首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is evidence that paralytic poliomyelitis occurred in ancient times, but it was not recognized as a distinct disease until the eighteenth century and did not come into prominence until the late nineteenth century when epidemics began to appear. Outbreaks of increasing size were reported first in the Scandinavian countries, then in the United States and elsewhere, to the surprise and consternation of the medical profession. Poliovirus was first isolated in 1908, but many years of intensive research were required before the epidemiology and pathogenesis of the disease were sufficiently understood to allow preventive measures to be devised. The road to eventual success was complicated by controversies, setbacks, and tragedies, played out and influenced by many powerful personalities. Today there are two effective vaccines. The disease has been virtually eliminated in countries where they have been used extensively, yet in the developing areas of the world recent "lameness surveys" indicate that the incidence of paralytic poliomyelitis is as high as it was during the peak years in the United States in the early 1950s. The challenge now is to use the available vaccines to extend control to the developing countries and eventually to achieve elimination of the disease worldwide.  相似文献   

2.
Neotropical Rain Forest Mammals: A Field Guide, Second Edition. Text by Louise H. Emmons. Illustrations by Francois Feer. Chicago and London, University of Chicago Press, 1997, xvi + 307 pages, 29 color plates, 7 black-and-white plates, 19 figures, 195 maps, $25.95 (paper), $80.00 (cloth).  相似文献   

3.
4.
5.
6.
7.
8.
The occurrence of introns in nuclear precursor RNAs (pre-mRNAs) is widespread in eukaryotes, and the splicing process that removes them is basically the same in yeasts as it is in higher eukaryotes. Splicing takes place in a very large, multi-component complex, the spliceosome, and biochemical studies have been complicated by the large number of splicing factors involved. This review describes how genetic approaches used to study RNA splicing inSaccharomyces cerevisiae have complemented the biochemical studies and led to rapid advances in the field.  相似文献   

9.
Putyrski M  Schultz C 《FEBS letters》2012,586(15):2097-2105
In cell biology and pharmacology, small chemicals are mostly used as agonists and antagonists against receptors and enzymes. The immunosuppressant rapamycin can serve an entirely different purpose: if employed sensibly, it might function as an inducer of dimerization that is able to rapidly activate enzyme activity inside the intact cell. A number of very recent developments such as photoactivatable derivatives make rapamycin an even more attractive tool for basic science.  相似文献   

10.
This article is an attempt to simplify lecturing about the osmotic gradient in the kidney medulla. In the model presented, the kidneys are described as a limited space with a positive interstitial hydrostatic pressure. Traffic of water, sodium, and urea is described in levels (or horizons) of different osmolarity, governed by osmotic forces and positive interstitial pressure. In this way, actions of the countercurrent multiplier in nephron tubules and of the countercurrent exchanger in vasa recta are integrated in each horizon. We hope that this approach can help students to better accept conventional presentations in their textbooks.  相似文献   

11.
12.
The metaphase to anaphase transition: a case of productive destruction.   总被引:2,自引:0,他引:2  
The metaphase to anaphase transition is a point of no return; the duplicated sister chromatids segregate to the future daughter cells, and any mistake in this process may be deleterious to both progeny. At the heart of this process lies the anaphase inhibitor, which must be degraded in order for this transition to take place. The degradation of the anaphase inhibitor occurs via the ubiquitin-degradation pathway, and it involves the activity of the cyclosome/anaphase promoting complex (APC). The fidelity of the metaphase to anaphase transition is ensured by several different regulatory mechanisms that modulate the activity of the cyclosome/APC. Great advancements have been made in this field in the past few years, but many questions still remain to be answered.  相似文献   

13.
《PloS one》2015,10(12)
Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods.  相似文献   

14.
Mayer MP 《Cell》2012,148(5):843-844
Oxidative stress, especially in combination with heat stress, poses a life-threatening challenge to many organisms by causing protein misfolding and aggregation. In this issue, Reichmann et al. demonstrate how a destabilized linker region of the bacterial chaperone Hsp33 prevents aggregation of a denatured protein by stabilizing structural elements.  相似文献   

15.
Protein–membrane interactions play essential roles in a variety of cell functions such as signaling, membrane trafficking, and transport. Membrane-recruited cytosolic proteins that interact transiently and interfacially with lipid bilayers perform several of those functions. Experimental techniques capable of probing changes on the structural dynamics of this weak association are surprisingly limited. Among such techniques, electron spin resonance (ESR) has the enormous advantage of providing valuable local information from both membrane and protein perspectives by using intrinsic paramagnetic probes in metalloproteins or by attaching nitroxide spin labels to proteins and lipids. In this review, we discuss the power of ESR to unravel relevant structural and functional details of lipid–peripheral membrane protein interactions with special emphasis on local changes of specific regions of the protein and/or the lipids. First, we show how ESR can be used to investigate the direct interaction between a protein and a particular lipid, illustrating the case of lipid binding into a hydrophobic pocket of chlorocatechol 1,2-dioxygenase, a non-heme iron enzyme responsible for catabolism of aromatic compounds that are industrially released in the environment. In the second case, we show the effects of GPI-anchored tissue-nonspecific alkaline phosphatase, a protein that plays a crucial role in skeletal mineralization, and on the ordering and dynamics of lipid acyl chains. Then, switching to the protein perspective, we analyze the interaction with model membranes of the brain fatty acid binding protein, the major actor in the reversible binding and transport of hydrophobic ligands such as long-chain, saturated, or unsaturated fatty acids. Finally, we conclude by discussing how both lipid and protein views can be associated to address a common question regarding the molecular mechanism by which dihydroorotate dehydrogenase, an essential enzyme for the de novo synthesis of pyrimidine nucleotides, and how it fishes out membrane-embedded quinones to perform its function.  相似文献   

16.
The cell biology of autophagy in metazoans: a developing story   总被引:3,自引:0,他引:3  
The cell biological phenomenon of autophagy (or ;self-eating') has attracted increasing attention in recent years. In this review, we first address the cell biological functions of autophagy, and then discuss recent insights into the role of autophagy in animal development, particularly in C. elegans, Drosophila and mouse. Work in these and other model systems has also provided evidence for the involvement of autophagy in disease processes, such as neurodegeneration, tumorigenesis, pathogenic infection and aging. Insights gained from investigating the functions of autophagy in normal development should increase our understanding of its roles in human disease and its potential as a target for therapeutic intervention.  相似文献   

17.
18.
19.
Glycogen synthase kinase 3 was discovered in mammals several years ago but only recently has it become clear that this enzyme is acutely regulated by hormones such as insulin and by growth factors. In mammals, it appears to be controlled by a signalling pathway linked to phosphoinositide 3-kinase and may regulate a range of biosynthetic processes. Evidence is now accumulating that GSK3 plays a key role in the regulation of cell fate and differentiation in many eukaryotic species.  相似文献   

20.
Cytochromes P450: a success story   总被引:7,自引:0,他引:7  
Werck-Reichhart D  Feyereisen R 《Genome biology》2000,1(6):reviews3003.1-reviews30039
Cytochrome P450 proteins, named for the absorption band at 450 nm of their carbon-monoxide-bound form, are one of the largest superfamilies of enzyme proteins. The P450 genes (also called CYP) are found in the genomes of virtually all organisms, but their number has exploded in plants. Their amino-acid sequences are extremely diverse, with levels of identity as low as 16% in some cases, but their structural fold has remained the same throughout evolution. P450s are heme-thiolate proteins; their most conserved structural features are related to heme binding and common catalytic properties, the major feature being a completely conserved cysteine serving as fifth (axial) ligand to the heme iron. Canonical P450s use electrons from NAD(P)H to catalyze activation of molecular oxygen, leading to regiospecific and stereospecific oxidative attack of a plethora of substrates. The reactions carried out by P450s, though often hydroxylation, can be extremely diverse and sometimes surprising. They contribute to vital processes such as carbon source assimilation, biosynthesis of hormones and of structural components of living organisms, and also carcinogenesis and degradation of xenobiotics. In plants, chemical defense seems to be a major reason for P450 diversification. In prokaryotes, P450s are soluble proteins. In eukaryotes, they are usually bound to the endoplasmic reticulum or inner mitochondrial membranes. The electron carrier proteins used for conveying reducing equivalents from NAD(P)H differ with subcellular localization. P450 enzymes catalyze many reactions that are important in drug metabolism or that have practical applications in industry; their economic impact is therefore considerable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号