首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide sequences of the single genes coding for the B-type small, acid-soluble spore proteins (SASP) of Bacillus cereus, B. stearothermophilus, and "Thermoactinomyces thalpophilus" were determined, and the amino acid sequences of all B-type SASP were compared. While this type of SASP showed significant sequence conservation around the two spore protease cleavage sites, alignment of these sequences required the introduction of gaps, and even then only 19 of the residues were conserved exactly in all five proteins. However, all five B-type SASP did contain a large (27 to 35-residue), rather well-conserved amino acid sequence repeat, and four of the five proteins had well-conserved regions of 14 to 17 amino acids which appeared three times.  相似文献   

2.
3.
4.
Several properties of the major proteins degraded during germination of spores of Bacillus cereus, Bacillus megaterium, and Bacillus subtilis have been compared. All of the proteins had low molecular weights (6,000 to 13,000) and lacked cysteine, cystine, and tryptophan. The proteins could be subdivided into two groups: group I (B. megaterium A and C proteins, B. cereus A protein, and B. subtilis alpha and beta proteins) and group II (B. cereus and B. megaterium B proteins and B. subtilis gamma protein). Species in group II had lower levels of (or lacked) the amino acids isoleucine, leucine, methionine, and proline. Similarly, proteins in each group were more closely related immunologically. However, antisera against a B. megaterium group I protein cross-reacted more strongly with the B. megaterium group II protein than with group I proteins from other spore species, whereas antisera against the B. megaterium group II protein cross-reacted most strongly with B. megaterium group I proteins. Analysis of the primary sequences at the amino termini and in the regions of the B. cereus and B. subtilis proteins cleaved by the B. megaterium spore protease revealed that the B. cereus A protein was most similar to the B. megaterium A and C proteins, and the B. cereus B protein and the B. subtilis gamma protein were most similar to the B. megaterium B protein. However, amino terminal sequences within one group of proteins varied considerably, whereas the spore protease cleavage sites were more highly conserved.  相似文献   

5.
The Bacillus megaterium gene coding for small, acid-soluble spore protein (SASP) B was cloned and its nucleotide sequence was determined. The amino acid sequence predicted from the DNA sequence was identical to that determined previously for SASP B, with the exception of the amino-terminal methionine predicted from the gene sequence which is presumably removed posttranslationally and an asparagine residue predicted at position 21 which was originally identified as an aspartate residue. The mRNA encoded by the SASP B gene is synthesized for only a discrete period midway in sporulation, in parallel with mRNAs coding for other SASPs. The small size of the SASP B mRNA (365 nucleotides) indicated that the mRNA is monocistronic. The SASP B gene itself hybridized strongly to only one band in Southern blots of restriction enzyme digests of B. megaterium DNA, suggesting that the SASP B gene is not a member of a highly conserved multigene family, as is the case for other SASP genes.  相似文献   

6.
7.
The Bacillus subtilis gene (sspE) which codes for small acid-soluble spore protein gamma (SASP-gamma) was cloned, and its chromosomal location (65 degrees, linked to glpD) and nucleotide sequence were determined. The amino acid sequence of SASP-gamma is similar to that of SASP-B of Bacillus megaterium, but these sequences are not as highly conserved across species as are those of other SASPs. The SASP-gamma gene is transcribed only in sporulation in parallel with other SASP genes and gives a single mRNA that is approximately 340 nucleotides long. The results of hybridization of an sspE gene probe to Southern blots of B. subtilis DNA suggested that there is only a single gene coding for the SASP-gamma type of protein in B. subtilis. This was confirmed by introducing a deletion mutation into the cloned sspE gene and transferring the deletion into the B. subtilis chromosome, with concomitant loss of the wild-type gene. This sspE deletion strain sporulated well, but lacked the SASP-gamma type of protein.  相似文献   

8.
The gene (termed sspG) coding for a small, acid-soluble protein (SASP) from spores of Bacillus megaterium QMB1551, termed SASP-G, has been cloned, and its nucleotide sequence has been determined. SASP-G is a 42-residue protein containing 2 tryptophan and 11 lysine residues, including a hexalysine sequence, and is not homologous to any previously described SASP. The sspG gene appears to be an additional member of the sigma G regulon. No gene homologous to sspG is present in B. cereus T or B. subtilis 168. The reason for the absence of sspG from other Bacillus species appears to be that in B. megaterium, sspG is present only on a 111-kb plasmid; this plasmid is not present in B. cereus T or B. subtilis 168. The sspG gene is the first forespore-expressed gene found to be on a plasmid.  相似文献   

9.
Germination protease (GPR) initiates the degradation of small, acid-soluble spore proteins (SASP) during germination of spores of Bacillus and Clostridium species. The GPR amino acid sequence is not homologous to members of the major protease families, and previous work has not identified residues involved in GPR catalysis. The current work has focused on identifying catalytically essential amino acids by mutagenesis of Bacillus megaterium gpr. A residue was selected for alteration if it (i) was conserved among spore-forming bacteria, (ii) was a potential nucleophile, and (iii) had not been ruled out as inessential for catalysis. GPR variants were overexpressed in Escherichia coli, and the active form (P41) was assayed for activity against SASP and the zymogen form (P46) was assayed for the ability to autoprocess to P41. Variants inactive against SASP and unable to autoprocess were analyzed by circular dichroism spectroscopy and multi-angle laser light scattering to determine whether the variant's inactivity was due to loss of secondary or quaternary structure, respectively. Variation of D127 and D193, but no other residues, resulted in inactive P46 and P41, while variants of each form were well structured and tetrameric, suggesting that D127 and D193 are essential for activity and autoprocessing. Mapping these two aspartate residues and a highly conserved lysine onto the B. megaterium P46 crystal structure revealed a striking similarity to the catalytic residues and propeptide lysine of aspartic acid proteases. These data indicate that GPR is an atypical aspartic acid protease.  相似文献   

10.
11.
After a few minutes of germination, nucleoids in the great majority of spores of Bacillus subtilis and Bacillus megaterium were ring shaped. The major spore DNA binding proteins, the alpha/beta-type small, acid-soluble proteins (SASP), colocalized to these nucleoid rings early in spore germination, as did the B. megaterium homolog of the major B. subtilis chromosomal protein HBsu. The percentage of ring-shaped nucleoids was decreased in germinated spores with lower levels of alpha/beta-type SASP. As spore outgrowth proceeded, the ring-shaped nucleoids disappeared and the nucleoid became more compact. This change took place after degradation of most of the spores' pool of major alpha/beta-type SASP and was delayed when alpha/beta-type SASP degradation was delayed. Later in spore outgrowth, the shape of the nucleoid reverted to the diffuse lobular shape seen in growing cells.  相似文献   

12.
13.
The use of 1 N HCl for extraction of small, acid-soluble proteins (SASP) from different Bacillus spore species was examined. The extracts were analyzed by high-performance liquid chromatography and matrix-assisted laser desorption mass spectrometry and were found to be both qualitatively and quantitatively superior to extraction by acetonitrile-5% trifluoroacetic acid (70:30, vol/vol). Both major and minor alpha/beta- and gamma-type SASP were characterized by their molecular masses or tryptic peptide maps and by searches of both protein and unannotated genome databases. For all but 1 pair (B. cereus T and B. thuringiensis subsp. Kurstaki) among the 11 variants studied the suites of SASP masses are distinctive, consistent with the use of these proteins as potential biomarkers for spore identification by mass spectrometry.  相似文献   

14.
It was shown previously that spores and vegetative cells of Bacillus sphaericus (Bf) and Bacillus thuringiensis israelensis (Bti) are very sensitive to osmotic variations. Since spore osmotolerance has been associated with their SASP (small acid soluble spore proteins) content coded by ssp genes, hybridization assays were performed with sspE and sspA genes from B. subtilis as probes and showed that Bti and Bf strains could lack an sspE-like gene. The B. subtilis sspE gene was then introduced into Bti 4Q2 strain; spores were obtained and showed a 65 to 650 times higher level of osmotolerance to NaCl, without affecting other important properties: hypoosmotic resistance in vegetative cells, spore UV resistance, and larvicidal activity against diptera larvae.  相似文献   

15.
Five monoclonal antibodies against bacterial spores of Bacillus cereus T and Clostridium sporogenes PA3679 were developed. Two antibodies (B48 and B183) were selected for their reactivity with B. cereus T spores, two (C33 and C225) were selected for their reactivity with C. sporogenes spores, and one (D89) was selected for its reactivity with both B. cereus and C sporogenes spores. The isotypes of the antibodies were determined to be immunoglobulin G2a (IgG2a) (B48), IgG1 (B183), and IgM (C33, C225, and D89). The antibodies reacted with spores of B. cereus T, Bacillus subtilis subsp. globigii, Bacillus megaterium, Bacillus stearothermophilus, C. sporogenes, Clostridium perfringens, and Desulfotomaculum nigrificans. Antibody D89 also reacted with vegetative cells of B. cereus and C. sporogenes. Analysis of B. cereus spore extracts showed that two of the antigens with which the anti-Bacillus antibodies reacted had molecular masses of 76 kDa and approximately 250 kDa. Immunocytochemical localization indicated that antigens with which B48, B183, and D89 react are on the exosporium of the B. cereus T spore. Antibody D89 reacted with the exosporium and outer cortex of C. sporogenes spores in immunocytochemical localization studies but did not react with extracts of C. sporogenes or B. cereus spores in Western blotting. Some C. sporogenes antigens were not stable during long-term storage at -20 degrees C. Antibodies B48, B183, and D89 should prove to be useful tools for developing immunological methods for the detection of bacterial spores.  相似文献   

16.
Spore coat proteins obtained by extraction with sodium dodecylsulfate/dithiothreitol from six Bacillus spores were compared by immunoblot analysis using antibodies to spore coat proteins from two strains of B. megaterium. Although the extract from spores of each strain had heterogenous proteins with various molecular weights, there were some bands which cross-reacted with specific antibodies from B. megaterium spores. Specific antibody to 48K protein from B. megaterium ATCC 12872 cross-reacted with 17K protein from B. megaterium ATCC 19213, 13K protein from B. cereus and 50K protein from B. subtilis 60015 and B. subtilis NRRL B558. Also, specific antibody to 22K protein from the same strain cross-reacted with 22K and 17K proteins from B. megaterium ATCC 19213 and 13K protein from B. cereus T. Specific antibody to 17K protein from B. megaterium ATCC 19213 reacted with 22K and 19K proteins in addition to 17K protein of own strain, and it was cross-reactive with 16K protein from B. megaterium ATCC 12872, 19K and 27K proteins from B. thiaminolyticus, 13K protein from B. cereus.  相似文献   

17.
巨大芽孢杆菌是微生物肥料生产中的常用菌种, 与之形态上相似的蜡样群芽孢杆菌(蜡样芽孢杆菌、苏云金芽孢杆菌、蕈状芽孢杆菌)则是产品中常见的污染菌, 传统方法区分两者费时费力, 有必要建立检测这两类芽孢杆菌的PCR方法。本文利用已登录的spoOA基因序列分别设计和筛选了上述两个种(群)的特异引物, 并建立了多重PCR检测技术。使用该方法对巨大芽孢杆菌、蜡样群芽孢杆菌和其他芽孢菌共3属13种24株标准菌株的基因组DNA进行扩增, 以检验其特异性。结果显示, 巨大芽孢杆菌、蜡样群芽孢杆菌基因组DNA分别产生大小不同的唯一产物, 其他芽孢杆菌均为阴性。该多重PCR检测方法的灵敏度经测定为105 CFU/mL。同时对10株待测菌株和8个微生物肥料产品进行检测, 其鉴定结果与常规鉴定结果一致。以上结果表明, 本文建立的多重PCR方法具有较高的特异性和灵敏度, 可快速、准确鉴定巨大芽孢杆菌和蜡样群芽孢杆菌, 在微生物肥料检测方面有良好的实用前景。  相似文献   

18.
Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Delta-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development.  相似文献   

19.
We set out to analyze the sequence diversity of the Bacillus thuringiensis flagellin (H antigen [Hag]) protein and compare it with H serotype diversity. Some other Bacillus cereus sensu lato species and strains were added for comparison. The internal sequences of the flagellin (hag) alleles from 80 Bacillus thuringiensis strains and 16 strains from the B. cereus sensu lato group were amplified and cloned, and their nucleotide sequences were determined and translated into amino acids. The flagellin allele nucleotide sequences for 10 additional strains were retrieved from GenBank for a total of 106 Bacillus species and strains used in this study. These included 82 B. thuringiensis strains from 67 H serotypes, 5 B. cereus strains, 3 Bacillus anthracis strains, 3 Bacillus mycoides strains, 11 Bacillus weihenstephanensis strains, 1 Bacillus halodurans strain, and 1 Bacillus subtilis strain. The first 111 and the last 66 amino acids were conserved. They were referred to as the C1 and C2 regions, respectively. The central region, however, was highly variable and is referred to as the V region. Two bootstrapped neighbor-joining trees were generated: a first one from the alignment of the translated amino acid sequences of the amplified internal sequences of the hag alleles and a second one from the alignment of the V region amino acid sequences, respectively. Of the eight clusters revealed in the tree inferred from the entire C1-V-C2 region amino acid sequences, seven were present in corresponding clusters in the tree inferred from the V region amino acid sequences. With regard to B. thuringiensis, in most cases, different serovars had different flagellin amino acid sequences, as might have been expected. Surprisingly, however, some different B. thuringiensis serovars shared identical flagellin amino acid sequences. Likewise, serovars from the same H serotypes were most often found clustered together, with exceptions. Indeed, some serovars from the same H serotype carried flagellins with sufficiently different amino acid sequences as to be located on distant clusters. Species-wise, B. halodurans, B. subtilis, and B. anthracis formed specific branches, whereas the other four species, all in the B. cereus sensu lato group, B. mycoides, B. weihenstephanensis, B. cereus, and B. thuringiensis, did not form four specific clusters as might have been expected. Rather, strains from any of these four species were placed side by side with strains from the other species. In the B. cereus sensu lato group, B. anthracis excepted, the distribution of strains was not species specific.  相似文献   

20.
The effects of heat, CaCl2, and ethanol on activation of Bacillus spores were determined by monitoring the absorbance decrease during germination in inosine. Bacillus cereus T, B. subtilis A and B. megaterium QM B1551 spores were activated by heat- and CaCl2-treatments. Ethanol activated B. megaterium and B. subtilis spores yet did not activate B. cereus spores. CaCl2- and ethanol-activations were less effective than heat-activation as judged by optimal germination rates and germination extents. The presence of CaCl2 during heat-treatment inhibited heat-activation of all three Bacillus spores without affecting viability or dipicolinic acid content of the spores. The electrophoretic patterns of coat plus outer membrane proteins extracted from Bacillus spores treated with CaCl2 and heat in the presence of CaCl2 were similar to each other and were distinctively different from the patterns of proteins from unactivated spores or the spores treated with heat and/or ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号