首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The modified aspartate transcarbamylase (ATCase) encoded by the transducing phage described by Cunin et al. has been purified to homogeneity. In this altered form of enzyme (pAR5-ATCase) the last eight amino acids of the C-terminal end of the regulatory chains are replaced by a sequence of six amino acids coded for by the lambda DNA. This modification has very informative consequences on the allosteric properties of ATCase. pAR5-ATCase lacks the homotropic co-operative interactions between the catalytic sites for aspartate binding and is "frozen" in the R state. In addition, this altered form of enzyme is insensitive to the physiological feedback inhibitor CTP, in spite of the fact that this nucleotide binds normally to the regulatory sites. Conversely, pAR5-ATCase is fully sensitive to the activator ATP. However, this activation is limited to the extent of the previously described "primary effect" as expected from an ATCase form "frozen" in the R state. These results emphasize the importance of the three-dimensional structure of the C-terminal region of the regulatory chains for both homotropic and heterotropic interactions. In addition, they indicate that the primary effects of CTP and ATP involve different features of the regulatory chain-catalytic chain interaction area.  相似文献   

2.
In aspartate transcarbamylase (ATCase) each regulatory chain interacts with two catalytic chains each one belonging to a different trimeric catalytic subunit (R1-C1 and R1-C4 types of interactions as defined in Fig. 1). In order to investigate the interchain contacts that are involved in the co-operative interactions between the catalytic sites, a series of modified forms of the enzyme was prepared by site-directed mutagenesis. The amino acid replacements were devised on the basis of the previously described properties of an altered form of ATCase (pAR5-ATCase) which lacks the homotropic co-operative interactions between the catalytic sites. The results obtained (enzyme kinetics, bisubstrate analog influence and pH studies) show that the R1-C4 interaction is essential for the establishment of the enzyme conformation that has a low affinity for aspartate (T state), and consequently for the existence of co-operativity between the catalytic sites. This interaction involves the 236-250 region of the aspartate binding domain of the catalytic chain (240s loop) and the 143-149 region of the regulatory chain which comprises helix H3'.  相似文献   

3.
Several enterobacterial aspartate transcarbamylases (ATCases) exhibit a [2(c3):3(r2)] quaternary structure analogous to that of theEscherichia colienzyme. Despite their conserved quaternary structures, these enzymes present substantial differences in the co-operativity of substrate binding and in their allosteric regulation by nucleotide effectors. A comparison between different enzymatic species provides an opportunity to expand our understanding of the molecular basis of allostery in ATCase. Chimeric ATCases were constructed by exchanging subdomain regions involved in quaternary structural features, such as the r1-c4 regulatory-catalytic subunit interface analyzed in this study, in order to define the involvement of this interface in the several components of allosteric regulation. The r1-c4 interface was found to constitute an essential element for the recognition and the transmission of the ATP regulatory signal in theSerratia marcescensand theProteus vulgarisATCases, as it does in theE. coliATCase. Besides, the specific amino acid composition of the C-terminal region of the regulatory chain and its interactions with the amino acid residues in the 240s loop of the catalytic chain (r1-c4 interactions) were found to modulate the amplitude of the enzyme's response to ATP. The C-terminal region of the regulatory chain did not appear to participate directly in the regulation of the three native ATCases by CTP. Even when CTP acts as an activator, as in theP. vulgarisandS. marcescensATCases, its signal follows a route distinct from that of the general activator ATP. Synergistic inhibition by CTP and UTP was found to involve the transmission of a specific UTP signal. This signal appeared different in the various ATCases, involving the C-terminal region of the regulatory chain in theE. coliandS. marcescensATCases but not in theP. vulgarisATCase.  相似文献   

4.
Aspartate carbamoyltransferase (ATCase) is a model enzyme for understanding allosteric effects. The dodecameric complex exists in two main states (T and R) that differ substantially in their quaternary structure and their affinity for various ligands. Many hypotheses have resulted from the structure of the Escherichia coli ATCase, but so far other crystal structures to test these have been lacking. Here, we present the tertiary and quaternary structure of the T state ATCase of the hyperthermophilic archaeon Sulfolobus acidocaldarius (SaATC(T)), determined by X-ray crystallography to 2.6A resolution. The quaternary structure differs from the E.coli ATCase, by having altered interfaces between the catalytic (C) and regulatory (R) subunits, and the presence of a novel C1-R2 type interface. Conformational differences in the 240 s loop region of the C chain and the C-terminal region of the R chain affect intersubunit and interdomain interfaces implicated previously in the allosteric behavior of E.coli ATCase. The allosteric-zinc binding domain interface is strengthened at the expense of a weakened R1-C4 type interface. The increased hydrophobicity of the C1-R1 type interface may stabilize the quaternary structure. Catalytic trimers of the S.acidocaldarius ATCase are unstable due to a drastic weakening of the C1-C2 interface. The hyperthermophilic ATCase presents an interesting example of how an allosteric enzyme can adapt to higher temperatures. The structural rearrangement of this thermophilic ATCase may well promote its thermal stability at the expense of changes in the allosteric behavior.  相似文献   

5.
The allosteric enzyme aspartate carbamoyltransferase of Escherichia coli consists of six regulatory chains (R) and six catalytic chains (C) in D3 symmetry. The less active T conformation, complexed to the allosteric inhibitor CTP has been refined to 2.6 A (R-factor of 0.155). We now report refinement of the more active R conformation, complexed to the bisubstrate analog N-phosphonacetyl-L-aspartate (PALA) to 2.4 A (R-factor of 0.165, root-mean-square deviations from ideal bond distances and angles of 0.013 A and 2.2 degrees, respectively). The antiparallel beta-sheet in the revised segment 8-65 of the regulatory chain of the T conformation is confirmed in the R conformation, as is also the interchange of alanine 1 with the side-chain of asparagine 2 in the catalytic chain. The crystallographic asymmetric unit containing one-third of the molecule (C2R2) includes 925 sites for water molecules, and seven side-chains in alternative conformations. The gross conformational changes of the T to R transition are confirmed, including the elongation of the molecule along its threefold axis by 12 A, the relative reorientation of the catalytic trimers C3 by 10 degrees, and the rotation of the regulatory dimers R2 about the molecular twofold axis by 15 degrees. No changes occur in secondary structure. Essentially rigid-body transformations account for the movement of the four domains of each catalytic-regulatory unit; these include the allosteric effector domain, the equatorial (aspartate) domain, and the combination of the polar (carbamyl phosphate) and zinc domain, which moves as a rigid unit. However, interfaces change, for example the interface between the zinc domain of the R chain and the equatorial domain of the C chain, is nearly absent in the T state, but becomes extensive in the R state of the enzyme; also one catalytic-regulatory interface (C1-R4) of the T state disappears in the more active R state of the enzyme. Segments 50-55, 77-86 and 231-246 of the catalytic chain and segments 51-55, 67-72 and 150-153 of the regulatory chain show conformational changes that go beyond the rigid-body movement of their corresponding domains. The localized conformational changes in the catalytic chain all derive from the interactions of the enzyme with the inhibitor PALA; these changes may be important for the catalytic mechanism. The conformation changes in segments 67-72 and 150-153 of the regulatory chain may be important for the allosteric control of substrate binding. On the basis of the conformational differences of the T and R states of the enzyme, we present a plausible scheme for catalysis that assumes the ordered binding of substrates and the ordered release o  相似文献   

6.
J Cherfils  P Vachette  J Janin 《Biochimie》1990,72(8):617-624
The allosteric properties of aspartate transcarbamylase from E coli have been investigated by a combination of genetic, biochemical and structural studies. Based on the X-ray structures of the enzyme in T and R state established by Lipscomb et al, we have analyzed the interactions between the 12 polypeptide chains and have identified subunit interfaces that play a major part in the allosteric mechanism: the c1c4 interface between the 2 catalytic trimers, and one of 2 different interfaces between catalytic and regulatory chains, the c1r4 interface, which exists only in T state. We have modelled mutations affecting these interfaces: mutation pAR5 in the gene coding for r chains concerns the c1r4 interface, mutation Tyr----Phe 240 in the gene coding for c chains, the c1c4 interface. Both mutant proteins have reduced cooperativity and/or allosteric regulation by CTP and ATP. Molecular mechanic simulations lead to specific proposals for the structural origin of these effects, and some of the proposals can be checked by site-directed mutagenesis. Finally, we have modelled substrates bound at the active site of the T state, which binds aspartate less tightly than the R state and for which X-ray structures of bound substrate analogs were not available.  相似文献   

7.
The protein and solvent structure of the CTP-liganded form of aspartate carbamoyltransferase from Escherichia coli yields an R-factor of 0.155 for data to a resolution of 2.6 A. The model has 7353 protein atoms, 945 sites for solvent, and two molecules of CTP. A total of 25 of the 912 residues of the model exist in more than one conformation. The root-mean-square deviation of bond lengths and angles from their ideal values is 0.013 A and 2.1 degrees, respectively. The model reported here reflects a correction in the trace of the regulatory chain. One molecule of CTP binds to each of the two regulatory chains of the asymmetric unit of the crystal. The interactions between the pyrimidine of each CTP molecule and the protein are similar. The 4-amino group of CTP binds to the carbonyl groups of residues 89 (tyrosine) and 12 (isoleucine) of the regulatory chain. The nitrogen of position 3 of the pyrimidine binds to the amide group of residue 12; the 2-keto group binds to lysine 60. The 2'-OH group of the ribose forms hydrogen bonds with lysine 60 and the carbonyl group of residue 9 (valine). The binding of the phosphate groups of CTP to the regulatory chain probably reflects an incomplete association of CTP with the enzyme at pH 5.8. A lattice contact influences the interaction between the triphosphate group of one CTP molecule and the protein. For the other CTP molecule, only lysine 94 binds to the phosphate groups of CTP. Of the two regulatory and two catalytic chains of the asymmetric unit of the crystal, there are only two significant violations of non-crystallographic symmetry. The active site in the vicinity of arginine 54 of one catalytic chain is larger than the active site of its non-crystallographic mate. The "expanded" cavity accommodates four solvent molecules in the vicinity of arginine 54 as opposed to two molecules of water for the "contracted" cavity. Furthermore, arginine 54 in the "expanded" pocket adopts two conformations, either hydrogen-bonding to glutamate 86 or to the phenolic oxygen atom of tyrosine 98; residues 86 and 98 are in a catalytic chain related by 3-fold symmetry to the catalytic chain of arginine 54. In the "contracted" pocket, arginine 54 binds only to glutamate 86.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Atomic models representing the electron density of two crystalline forms of aspartate carbamoyltransferase from Escherichia coli are reported here. The unliganded form (R32 crystal symmetry) and the CTP-liganded form (P321 crystal symmetry) have been refined independently at resolutions of 3.0 å and 2.8 Å, respectively, each to a crystallographic R-factor of 27%. The molecular models include at least 95% of the theoretical number of atoms for the aspartate Carbamoyltransferase molecule based on chemical sequence information. We provide details of the refinement process for the two structures, and an evaluation of the accuracy of the molecular models.For the most part, the regulatory and catalytic chains of the unliganded enzyme and the CTP-liganded form are in similar conformations. Large conformational differences in the CTP and native forms exist, however, specifically in the region of CTP binding to the regulatory chain. In addition, a segment of ten amino acid residues, which includes Lys83 and Lys84 of the catalytic chain, is disordered in the CTP-liganded form, in contrast to the native structure, where the same residues have refined well into density.Each catalytic monomer of aspartate carbamoyltransferase is in contact with three catalytic chains and two regulatory monomers. Each regulatory monomer borders on one other regulatory chain and two catalytic chains. The catalytic trimera are in contact in the hexamer; residues important to homotropic effects and catalysis (Tyr165 and Tyr232) are integral parts of the interface. We present a thorough survey of interface regions, cataloging polar interactions between sidechains throughout the molecule.We discuss, in context with the present structures, the chemical modifications and mutations of the enzyme. Highlighted specifically are Cys47, Tyr165 and Tyr232, Lys83, Lys84, Trp209 and Trp279 and Gly128, residues of demonstrated importance to the catalytic of regulatory function or aspartate carbamoyltransferase. The spatial arrangement of “active site” residues argues for a catalytic pocket shared between two monomers within catalytic subunit.  相似文献   

9.
Aspartate-162 in the catalytic chain of aspartate transcarbamoylase is conserved in all of the sequences determined to date. The X-ray structure of the Escherichia coli enzyme indicates that this residue is located in a loop region (160's loop) that is near the interface between two catalytic trimers and is also close to the active site. In order to test whether this conserved residue is important for support of the internal architecture of the enzyme and/or involved in transmitting homotropic and heterotropic effects, the function of this residue was studied using a mutant version of the enzyme with an alanine at this position (Asp-162----Ala) created by site-specific mutagenesis. The Asp-162----Ala enzyme exhibits a 400-fold reduction in the maximal observed specific activity, approximately 2-fold and 10-fold decreases in the aspartate and carbamoyl phosphate concentrations at half the maximal observed specific activity respectively, a loss of homotropic cooperativity, and loss of response to the regulatory nucleotides ATP and CTP. Furthermore, equilibrium binding studies indicate that the affinity of the mutant enzyme for CTP is reduced more than 10-fold. The isolated catalytic subunit exhibits a 660-fold reduction in maximal observed specific activity compared to the wild-type catalytic subunit. The Km values for aspartate and carbamoyl phosphate for the Asp-162----Ala catalytic subunit were within 2-fold of the values observed for the wild-type catalytic subunit. Computer simulations of the energy-minimized mutant enzyme indicate that the space once occupied by the side chain of Asp-162 may be filled by other side chains, suggesting that Asp-162 is important for stabilizing the internal architecture of the wild-type enzyme.  相似文献   

10.
J Cherfils  P Vachette  P Tauc    J Janin 《The EMBO journal》1987,6(9):2843-2847
Mutation pAR5 replaces residues 145'-153' at the C terminus of the regulatory (r) chains of Escherichia coli ATCase by a new sequence of six residues. The mutated enzyme has been shown to lack substrate cooperativity and inhibition by CTP. Solution X-ray scattering curves demonstrate that, in the absence of ligands, its structure is intermediate between the T form and the R form. In the presence of N-phosphonacetyl-L-aspartate, the mutant is similar to the wild type. An examination of the crystal structure of unligated ATCase reveals that the mutated site is at an interface between r and catalytic (c) chains, which exists only in the T allosteric form. A computer simulation by energy minimization suggests that the pAR5 mutation destabilizes this interface and induces minor changes in the tertiary structure of r chains. The resulting lower stability of the T form explains the loss of substrate cooperativity. The lack of allosteric inhibition may be related to a new electrostatic interaction made in mutant r chains between the C-terminal carboxylate and a lysine residue of the allosteric domain.  相似文献   

11.
Recent x-ray crystallographic studies of aspartate transcarbamoylase bound with CTP have detected molecular asymmetry in the interface between the catalytic and regulatory subunits (Kim, K. H., Pan, Z., Honzatko, R. B., Ke, H.-M., and Lipscomb, W. N. (1987) J. Mol. Biol. 196, 863-875). In three of the six interfaces, a salt link occurs between Arg130 of the regulatory chain and Glu204 of the catalytic chain; however, these same residues are 15 A apart in the other three interfaces. In order to determine if this is important for the function of the enzyme, two mutant versions of aspartate transcarbamoylase were created by site-specific mutagenesis. Glu204 of the catalytic chain was converted to a glutamine (Glu204c----Gln) and Arg130 of the regulatory chain was converted to a glycine (Arg130r----Gly). The thermal stability of the Arg130r----Gly enzyme is dramatically reduced, whereas the thermal stability of the Glu204c----Gln enzyme is unaltered compared to the wild-type enzyme. The maximal velocity of both mutant enzymes is identical with that of the wild-type enzyme, however both mutant enzymes have altered substrate affinity and regulatory properties. Based on these studies, the link between Glu204 of the catalytic chain and Arg130 of the regulatory chain is important for the heterotropic properties of the enzyme. Furthermore, the interface between the domain of the regulatory chain which binds zinc and the domain of the catalytic chain which binds aspartate may be more important for CTP inhibition than ATP activation. These data also suggest that heterotropic cooperativity is very sensitive to alterations in the catalytic-regulatory interface. However, no clear relationship has been observed between the structural asymmetry and the function of the enzyme.  相似文献   

12.
13.
Aspartate transcarbamoylase from Escherichia coli is a dodecameric enzyme consisting of two trimeric catalytic subunits and three dimeric regulatory subunits. Asp-100, from one catalytic chain, is involved in stabilizing the C1-C2 interface by means of its interaction with Arg-65 from an adjacent catalytic chain. Replacement of Asp-100 by Ala has been shown previously to result in increases in the maximal specific activity, homotropic cooperativity, and the affinity for aspartate (Baker DP, Kantrowitz ER, 1993, Biochemistry 32:10150-10158). In order to determine whether these properties were due to promotion of domain closure induced by the weakening of the C1-C2 interface, we constructed a double mutant version of aspartate transcarbamoylase in which the Asp-100-->Ala mutation was introduced into the Glu-50-->Ala holoenzyme, a mutant in which domain closure is impaired. The Glu-50/Asp-100-->Ala enzyme is fourfold more active than the Glu-50-->Ala enzyme, and exhibits significant restoration of homotropic cooperativity with respect to aspartate. In addition, the Asp-100-->Ala mutation restores the ability of the Glu-50-->Ala enzyme to be activated by succinate and increases the affinity of the enzyme for the bisubstrate analogue N-(phosphonacetyl)-L-aspartate (PALA). At subsaturating concentrations of aspartate, the Glu-50/Asp-100-->Ala enzyme is activated more by ATP than the Glu-50-->Ala enzyme and is also inhibited more by CTP than either the wild-type or the Glu-50-->Ala enzyme. As opposed to the wild-type enzyme, the Glu-50/Asp-100-->Ala enzyme is activated by ATP and inhibited by CTP at saturating concentrations of aspartate. Structural analysis of the Glu-50/Asp-100-->Ala enzyme by solution X-ray scattering indicates that the double mutant exists in the same T quaternary structure as the wild-type enzyme in the absence of ligands and in the same R quaternary structure in the presence of saturating PALA. However, saturating concentrations of carbamoyl phosphate and succinate only convert a fraction of the Glu-50/Asp-100-->Ala enzyme population to the R quaternary structure, a behavior intermediate between that observed for the Glu-50-->Ala and wild-type enzymes. Solution X-ray scattering was also used to investigate the structural consequences of nucleotide binding to the Glu-50/Asp-100-->Ala enzyme.  相似文献   

14.
Each of two previously isolated strains of Escherichia coli containing a single nonsense codon within the pyrB gene was suppressed with four different nonsense suppressors. The kinetic analysis using crude extracts of these nonsense-suppressed strains indicated that the mutant aspartate transcarbamylases had altered cooperativity and affinity for aspartate as judged by the substrate concentration at half of the maximal velocity. Both pyrB genes were cloned and then sequenced. In both cases, a single base change was identified which converted a glutamine GAC codon into a TAC nonsense codon. Both mutations occurred in the catalytic chain of aspartate transcarbamylase and were identified at positions 108 and 246. The glutamine at position 108 in the wild-type structure is located at the interface between the catalytic and regulatory chains and is involved in a number of interactions with backbone and side chains of the regulatory chain. The glutamine at position 246 in the wild-type structure is located in the 240s loop of the enzyme. Two additional mutant versions of aspartate transcarbamylase were created by site-directed mutagenesis to further investigate the 108-position in the structure, a glutamine to tyrosine substitution at position 108 of the catalytic chain, and an asparagine to glycine change at position 113 of the regulatory chain, a residue which interacts directly with glutamine-108 in the wild-type structure. Both mutant enzymes have reduced affinity for aspartate. However, the Tyr-108 mutant enzyme exhibits a reduced Hill coefficient while the Gly-113 enzyme exhibits an increased Hill coefficient. The response to the allosteric effectors ATP and CTP is also changed for both the mutant enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Y Zhang  E R Kantrowitz 《Biochemistry》1989,28(18):7313-7318
Lysine-60 in the regulatory chain of aspartate transcarbamoylase has been changed to an alanine by site-specific mutagenesis. The resulting enzyme exhibits activity and homotropic cooperativity identical with those of the wild-type enzyme. The substrate concentration at half the maximal observed specific activity decreases from 13.3 mM for the wild-type enzyme to 9.6 mM for the mutant enzyme. ATP activates the mutant enzyme to the same extent that it does the wild-type enzyme, but the concentration of ATP required to reach half of the maximal activation is reduced approximately 5-fold for the mutant enzyme. CTP at a concentration of 10 mM does not inhibit the mutant enzyme, while under the same conditions CTP at concentrations less than 1 mM will inhibit the wild-type enzyme to the maximal extent. Higher concentrations of CTP result in some inhibition of the mutant enzyme that may be due either to hetertropic effects at the regulatory site or to competitive binding at the active site. UTP alone or in the presence of CTP has no effect on the mutant enzyme. Kinetic competition experiments indicate that CTP is still able to displace ATP from the regulatory sites of the mutant enzyme. Binding measurements by equilibrium dialysis were used to estimate a lower limit on the dissociation constant for CTP binding to the mutant enzyme (greater than 1 x 10(-3) M). Equilibrium competition binding experiments between ATP and CTP verified that CTP still can bind to the regulatory site of the enzyme. For the mutant enzyme, CTP affinity is reduced approximately 100-fold, while ATP affinity is increased by 5-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The reaction of phenylglyoxal with aspartate transcarbamylase and its isolated catalytic subunit results in complete loss of enzymatic activity (Kantrowitz, E. R., and Lipscomb, W. N. (1976) J. Biol. Chem. 251, 2688-2695). If N-(phosphonacetyl)-L-aspartate is used to protect the active site, we find that phenylglyoxal causes destruction of the enzyme's susceptibility to activation by ATP and inhibition by CTP. Furthermore, CTP only minimally protects the regulatory site from reaction with this reagent. The modified enzyme still binds CTP although with reduced affinity. After reaction with phenylglyoxal, the native enzyme shows reduced cooperativity. The hybrid with modified regulatory subunits and native catalytic subunits exhibits slight heterotropic or homotropic properties, while the reverse hybrid, with modified catalytic subunits and native regulatory subunits, shows much reduced homotropic properties but practically normal heterotropic interactions. The decrease in the ability of CTP to inhibit the enzyme correlates with the loss of 2 arginine residues/regulatory chain (Mr = 17,000). Under these reaction conditions, 1 arginine residue is also modified on each catalytic chain (Mr = 33,000). Reaction rate studies of p-hydroxymercuribenzoate, with the liganded and unliganded modified enzyme suggest that the reaction with phenylglyoxal locks the enzyme into the liganded conformation. The conformational state of the regulatory subunit is implicated as having a critical role in the expression of the enzyme's heterotropic and homotropic properties.  相似文献   

17.
Structural studies of Escherichia coli aspartate transcarbamoylase suggest that the R state of the enzyme is stabilized by an interaction between Ser-171 of the aspartate domain and both the backbone carbonyl of His-134 and the side chain of Gln-133 of the carbamoyl phosphate domain of a catalytic chain [Ke, H.-M., Lipscomb, W.N., Cho, Y., & Honzatko, R. B. (1988) J. Mol. Biol. 204, 725-747]. In the present study, site-specific mutagenesis is used to replace Ser-171 by alanine, thereby eliminating the interactions between Ser-171 and both Gln-133 and His-134. The Ser-171----Ala holoenzyme exhibits no cooperativity, more than a 140-fold loss of activity, little change in the carbamoyl phosphate concentration at half the maximal observed specific activity, and a 7-fold increase in the aspartate concentration at half the maximal observed specific activity. Although the Ser-171----Ala enzyme exhibits no homotropic cooperativity, it is still activated by N-(phosphonacetyl)-L-aspartate (PALA), but not by succinate, in the presence of saturating carbamoyl phosphate and subsaturating aspartate. At subsaturating concentrations of aspartate, the Ser-171----Ala enzyme is still activated by ATP but is inhibited less by CTP than is the wild-type enzyme. At saturating concentrations of aspartate, the Ser-171----Ala enzyme is activated by ATP and inhibited by CTP to an even greater extent than at subsaturating concentrations of aspartate. At saturating aspartate, the wild-type enzyme is neither activated by ATP nor inhibited by CTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In an X-ray diffraction study using the method of multiple isomorphous replacement, the structure of aspartate carbamoyltransferase (EC 2.1.3.2) complexed with the bisubstrate analog N-(phosphonacetyl)-L-aspartate (PALA) has been solved to 2.5 A. Ten rounds of model building and 123 cycles of restrained reciprocal space refinement have resulted in a model containing 94.4% of the theoretical atoms of the protein-inhibitor complex with an R-factor of 0.231. The fit of the model to the density is excellent, except for occasional side-chains and two sections of the regulatory chains that may be disordered. The electron density for the PALA molecule is readily identifiable for both catalytic (c) chains of the asymmetric unit and bonding interactions with several important residues including Ser52, Arg54, Thr55, Ser80, Lys84, Arg105, His134, Arg165, Arg229 and Gln231 are apparent. The carboxylate groups of the PALA molecule are in a nearly cis conformation. Gross quaternary changes between the T and R forms are noted and in agreement with earlier work from this laboratory. Namely, in the new structure the catalytic trimers move apart by 12 A along the 3-fold axis of the enzyme and relocate by 10 degrees relative to each other, adopting a more eclipsed position. The regulatory (r) chains in the new structure reorient about their 2-fold axis by 15 degrees. Large tertiary changes that include domain migration and rearrangement are also present between these two forms. In the R form both domains of the catalytic chain relocate closer to each other in order to bind to the inhibitor. The polar domain seems to bind primarily to the carbamoyl phosphate moiety of PALA, and the equatorial domain binds primarily to the L-aspartate moiety. Other changes in tertiary structure bring the 80s loop (from an adjacent catalytic chain) and the 240s loop into a position to interact with the PALA molecule. Changes have been searched for in all interface regions of the enzyme. While the C1-C4 and C1-R4 regions have been completely altered, most of the other interchain interfaces are similar in the T and R forms. The intrachain interfaces, between domains of the same catalytic chains, have undergone some reorganization as these domains move closer to each other when the inhibitor is bound. This new structure allows a reinterpretation of genetic and chemical modification studies done to date.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Because the N- and C-terminal amino acids of the catalytic (c) polypeptide chains of Escherichia coli aspartate transcarbamoylase (ATCase) are in close proximity to each other, it has been possible to form in vivo five different active ATCase variants in which the terminal regions of the wild-type c chains are linked in a continuous polypeptide chain and new termini are introduced elsewhere in either of the two structural domains of the c chain. These circularly permuted (cp) chains were produced by constructing tandem pyrB genes, which encode the c chain of ATCase, followed by application of PCR. Chains expressed in this way assemble efficiently in vivo to form active, stable ATCase variants. Three such variants have been purified and shown to have the kinetic and physical properties characteristic of wild-type ATCase composed of two catalytic (C) trimers and three regulatory (R) dimers. The values of Vmax for cpATCase122, cpATCase222, and cpATCase281 ranged from 16-21 mumol carbamoylaspartate per microgram per h, compared with 15 for wild-type ATCase, and the values for K0.5 for the variants were 4-17 mM aspartate, whereas wild-type ATCase exhibited a value of 6 mM. Hill coefficients for the three variants varied from 1.8 to 2.1, compared with 1.4 for the wild-type enzyme. As observed with wild-type ATCase, ATP activated the variants containing the circularly permuted chains, as shown by the lowering of K0.5 for aspartate and a decrease in the Hill coefficient (nH). In contrast, CTP caused both an increase in K0.5 and nH for the variants, just as observed with wild-type ATCase. Thus, the enzyme containing the permuted chains with widely diverse N- and C-termini exhibited the homotropic and heterotropic effects characteristic of wild-type ATCase. The decrease in the sedimentation coefficient of the variants caused by the binding of the bisubstrate ligand N-(phosphonacetyl)-L-aspartate (PALA) was also virtually identical to that obtained with wild-type ATCase, thereby indicating that these altered ATCase molecules undergo the analogous ligand-promoted allosteric transition from the taut (T) state to the relaxed (R) conformation. These ATCase molecules with new N- and C-termini widely dispersed throughout the c chains are valuable models for studying in vivo and in vitro folding of polypeptide chains.  相似文献   

20.
Fetler L  Tauc P  Hervé G  Cunin R  Brochon JC 《Biochemistry》2001,40(30):8773-8782
The homotropic and heterotropic interactions in Escherichia coli aspartate transcarbamylase (EC 2.1.3.2) are accompanied by various structure modifications. The large quaternary structure change associated with the T to R transition, promoted by substrate binding, is accompanied by different local conformational changes. These tertiary structure modifications can be monitored by fluorescence spectroscopy, after introduction of a tryptophan fluorescence probe at the site of investigation. To relate unambiguously the fluorescence signals to structure changes in a particular region, both naturally occurring Trp residues in positions 209c and 284c of the catalytic chains were previously substituted with Phe residues. The regions of interest were the so-called 240's loop at position Tyr240c, which undergoes a large conformational change upon substrate binding, and the interface between the catalytic and regulatory chains in positions Asn153r and Phe145r supposed to play a role in the different regulatory processes. Each of these tryptophan residues presents a complex fluorescence decay with three to four independent lifetimes, suggesting that the holoenzyme exists in slightly different conformational states. The bisubstrate analogue N-phosphonacetyl-L-aspartate affects mostly the environment of tryptophans at position 240c and 145r, and the fluorescence signals were related to ligand binding and the quaternary structure transition, respectively. The binding of the nucleotide activator ATP slightly affects the distribution of the conformational substates as probed by tryptophan residues at position 240c and 145r, whereas the inhibitor CTP modifies the position of the C-terminal residues as reflected by the fluorescence properties of Trp153r. These results are discussed in correlation with earlier mutagenesis studies and mechanisms of the enzyme allosteric regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号