首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
灌溉频次和时期对冬小麦籽粒产量及品质特性的影响   总被引:8,自引:0,他引:8  
为探讨我国北方地区冬小麦的节水灌溉模式,2006—2008年,在中国科学院栾城农业生态系统试验站,以冬小麦品种科农9204为试验材料,在总灌溉量为120mm的条件下,研究了灌溉次数和灌溉时期对籽粒产量、水分利用效率(WUE)、籽粒蛋白质含量以及相关主要品质特性的影响。结果表明,拔节期、抽穗期和灌浆期一次灌溉分别有利于产量、干物质积累量和千粒重的形成或提高;两次灌溉处理中,以拔节和抽穗期各灌60mm处理籽粒产量最高,籽粒蛋白质产量有随灌溉时期后移而降低的趋势;冬小麦生育期间随灌溉次数增多和灌溉时期后移,湿面筋含量、面团形成时间、面团稳定时间等均显著降低。综合考虑冬小麦的籽粒产量、WUE、营养品质和加工品质,在总灌溉量为120mm的条件下,以拔节和抽穗期各灌溉60mm为宜。  相似文献   

2.
大麦胚乳细胞增殖动态及其与粒重的关系   总被引:3,自引:1,他引:2  
大麦籽粒胚乳细胞数在花后17 d左右就基本决定,增殖动态可用Richards曲线方程拟合,决定系数0.9900以上,达极显著水平.籽粒胚乳细胞数目、单个细胞重量与粒重均存在极显著正相关,r值分别为0.9019**和0.9409**.籽粒胚乳细胞数对粒重影响最大,单个胚乳细胞重次之,胚乳细胞数的多少是决定粒重的主要原因.  相似文献   

3.
Three principally different mechanisms contribute to the wear-down process of mineral aggregates in sedimentary environments: (1) mechanical abrasion by forces of wind and water and by floating or saltating neighbouring grains, (2) chemical attack and dissolution by fluids, and (3) physical bioerosion and chemical biocorrosion. It is however, difficult to attribute the specific surface changes to specific environments and processes. Quartz sand grains from subaerial and subaquatic environments were analysed by atomic force microscopy (AFM) for traces of natural and experimental aeolian, aquatic and biological wear-down processes. Quantitative topographical parameters of surface alterations were extracted from topography data by non-linear methods derived from digital image analysis. These parameters were examined by multivariate statistic, yielding three well-distinguishable groups. Morphological surface alterations dominated by subaerial, subaquatic and by biological impact could be differentiated. The method may also be used for the detection of aeolian, subaquatic, and biological modification of sedimentary grains and rock surfaces in extraterrestrial environments, and for assessment of environmental damage on monuments and buildings.  相似文献   

4.
利用籼粳回交群体分析水稻粒形性状相关QTLs   总被引:11,自引:1,他引:10  
水稻谷粒的外观性状对稻米外观品质存在重要的影响。该研究利用SSR标记,以回交群体Balilla/NTH∥Balilla为作图群体,构建了水稻12条染色体的连锁图,该遗传图谱包括:108个分子标记,平均图距为11.9cM。以构建的遗传图谱为基础,采用区间作图法对谷粒外观性状,包括粒长、粒宽和粒形进行了数量性状基因(QTL)定位。结果表明,粒长、粒宽和粒形在回交群体中均呈近似的正态分布,表现出典型的数量性状特征。QTL定位结果表明,第12染色体上RM101-RM270区间内存在一个与粒长性状相关的QTL,(qGL-12),加性效应约为0.26mm,贡献率为16.7%。在第2和第3染色体上RM154-RM211和RM257-RM175区问内,分别检测到qGW-2和qGW-3两个位点与粒宽性状有关,加性效应为分别为-0.10mm和-0.12mm,贡献率分别为11.5%和16.6%。对于粒形性状,共检测到3个QTLs,qLW-2、qLW-6和qLW-7,分别位于第2、6和7染色体上。其中qLW-2和qLW-7的加性效应分别约为0.09和0.10,两个QTLs分别可解释表型变异的12.7%和18.3%;而qLW-6的加性效应约为-0.13,可解释粒形变异的11.5%。文中还讨论了粒形和稻米外观品质同时改良的可能性。  相似文献   

5.
The new species of cereal × Tritordeum Ascherson et Graebner (Hordeum chilense Roem. et Shultz × Triticum ssp.) has a grain protein concentration (GPC) of up to 25%. The relationship between GPC and yield, and the factors responsible for the high GPC of tritordeum were examined and compared in field experiments. Three experimental tritordeum lines, two early and a later released (recombined and secondary tritordeums) were compared to wheat (cv. Cajeme) and triticale cultivars (cv. Trujillo). GPC's were 19%–22% for recombined tritordeums, 16% for the secondary tritordeum, 12–15% for wheats and 11% for triticale. Grain yields of the recombined and secondary tridordeum were 17–33% and 45–57% that of the wheats and triticale, respectively. Reducing grain sink size by spikelet removal resulted in an increased GPC of remaining grains. Considering all species together there were a strong inverse relationship between GPC and grain yield (GY) per main ear (GPC=26–4.76 ln GY; r2=0.82). In another experiment, frost damage to an early sown treatment of wheat reduced sink size. Harvest index (HI) of early sown wheat was reduced from 0.45 to 0.19, values comparable to that of tritordeum. Having similar HI, the GPC of the early sown wheat was the same as an early sown tritordeum (around 18%). Data for total N uptake and the N concentration of plant tissue during the growing season indicated that enhanced N uptake and remobilisation were not responsible for tritordeum's high GPC. These results suggest that the high GPC of the early lines of tritordeum is a consequence of the small grain yield concentrating the grain protein.  相似文献   

6.
针对应用防护剂防治储粮害虫时存在的问题,全面分析影响储粮防护剂药效的因素,如害虫对药剂的敏感性、药剂剂型和施药方法、粮食种类和环境条件.并探讨了相关研究结果在储粮害虫防治实践中的意义和储粮防护剂未来研究的方向.  相似文献   

7.
为探明灌溉对干旱区冬小麦(Triticum aestivum)产量、水分利用效率(WUE)、干物质积累及分配等的影响, 以甘肃河西走廊冬小麦适宜种植品种‘临抗2号’为材料进行了研究。在冬季灌水180 mm的条件下, 生育期以灌水量和灌水次数等共设置5个处理, 分别为: 拔节期灌水量165 mm (W1)、拔节期灌水量120 mm +抽穗期灌水量105 mm (W2)、拔节期灌水量105 mm +抽穗期灌水量105 mm +灌浆期灌水量105 mm (W3)、拔节期灌水量75 mm +抽穗期灌水量75 mm +灌浆期灌水量75 mm (W4)、拔节期灌水量105 mm +抽穗期灌水量75 mm +灌浆期灌水量45 mm (W5)。结果表明: 随着生育期的推进, 土壤有效含水量(AWC)受灌水次数及灌水量影响更加明显; W3、W4处理的土壤各层AWC在灌浆期均较高; 叶面积指数(LAI)下降慢, 延缓了生育后期的衰老; 生育后期干物质积累增加, 提高了穗粒数、千粒重和籽粒产量。籽粒产量以W3处理最高, 但W4具有最高的WUE, 且籽粒产量与W3无显著差异, 但W4较灌溉总量相同的W2和W5以及灌水量最少的W1具有明显的指标优势。W1、W2、W5处理灌浆期各层土壤AWC均较低, 花后LAI下降快, 干物质积累减少, 灌浆持续期缩短, 穗粒数和千粒重减少, 最终表现为籽粒产量和WUE下降。灌浆期水分胁迫可促进花前储存碳库向籽粒的再转运, 并随着干旱胁迫的加重而提高, 对籽粒产量起补偿作用; 水分胁迫提高了灌浆速率, 但缩短了灌浆持续期。相关性分析表明, 灌浆持续期、有效灌浆持续期、有效灌浆期粒重增加值和最大籽粒灌浆速率出现时间与千粒重和籽粒产量均呈正相关。综合考虑, 拔节、抽穗及灌浆期各灌溉75 mm是高产高WUE的最佳灌水方案。  相似文献   

8.
水稻高温热害的研究现状与进展   总被引:1,自引:0,他引:1  
全球气候变暖环境下,水稻高温热害频发,孕穗-开花期和灌浆期高温已成为制约水稻产量和品质的主要因素之一。本文综述了水稻高温热害的发生特点(鉴定与分级、区域和时间)和高温对水稻生长发育(生理、产量和品质)的影响,总结了水稻高温热害的数量性状座位定位、转录组和蛋白质组分析等分子生物学研究及监测预警与风险评估,重点阐述了高温热害的防御措施,包括选用耐热品种、改善田间管理和喷施外源物质,并对今后水稻高温热害研究进行了展望,以期为水稻高温热害防御和农业减灾增效提供科学支持。  相似文献   

9.
Although coprophagy is practiced in the wild by chimpanzees (Pan troglodytes), it occurs more frequently and under more varied circumstances in captivity. This study was designed to determine if different forage materials and amount of residual undigested grain particles found in the feces might cause an increase in coprophagous behavior in those animals which already exhibited the behavior. A possible effect of availability of seed pits and fibrous leaves for “wadge” making, a typical chimpanzee behavior, on levels of coprophagy was also considered. Observations for coprophagous behavior were conducted on 65 juvenile, adolescent, and adult chimpanzees. Coprophagy levels were significantly lower with popcorn than either chicken scratch or sweet feed. A significant increase in coprophagy was noted for all weeks of forage types when tested against the wadge weeks. Residual grain content analysis showed no significant difference in coprophagous behavior between any of the testing conditions. Decreasing levels of coprophagous behaviors may be assisted by the provision of wadge materials. © 1992 Wiley-Liss, Inc.  相似文献   

10.
Objective: Prospective studies have suggested that substituting whole grain for refined grain products may lower the risk of overweight and obesity. Breakfast cereal intake is a major source of whole and refined grains and has also been associated with having a lower BMI. The aim of this study was to prospectively assess the association between whole and refined grain breakfast cereal intakes and risk of overweight (BMI ≥ 25 kg/m2) and weight gain. Research Methods and Procedures: We examined 17, 881 U.S. male physicians 40 to 84 years of age in 1982 who were free of cardiovascular disease, diabetes mellitus, and cancer at baseline and reported measures of breakfast cereal intake, weight, and height. Results: Over 8 and 13 years of follow‐up, respectively, men who consumed breakfast cereal, regardless of type, consistently weighed less than those who consumed breakfast cereals less often (p value for trend = 0.01). Whole and refined grain breakfast cereal intake was inversely associated with body weight gain over 8 years, after adjustment for age, smoking, baseline BMI, alcohol intake, physical activity, hypertension, high cholesterol, and use of multivitamins. Compared with men who rarely or never consumed breakfast cereals, those who consumed ≥1 serving/d of breakfast cereals were 22% and 12% less likely to become overweight during follow‐up periods of 8 and 13 years (relative risk, 0.78 and 0.88; 95% confidence interval, 0.67 to 0.91 and 0.76 to 1.00, respectively). Discussion: BMI and weight gain were inversely associated with intake of breakfast cereals, independently of other risk factors.  相似文献   

11.
Enterolactone (ENL) and enterodiol (END) are found in high concentrations in human body fluids after ingestion of flaxseed and whole-grain products. Although much interest is presently focused on these mammalian lignans because of their putative beneficial health effects, little is known about their metabolic fate in humans. We have now identified nine novel metabolites of ENL and END in the urine of female and male humans ingesting flaxseed for five days. The chemical structures of six ENL metabolites and of three END metabolites were elucidated by GC/MS analysis and comparison with authentic reference compounds obtained by chemical synthesis. The six identified metabolites of ENL were the products of monohydroxylation at the para-position and at both ortho-positions of the parent hydroxy group of either aromatic ring. Likewise, the three END metabolites were formed through aromatic monohydroxylation at the para- and ortho-positions. The biological significance of these metabolites remains to be established.  相似文献   

12.
A completely randomised design study involving 132 continental crossbred beef steers was undertaken to evaluate the effects of method of grain treatment and feed level, and grass silage feed value on animal performance, carcass characteristics and meat quality of beef cattle. Winter wheat was harvested and the grain was stored either ensiled crimped and treated with 4.5 l/t of a proprietary acid-based additive (crimped), ensiled whole and treated with 20 kg feed-grade urea per t (urea) or stored conventionally in an open bin treated with 3 l propionic acid per t. Two grass silages, of contrasting feed value (L and H) were ensiled. For the conventional, crimped and urea treatments, grain dry matter (DM) concentrations were 802, 658 and 640 g/kg, respectively. For the L- and H-feed value silages, DM concentrations were 192 and 240 g/kg and D values were 671 and 730 g/kg DM, respectively. The silages were offered as the sole forage supplemented with either conventional, crimped or urea-treated grain-based concentrate at either 3.5 or 6.0 kg DM per steer per day. The grain supplement consisted of 850 and 150 g/kg DM of grain and citrus pulp, respectively. For the conventional, urea and crimped treatments, DM intakes were 8.85, 9.43 and 9.04 kg/day (standard error (s.e.) = 0.129); estimated carcass gains were 0.60, 0.55 and 0.61 kg/day (s.e. = 0.020), respectively. For the low- and high- feed value grass silages, estimated carcass gains were 0.56 and 0.61 kg/day (s.e. = 0.014), respectively. For the low and high grain feed levels, estimated carcass gains were 0.56 and 0.61 kg/day, respectively. Grain treatment, grain feed level or silage feed value did not alter (P > 0.05) meat quality, lean colour or fat colour. There were significant silage feed value × grain feed level interactions (P < 0.05) for final live weight (LW) and daily live-weight gain (DLWG). Increasing grain feed level increased final LW and DLWG when offered with the low-feed value silage, however, grain feed level had no effect on final LW or DLWG when offered with the high-feed value silage. It is concluded that urea treatment of grain increased silage intake and feed conversion ratio (kg DM intake per kg carcass) and tended to decrease carcass gain. Crimping provides a biologically equally effective method to store grain as conventional methods. Improving grass silage feed value had a greater impact on animal performance than increasing grain feed level by 2.4 kg DM per day.  相似文献   

13.
GW2 is emerging as a key genetic determinant of grain weight in cereal crops; it has three homoeologs (TaGW2‐A1, ‐B1 and ‐D1) in hexaploid common wheat (Triticum aestivum L.). Here, by analyzing the gene editing mutants that lack one (B1 or D1), two (B1 and D1) or all three (A1, B1 and D1) homoeologs of TaGW2, several insights are gained into the functions of TaGW2‐B1 and ‐D1 in common wheat grain traits. First, both TaGW2‐B1 and ‐D1 affect thousand‐grain weight (TGW) by influencing grain width and length, but the effect conferred by TaGW2‐B1 is stronger than that of TaGW2‐D1. Second, there exists functional interaction between TaGW2 homoeologs because the TGW increase shown by a double mutant (lacking B1 and D1) was substantially larger than that of their single mutants. Third, both TaGW2‐B1 and ‐D1 modulate cell number and length in the outer pericarp of developing grains, with TaGW2‐B1 being more potent. Finally, TaGW2 homoeologs also affect grain protein content as this parameter was generally increased in the mutants, especially in the lines lacking two or three homoeologs. Consistent with this finding, two wheat end‐use quality‐related parameters, flour protein content and gluten strength, were considerably elevated in the mutants. Collectively, our data shed light on functional difference between and additive interaction of TaGW2 homoeologs in the genetic control of grain weight and protein content traits in common wheat, which may accelerate further research on this important gene and its application in wheat improvement.  相似文献   

14.
Profiling the Expression of Genes Controlling Rice Grain Quality   总被引:8,自引:0,他引:8  
Rice provides a staple source of energy, protein and other nutrients to half of the world population. Over 90 of the rice seeds consists of starch and protein by dry weight. The quantity and property of starch and protein thus play a dominant role in the yield and quality of rice. The amylase content of starch is a determining factor in the eating and cooking quality while the amount and essential amino acids balance of storage proteins affect the nutritional quality of rice. In China, the super-hybrid rice currently under the last phase of development has a 35 yield advantage over the best inbred rice varieties. However, its grain quality needs further improvement. This study reported the expression patterns of 44 genes participating in starch, storage protein, and lysine synthesis in the developing rice grain. Field grown rice cultivar 9311, the paternal line of an elite super-hybrid rice LYP9with its draft genomic sequence released, was used as plant material. Results revealed diverse yet coordinated expression profiles of the genes involved in the three pathways which lead to the final composition and property of starch, protein and lysine that determine the quality of rice, providing useful information for rice quality improvement.  相似文献   

15.
Dissection of the genetic basis of wheat ionome is crucial for understanding the physiological and biochemical processes underlying mineral accumulation in seeds, as well as for efficient crop breeding. Most of the elements essential for plants are metals stored in seeds as chelate complexes with phytic acid or sulfur‐containing compounds. We assume that the involvement of phosphorus and sulfur in metal chelation is the reason for strong phenotypic correlations within ionome. Adjustment of element concentrations for the effect of variation in phosphorus and sulfur seed content resulted in drastic change of phenotypic correlations between the elements. The genetic architecture of wheat grain ionome was characterized by quantitative trait loci (QTL) analysis using a cross between durum and wild emmer wheat. QTL analysis of the adjusted traits and two‐trait analysis of the initial traits paired with either P or S considerably improved QTL detection power and accuracy, resulting in the identification of 105 QTLs and 617 QTL effects for 11 elements. Candidate gene search revealed some potential functional associations between QTLs and corresponding genes within their intervals. Thus, we have shown that accounting for variation in P and S is crucial for understanding of the physiological and genetic regulation of mineral composition of wheat grain ionome and can be implemented for other plants.  相似文献   

16.
Increasing climate variability, resulting in frequent years of poor rainfall, has recently subjected the traditional subsistence farmers in the Central Clay Plain of the Sudan to longer periods of food shortage. However, excess production in years of good rainfall could bridge the gap of years with poor rainfall if the grain is properly stored. Resource-poor farmers have tried several linings to improve the traditional underground pit (”matmura”) they use for storage of sorghum. In the experimental study described here, pits with two types of lining: (i) a mixture of mud, cow dung and straw and (ii) sorghum chaff, were compared with unlined pits. Six closed pits were used, two for each type, and temperature and moisture content were monitored. It was found that the temperature increased in all pits and at all positions within the pits, with few differences between the linings. Moisture levels also increased everywhere but the sources of moisture were at the sides and bottoms of the pits. The chaff-lined pits were superior to the others because they showed smaller increases in moisture content at all positions and thus maintained a better quality of sorghum. Joint traditional assessments with local farmers after the pits were opened supported these findings. Received: 15 March 2000 / Revised: 4 January 2001 / Accepted: 10 January 2001  相似文献   

17.
Although it is established that there exist potential trade‐offs between grain yield and grain quality in wheat exposed to elevated carbon dioxide (CO2) and ozone (O3), their underlying causes remain poorly explored. To investigate the processes affecting grain quality under altered CO2 and O3, we analysed 57 experiments with CO2 or O3 exposure in different exposure systems. The study covered 24 cultivars studied in 112 experimental treatments from 11 countries. A significant growth dilution effect on grain protein was found: a change in grain yield of 10% by O3 was associated with a change in grain protein yield of 8.1% (R2 = 0.96), whereas a change in yield effect of 10% by CO2 was linked to a change in grain protein yield effect of 7.5% (R2 = 0.74). Superimposed on this effect, elevated CO2, but not O3, had a significant negative effect on grain protein yield also in the absence of effects on grain yield, indicating that there exists a process by which CO2 restricts grain protein accumulation, which is absent for O3. Grain mass, another quality trait, was more strongly affected by O3 than grain number, whereas the opposite was true for CO2. Harvest index was strongly and negatively influenced by O3, but was unaffected by CO2. We conclude that yield vs. protein trade‐offs for wheat in response to CO2 and O3 are constrained by close relationships between effects on grain biomass and less than proportional effects on grain protein. An important and novel finding was that elevated CO2 has a direct negative effect on grain protein accumulation independent of the yield effect, supporting recent evidence of CO2‐induced impairment of nitrate uptake/assimilation. Finally, our results demonstrated that processes underlying responses of grain yield vs. quality trade‐offs are very different in wheat exposed to elevated O3 compared with elevated CO2.  相似文献   

18.
利用以栽培稻9311为受体、普通野生稻为供体的染色体单片段置换系CSSL182,检测到一个与粒宽相关的QTL。CSSL182与受体亲本9311粒型性状差异显著,且只在8号染色体有一个野生稻导入片段。构建CSSL182/9311的F2次级分离群体,将粒宽QTL初定位在8号染色体的标记RM447和RM264之间,贡献率达22.49,将该QTL命名为qGW8。随后进一步设计区间内多态性分子标记引物,检测F2群体的2000株分离个体以及F2:3群体交换单株,结合后代表型验证,最终将qGW8精细定位到8号染色体10kb区间内。该区间内含有3个候选基因,基因测序发现这3个基因在双亲之间均含有丰富的变异。对双亲籽粒颖壳细胞电镜扫描观察发现,CSSL182的颖壳细胞宽度比9311减少16.7%。这一结果表明qGW8中来自野生稻的等位基因通过改变颖壳细胞形状影响粒型。  相似文献   

19.
Grain yields were measured over 2 seasons from a range of field crops following liming and deep ripping an acid and compacted soil in north-eastern Victoria. Lime (2.5 t ha–1) substantially reduced the level of exchangeable Al and exchangeable Mn whilst raising soil pH by about 1.0 unit. The crops grown were 7 cultivars of wheat and one cultivar each of triticale, oats, barley, rapeseed, safflower, field pea, chick pea and lupins. With the exception of lupin, liming the soil increased (p=0.05) the grain yield of all crops and cultivars. With the wheat cultivars there were 2 distinct groups with different tolerance to soil acidity. Wheat, oats, triticale and lupins had higher absolute yields than the other crops. Safflower and chick pea had very low yields without soil amendment. The magnitude of the lime response did not differ between the wheat cultivars (17%) or between any of the crop species (range 9–29%). Deep ripping the soil to break a hard compacted layer resulted in more yield for all the cereals and safflower. The results demonstrate the importance of using crops with tolerance to acid soil conditions as well as gains that can be obtained with ameliorating identifiable soil problems.  相似文献   

20.
Wheat is one of the most important global crops and selection for better performance has been ongoing since ancient times. As a quantitative trait controlled by the interplay of several genomic loci and under the strong influence of the environment, grain protein content (GPC) is of major interest in breeding programs. Here, we review the most recent contributions to the genetics underlying wheat GPC and grain protein deviation (GPD, representing the relationship between grain protein content and yield), together with the performance of genomic prediction models characterizing these traits. A total of 364 significant loci related to GPC and GPD are positioned on the hexaploid wheat genome, highlighting genomic regions where significant independent QTL overlap, with special focus on two regions located on chromosomes 3A and 5A. Some of the corresponding homoeologous sequences co-locate with significant independent QTL reported on the B and D subgenomes. Overlapping independent QTL from different studies are indicative of genomic regions exhibiting stability across environments and genotypes, with promising candidates for improving grain quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号