性状基因   总被引:38,自引:0,他引:38  
用区间作图和混合线性模型的复合区间作图两种方法,对水稻(Oryza sativa L)珍汕97和明恢63组合的重组自交系群体的谷粒外观性状-粒长,粒宽和粒形进行了数量性状基因(QTL)定位,用区间作图法在LOD≥2.4水平上(近拟于a=0.005),1998年对粒长,粒宽和粒形分别检测到6,2放2个QTLs,1999年对以上3个性状分别检测到3,2和2个QTLs,其中7个QTLs在两年均检测到,位于第3染色体RG393-C1087区间的QTL效应大,同时影响粒长和粒形,两年贡献分别为57.5%,61.4%和26.7%,29.9%,位于第5染色体RG360-C734B区间的QTL效应大,同时影响粒宽和粒形,两年贡献率分别为44.2%,53.2%和32.1%和36.0%,用混合线性模型的复合区间作图法在P=0.005水平上,对粒长,粒宽和粒形分别检测到8,5和5个QTLs,共解释各自性状变异的58.81%,44.75%和57.47%,只检测到1个QTL与环境之间存在的显互作。  相似文献   

13.
钟楚  朱颖墨  朱勇  朱斌  张茂松  徐梦莹 《生态学杂志》2013,24(10):2831-2842
利用云南省14个不同海拔农业气象观测站1994-2010年水稻大田发育期和产量观测资料,研究水稻产量形成及气象因子对低产水稻产量构成因素的影响;根据14个站点水稻产量构成因素的系统聚类分析结果和水稻类型,将水稻分为低产粳型、低产籼型、高产粳型和高产籼型4个类型.对这4类水稻产量构成因素的分析结果表明,单位面积颖花量与产量呈极显著正相关,低产粳型水稻产量主要受结实率和颖花量影响,其他3类颖花量对产量影响较大.低产粳型水稻主要受低温的影响,孕穗期低温降低颖花量和有效穗数,孕穗期和抽穗开花期低温增加空壳率,以平均气温、平均最高气温和冷积温的影响较大;乳熟前期较低的平均气温增加秕谷率,同时降低千粒重.低产籼型水稻产量构成因素受多种气象因子的综合影响明显;分蘖期和拔节期一定程度的增温不利于增加低产籼型水稻有效穗数,而分蘖期较多的日照时数和较大的平均气温日较差有利于有效穗数的增加,分蘖期和拔节期气温和日照时数与每穗粒数的关系呈“抛物线型”;低产籼型水稻空壳率一定程度上受抽穗开花期低温的影响,而乳熟前期高温少雨不仅增加秕谷率,还导致千粒重明显下降.  相似文献   

14.
         下载免费PDF全文
A linkage map consisting of 221 markers was constructed based on a recombinant inbred line (RIL) population from the cross between Zhenshan 97 and Minghui 63. Quantitative trait loci (QTL) mapping was carried out for grain appearance traits such as grain length, grain width and grain shape in rice in 1998 and 1999. Based on interval mapping method at the threshold LOD≥2.4, six, two and two QTLs were detected for grain length, grain width and grain shape, respectively, in 1998; In 1999, three, two and two QTLs were identified for the three traits, respectively. Of them, seven QTLs were simultaneously identified in both of the years. The QTL with large effects located in the interval RG393-C1087 on chromosome 3 not only controlled the grain length, but also influenced the grain shape. It explained 57.5%, 61.4% and 26.7%, 29.9% of phenotypic variation of the grain length and the grain shape in two years, respectively. The QTL with large effects located in the interval RG360-C734B on chromosome 5 affected the grain width and the grain shape. It explained 44.2%, 53.2% and 32.1%, 36.0% of phenotypic variation of the grain width and the shape in two years, respectively. Eight, five and five QTLs were identified for the grain length, width and shape, respectively, based on mixed linear-model composite interval mapping method at P =0.005. Their general contributions were 58.81%, 44.75%, and 57.47%. One QTL for the grain length was found to be significant interaction with environment.  相似文献   

15.
粒重、每穗粒数和每株穗数是决定水稻产量的三大要素,也是水稻育种改良的重点.这些性状都是遗传复杂的数量性状.近十年来,水稻数量性状遗传学领域取得了突破性的进展,成功克隆了一批控制水稻产量性状的数量性状位点(QTL).本文将简要介绍产量性状相关QTL的功能与作用机制.这些研究成果不仅有助于揭示产量性状形成的遗传基础,也将有力推动水稻分子设计育种的进程.  相似文献   

16.
17.
18.
张自常  谷涛  李永丰  杨霞 《生态学杂志》2016,27(11):3559-3568
以‘南粳9108’(粳稻)为材料,自移栽至成熟期分别与无芒稗、西来稗和光头稗共培养,以无稗草共培为对照,观察不同种类共培稗草在不同施氮水平下(0、120、240、360 kg N·hm-2)对水稻产量形成的影响.结果表明:相同氮肥水平下,不同种稗草株高表现为西来稗>无芒稗>光头稗,生育期由长到短为无芒稗>西来稗>光头稗.随着氮肥施用量的增加,不同种稗草的生物量在240 kg N·hm-2下达到最大值,然后降低,无芒稗和西来稗的生物量均显著高于光头稗.在0 kg N·hm-2下,不同种稗草对水稻产量无显著影响;在120 kg N·hm-2下,无芒稗和光头稗处理水稻产量与无稗草处理差异不显著,但西来稗处理产量较无稗草处理显著降低;在240 kg N·hm-2下,无芒稗、西来稗和光头稗处理显著减产;在360 kg N·hm-2下,无芒稗和西来稗处理产量较无稗草处理显著降低,光头稗处理与无稗草处理差异不显著.稗草和氮肥对水稻产量形成具有明显的互作效应.120 kg N·hm-2下,西来稗处理显著降低了水稻灌浆期剑叶硝酸还原酶活性、光合速率和根系氧化力以及成熟期氮积累量和干物质量,其他稗草处理与对照差异不显著;在240和360 kg N·hm-2下,无芒稗和西来稗处理降低了水稻上述指标;在0 kg N·hm-2下,各处理的上述指标差异不显著.回归分析表明,稗草表型对水稻产量的影响由大到小的顺序为生物量、株高、生育期和分蘖数,推测稗草较大的生物量造成水稻剑叶光合速率、硝酸还原酶活性、根系氧化力、氮积累量和干物质积累量降低,影响了水稻的生长发育,造成水稻减产.  相似文献   

19.
贾利霞  齐艳华 《植物学报》2022,57(3):263-275
水稻(Oryza sativa)是世界主要粮食作物。随着我国经济飞速发展, 耕地面积逐年减少, 提高水稻总产量唯有依靠单产的增加。粒重是决定水稻产量的重要因素之一, 其遗传稳定, 受外界环境因素影响较小。粒重由粒型和灌浆程度决定, 而粒型性状包括粒长、粒宽、粒厚和长宽比。水稻种子颖壳和胚乳发育决定了粒型和粒重, 颖壳细胞的增殖和扩张限制籽粒发育, 胚乳占据成熟种子的大部分体积。而生长素调控受精后颖壳和胚乳的发育, 是调控种子发育和影响水稻产量的重要植物激素。生长素的时空分布受生长素代谢、运输和信号转导的动态调节, 以维持生长素在种子发育中的最适水平。该文综述了生长素代谢、运输和信号转导调控水稻粒型的研究进展, 以期为深入探究生长素调控水稻粒型发育机制和提高水稻产量提供线索。  相似文献   

20.
    
High seed sowing rates have shortened seedling age in conventional machine-transplanted rice, which has become a challenge for intensive rice production in China. This study aimed to test our hypothesis that prolonging seedling age may not lead to reduced yield in machine-transplanted early-season rice under precision sowing. Field experiments were conducted with two cultivars in 2 years to determine the effect of prolonging seedling age on seedling traits, grain yield, and yield attributes in machine-transplanted early-season rice with printed sowing (a new precision sowing method). All tested seedling traits, including height, basal width, leaf and root number, and shoot and root biomass, were significantly increased when seedling age was prolonged from 20 days (a commonly recommended seedling age for conventional machine transplanting) to 30 days. The prolonged seedling age did not significantly affect grain yield, yield components, or biomass production and translocation. These results support our hypothesis and suggest that adopting precision sowing is a feasible way to prolong seedling age of machine-transplanted early-season rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号