首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence resonance energy transfer has been used to study oligomerization of the purified erythrocyte Ca2+-ATPase. The energy transfer efficiency has been measured at different enzyme concentrations, from fluorescein 5'-isothiocyanate attached on one enzyme molecule to eosin 5-maleimide or tetramethylrhodamine 5-isothiocyanate attached on another enzyme molecule. The energy transfer efficiency showed a sigmoid dependence on enzyme concentration and was half-maximal at 10-12 nM enzyme; this dependence on enzyme concentration closely resembled previously demonstrated dependence of Ca2+-ATPase activity and polarization of the fluorescein 5'-isothiocyanate enzyme (Kosk-Kosicka, D., and Bzdega, T. (1988) J. Biol. Chem. 263, 18184-18189). Thus, the three independent methods establish that enzyme concentration-dependent oligomerization is a mechanism of activation of the erythrocyte Ca2+-ATPase. Further energy transfer studies demonstrated that enzyme oligomerization required calcium. This calcium dependence was characterized by high affinity (half-maximal energy transfer at pCa 7.15) and cooperativity (Hill coefficient of 2.36), being very similar in both respects to the Ca2+ dependence of the Ca2+-ATPase activity. The data indicated that the oligomerization process produced a highly cooperative, Ca2+-regulated activation of the enzyme at physiologically relevant Ca2+ concentrations. These studies show that the Ca2+-ATPase can be fully activated by a Ca2+-dependent oligomerization mechanism, which is independent of the previously described activation by calmodulin. We propose two pathways for the activation of the Ca2+-ATPase, taking into account the interdependencies between the Ca2+, calmodulin, and enzyme concentrations.  相似文献   

2.
Arachidonoyl-hydrolyzing phospholipase A2 plays a central role in providing substrate for the synthesis of the potent lipid mediators of inflammation, the eicosanoids, and platelet-activating factor. Although Ca2+ is required for arachidonic acid release in vivo and most phospholipase A2 enzymes require Ca2+ for activity in vitro, the role of Ca2+ in phospholipase A2 activation is not understood. We have found that an arachidonoyl-hydrolyzing phospholipase A2 from the macrophage-like cell line, RAW 264.7, exhibits Ca2(+)-dependent association with membrane. The intracellular distribution of the enzyme was studied as a function of the Ca2+ concentration present in homogenization buffer. The enzyme was found almost completely in the 100,000 x g soluble fraction when cells were homogenized in the presence of Ca2+ chelators and there was a slight decrease in soluble fraction activity when cells were homogenized at the level of Ca2+ in an unstimulated cell (80 nM). When cells were homogenized at Ca2+ concentrations expected in stimulated cells (230-450 nM), 60-70% of the phospholipase A2 activity was lost from the soluble fraction and became associated with the particulate fraction in a manner that was partly reversible with EGTA. Membrane-associated phospholipase A2 activity was demonstrated by [3H]arachidonic acid release both from exogenous liposomes and from radiolabeled membranes. With radiolabeled particulate fraction as substrate, this enzyme hydrolyzed arachidonic acid but not oleic acid from membrane phospholipid, and [3H]arachidonic acid was derived from phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol/phosphatidylserine. We suggest a mechanism in which the activity of phospholipase A2 is regulated by Ca2+: in an unstimulated cell phospholipase A2 is found in the cytosol; upon receptor ligation the cytosolic Ca2+ concentration increases, and the enzyme becomes membrane-associated which facilitates arachidonic acid hydrolysis.  相似文献   

3.
The octaethyleneglycol mono-n-dodecyl ether solubilized Ca2+-ATPase purified from human erythrocytes has been studied to determine the physical mechanism of its activation by calmodulin. The dependence of Ca2+-ATPase activity on the enzyme concentration shows a transformation from a calmodulin-dependent to a fully active calmodulin-independent form. The transformation is cooperative with a half-maximal activation at 10-20 nM enzyme. This suggests that at higher enzyme concentrations interactions between Ca2+-ATPase polypeptide chains substitute for calmodulin-enzyme interactions, resulting in activation. In support of this interpretation, the inclusion of higher octaethyleneglycol mono-n-dodecyl ether concentrations shifts the half-maximal transformation to higher enzyme concentrations. Regardless of the detergent concentration, calmodulin decreases by about 2-fold the enzyme concentration required to observe half-maximal Ca2+-ATPase activation, without affecting the maximal velocity or cooperativity. This indicates that calmodulin facilitates interactions between enzyme molecules. The fluorescein-5'-isothiocyanate-modified Ca2+-ATPase shows an increase in fluorescence polarization which occurs over the same narrow concentration range that is seen with the Ca2+-ATPase activity, confirming association of enzyme molecules. Stimulation of the Ca2+-ATPase activity by calmodulin has revealed a stoichiometry of 0.73, with a dissociation constant of 1.6 nM calmodulin. We have demonstrated by use of calmodulin-Sepharose chromatography that both the calmodulin-dependent and independent Ca2+-ATPase forms bind calmodulin, even though stimulation of activity is seen only with the former one. Our data suggest the following two mechanisms for the Ca2+-ATPase activation: self-association of enzyme molecules or interaction with calmodulin.  相似文献   

4.
Vanadate was a potent inhibitor of the membrane-bound (Ca+Mg)-ATPase from rat brain, the concentration required for 50% inhibition under conditions optimal for enzymatic activity being 3 M. Vanadate inhibition increased with the MgCl2 concentration, half-maximal inhibition occurring at 2 mM MgCl2, near the MgCl2 concentration required for half-maximal activation of the ATPase activity. MnCl2 could substitute for MgCl2, and at concentrations of 1 mM (Ca+Mn)-ATPase activity was greater than (Ca+Mg)-ATPase activity, although sensitivity to vanadate was less. Vanadate inhibition increased also with the KCl concentration, half-maximal inhibition occurring at 8 mM, again near the concentration required for half-maximal activation of ATPase activity. By contrast, NaCl stimulated (Ca+Mg)-ATPase activity without potentiating vanadate inhibition. These effects of cations on ATPase activity and vanadate inhibition resemble properties of certain transport ATPases and thus suggest mechanistic and functional similarities.  相似文献   

5.
Four mutant calmodulins with site-specific charge alterations have been used to activate the human erythrocyte Ca2(+)-ATPase. These charge alterations were accomplished either by insertion of new Lys residues or by substitution of Lys residues for Glu in two of the seven calmodulin alpha-helices. Two enzyme preparations, purified monomeric Ca2(+)-ATPase and erythrocyte ghost membranes, were used with comparable results. At 100 nM Ca2+, the Ca2(+)-ATPase activity was lowered significantly by charge reversal from negative to positive in both the central alpha-helix and the carboxy-terminal domain. While all mutant calmodulins with charge reversal ultimately stimulated the Ca2(+)-ATPase activity to the same extent, the concentration of mutant calmodulin required for half-maximal activation was from 36-fold (central alpha-helix) to 126-fold higher (alpha-helix in the carboxy-terminal domain) than that of the control calmodulin. There was also a significant difference in the stimulation of Ca2(+)-ATPase activity by the different mutant calmodulins as a function of Ca2+ concentration, being most pronounced at submicromolar Ca2+ concentrations where enzyme activation by calmodulin appears to be a physiologically relevant mechanism. In contrast to the mutant calmodulins with charge reversal, mutant calmodulins in which two positive charges were added in the central alpha-helix activated the Ca2(+)-ATPase in a way undistinguishable from the control calmodulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A calcium-activated, phospholipid-dependent protein kinase (protein kinase C) was purified to near homogeneity from human polymorphonuclear leukocytes and shown to be identical to bovine protein kinase C. The Ca2+ activation of the enzyme was studied and the Ca2+ concentrations required to activate the enzyme were compared to free cytosolic Ca2+ concentrations in resting and activated polymorphonuclear leukocytes. The free calcium concentrations in the cytosol and in the enzyme assay mixture were determined using the calcium indicator quin 2. The enzyme activity was almost totally dependent upon phosphatidylserine and could be strongly activated by Ca2+ concentrations in the micromolar range, but was not activated by phosphatidylserine at Ca2+ concentrations corresponding to the intracellular free Ca2+ concentration under resting conditions. However, at similar Ca2+ concentrations (less than 2.5 X 10(-7) M) the enzyme was highly activated by phorbol 12-myristate 13-acetate (PMA) or diolein in the presence of phosphatidylserine. It was demonstrated that PMA stimulation of human polymorphonuclear leukocytes did not induce any increase in the level of the intracellular free calcium concentration. It was concluded that PMA activation of protein kinase C occurred independently of a rise in the intracellular Ca2+ concentration. K0.5 (half-maximal activation) for the PMA activation of purified protein kinase C was shown to be equivalent to the K0.5 for PMA stimulation of superoxide (O-2) production in human polymorphonuclear leukocytes, suggesting that protein kinase C is involved in activation of the NADPH oxidase. The presumed intracellular Ca2+ antagonist TMB-8 inhibited the PMA-induced superoxide production, but neither by an intracellular Ca2+ antagonism nor by a direct inhibition of protein kinase C activity.  相似文献   

7.
The concentration of free Ca(2+) and the composition of nonsubstrate phospholipids profoundly affect the activity of phospholipase C delta1 (PLCdelta1). The rate of PLCdelta1 hydrolysis of phosphatidylinositol 4,5-bisphosphate was stimulated 20-fold by phosphatidylserine (PS), 4-fold by phosphatidic acid (PA), and not at all by phosphatidylethanolamine or phosphatidylcholine (PC). PS reduced the Ca(2+) concentration required for half-maximal activation of PLCdelta1 from 5.4 to 0.5 microM. In the presence of Ca(2+), PLCdelta1 specifically bound to PS/PC but not to PA/PC vesicles in a dose-dependent and saturable manner. Ca(2+) also bound to PLCdelta1 and required the presence of PS/PC vesicles but not PA/PC vesicles. The free Ca(2+) concentration required for half-maximal Ca(2+) binding was estimated to be 8 microM. Surface dilution kinetic analysis revealed that the K(m) was reduced 20-fold by the presence of 25 mol % PS, whereas V(max) and K(d) were unaffected. Deletion of amino acid residues 646-654 from the C2 domain of PLCdelta1 impaired Ca(2+) binding and reduced its stimulation and binding by PS. Taken together, the results suggest that the formation of an enzyme-Ca(2+)-PS ternary complex through the C2 domain increases the affinity for substrate and consequently leads to enzyme activation.  相似文献   

8.
Phospholipase A2 activity was studied in the renal cortex and medulla of stroke-prone spontaneously hypertensive rat (SHRSP) and normotensive rat (WKY), and the subcellular localization of its activity was determined. Enhanced activity was found in both the cortical and medullary microsomes in SHRSP kidneys. In SHRSP, but not in WKY, phospholipase A2 activity progressively increased with age. This phospholipase A2 had substrate specificity toward phosphatidylethanolamine. There were no differences in optimal pH, substrate specificity, heat lability, and responses to Triton X-100 and deoxycholate between SHRSP and WKY. Ca2+ stimulated phospholipase A2 activity in both animals. The maximal activation was achieved at 5 mM Ca2+, and EDTA strongly inhibited the activity. But the response to Ca2+ was different in each. Ca2+ enhanced this activity in SHRSP markedly compared with WKY. It seems that Ca2+ is specifically required for phospholipase A2 activity in SHRSP. Though the influx of Ca2+ into microsomal membranes was not enhanced, the Ca2+ efflux of microsomal membranes decreased in SHRSP. This results in increases of intramicrosomal Ca2+, which may cause the subsequent activation of phospholipase A2. The Ca2+ permeability may be one of the factors in the increased phospholipase A2 activity in SHRSP.  相似文献   

9.
Phospholipase A2 activity in sonicates and acid extracts of ejaculated, washed human sperm was measured using [1-14C] oleate-labeled autoclaved E. coli and 1-[1-14C] stearoyl-2-acyl-3-sn- glycerophosphorylethanolamine as substrates. Phospholipase A was optimally active at pH 7.5, was calcium-dependent, and exclusively catalyzed the release of fatty acid from the 2-position of phospholipids. The activity was membrane-associated, and was solubilized by extraction with 0.18 N H2SO4. Acid extracts of human sperm had the highest specific activity (1709 nmols /h per mg), followed by mouse, rabbit and bull, which were 105, 36 and 1.7 nmols /h per mg, respectively. para-bromophenacyl bromide inhibited human sperm phospholipase A2 activity, but mepacrine was without effect. In the presence of 1.0 mM added CaCl2, phospholipase A2 activity was inhibited by Zn2+ and Mn2+; whereas Cu2+, Cd2+, Mg2+, or Sr2+ had no effect. Zn2+ stimulated activity at low concentrations (10(-6) to 10(-8) M), and inhibited activity in a dose-dependent manner at concentrations of 10(-5) M. The extent of stimulation by low concentrations of Zn2+ was dependent on Ca2+ concentration; at 10(-7) M, Zn2+ activity was stimulated 160% with 0.5 mM CaCl2, and only 120% with 1.0 mM CaCl2. At low concentrations (10(-5) to 10(-7) M), methoxyverapamil (D600) and trifluoperazine stimulated human sperm phospholipase A2 activity, and trifluoperazine but not D600 produced almost complete inhibition between 10(-5) and 10(-4) M of the drug. The significance of human sperm phospholipase A2 activity and its modulation by Ca2+, Zn2+ and Mn2+ in the sperm acrosome reaction is discussed.  相似文献   

10.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold. Activation of K+-stimulated ATPase activity by Ca2+ was maximal at an ionized Ca2+ concentration of approx. 1 microM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

11.
M M Tucker  M E Nesheim  K G Mann 《Biochemistry》1983,22(19):4540-4546
The Ca2+ dependence of factor Xa binding to phospholipid vesicles was measured in the presence and absence of factor Va. The increase in polarization of a fluorescently labeled derivative of factor Xa, [5-(dimethylamino)-1-naphthalenesulfonyl] glutamylglycylarginyl factor Xa (Dns-EGR-Xa), was used as a probe to measure the interaction of factor Xa with phospholipid. The Ca2+ concentration required for half-maximal binding of Dns-EGR-Xa to phospholipid vesicles was 3.5 X 10(-4) M in the presence of factor Va and 9.5 X 10(-4) M in the absence of factor Va. At a Ca2+ concentration of 5 X 10(-4) M, the binding of Dns-EGR-Xa to phospholipid-bound factor Va was near maximal, whereas there was no detectable interaction of Dns-EGR-Xa with phospholipid alone at this Ca2+ concentration as detected by fluorescence polarization. These results were qualitatively confirmed by high-performance liquid chromatography. The rate of hydrolysis of the factor Xa synthetic substrate, benzoylisoleucylglutamylglycylarginine p-nitroanilide, by factor Xa in the presence of factor Va and phospholipid decreased in a Ca2+-dependent manner. These data were analyzed as fraction of factor Xa bound to the phospholipid. A Ca2+ concentration of 2.7 X 10(-4) M resulted in half-maximal binding by this technique. The relationship observed between rates of prothrombin activation and Ca2+ concentration could be predicted quantitatively from calculations of local enzyme and substrate concentrations.  相似文献   

12.
A recent hypothesis suggests that proteolytic activity of the micromolar and millimolar Ca2+-requiring forms of the Ca2+-dependent proteinases (mu- and m-calpain, respectively) is regulated in vivo by their association with a phosphatidylinositol-containing site on the plasma membrane followed by autolysis of the proteinases. Phosphatidylinositol association lowers the Ca2+ concentration needed for autolysis, and autolysis, in turn, lowers the Ca2+ concentration needed for proteolytic activity. To test this hypothesis, we have compared the Ca2+ concentrations needed for autolysis and for proteolytic activity of the calpains both in the presence and the absence of phosphatidylinositol. Bovine skeletal muscle mu-calpain required 40-50 microM Ca2+ for half-maximal rate of proteolysis of a casein substrate, 140-150 microM Ca2+ for half-maximal autolysis in the presence of 80 microM phosphatidylinositol, and 190-210 microM Ca2+ for half-maximal autolysis in the absence of phosphatidylinositol. Consequently, mu-calpain is an active proteinase and does not require autolysis for activation. Bovine skeletal muscle m-calpain required 700-740 microM Ca2+ for half-maximal rate of proteolysis of a casein substrate, 370-400 microM Ca2+ for half-maximal autolysis in the presence of 80 microM phosphatidylinositol, and 740-780 microM Ca2+ for half-maximal autolysis in the absence of phosphatidylinositol. These results are consistent with the idea that m-calpain functions in its autolyzed form, but the results do not demonstrate that unautolyzed m-calpain is inactive. 80 microM phosphatidylinositol had no effect on the Ca2+ requirement of the autolyzed forms of either mu- or m-calpain but lowered the specific activity of mu-calpain to 20% of its activity in the absence of phosphatidylinositol. Of the four forms of the calpains, unautolyzed m-calpain, autolyzed m-calpain, and unautolyzed mu-calpain would not be proteolytically active at the free Ca2+ concentrations of 300-1200 nM present inside normal cells, and neither mu- nor m-calpain would undergo autolysis at these Ca2+ concentrations, even in the presence of phosphatidylinositol. Cells must contain a mechanism other than or in addition to membrane association and autolysis to activate the calpains.  相似文献   

13.
GTP-binding proteins have been implicated to function as key transducing elements in the mechanism underlying receptor activation of a membrane-associated phospholipase C activity. In the present study, the regulation of phospholipase C activity by GTP-binding proteins has been characterized in a detergent-solubilized system derived from bovine brain membranes. Guanosine-5'-(3-O-thio)triphosphate (GTP-gamma-S) and guanyl-5'-yl imidodiphosphate (Gpp(NH)p) stimulated a dose-dependent increase in phospholipase C activity with half-maximal activation at 0.6 microM and 10 microM, respectively. The maximal degree of stimulation due to Gpp(NH)p or GTP-gamma-S was comparable. 100 microM GTP had only a slight stimulatory effect on phospholipase C activity. Adenine nucleotides, 100 microM adenylyl-imidodiphosphate and ATP, did not stimulate phospholipase C activity, indicating that specific guanine nucleotide-dependent regulation of phospholipase C activity was preserved in the solubilized state. Gpp(NH)p or GTP-gamma-S stimulation of phospholipase C activity was time-dependent and required Mg2+.Mg2+ regulated the time course for activation of phospholipase C by guanine nucleotides and the ability of guanine nucleotides to promote an increase in the Ca2+ sensitivity of phospholipase C. 200 microM GDP-beta-S or 5 mM EDTA rapidly reversed the activation due to GTP-gamma-S or Gpp(NH)p. These findings demonstrate that G protein regulation of phospholipase C activity in a bovine brain membrane- solubilized system occurs through a Mg2+ and time-dependent mechanism. Activation is readily reversible upon addition of excess GDP-beta-S or removal of Mg2+.  相似文献   

14.
Human platelets labelled with either [14C]arachidonic acid or [32P]orthophosphate were loaded or not with the Ca2+ fluorescent indicator quin 2. They were then incubated in the presence or in the absence of human thrombin (1 U/ml) in a medium where Ca2+ concentration was adjusted near zero or to 1 mM. Under these conditions, phospholipase A2 activity, as detected by the release of [14C]arachidonate and of its metabolites, or by the hydrolysis of [14C]phosphatidylcholine, was severely impaired in quin 2-loaded platelets upon removal of external Ca2+. However, Ca2+ was not required in non-loaded platelets, where a maximal phospholipase A2 activity was detected in the absence of external Ca2+. In contrast, phospholipase C action, as determined from the amounts of [14C]diacylglycerol, [14C]- or [32P]phosphatidic acid formed, appeared to be much less sensitive to the effects of quin 2 loading and of Ca2+ omission. By using various concentrations of quin 2, it was found that the inhibitory effect exerted against phospholipase A2 could be overcome by external Ca2+ only when the intracellular concentration of the calcium chelator did not exceed 2 mM. At higher concentrations averaging 3.5 mM of quin 2, phospholipase A2 activity was fully suppressed even in the presence of external Ca2+, whereas phospholipase C was still active, although partly inhibited. It is concluded that platelet phospholipase A2 requires higher Ca2+ concentrations than phospholipase C to display a maximal activity. By comparing platelet phospholipase A2 activity under various conditions with the values of cytoplasmic free Ca2+ as detected by quin 2 fluorescence, it is proposed that cytoplasmic free Ca2+ in control platelets stimulated with thrombin can attain concentrations above 1 microM, probably close to 5-10 microM, as recently determined with the photoprotein aequorin (Johnson, P.C., Ware, J.A., Cliveden, P.B., Smith, M., Dvorak, A.M. and Salzman, E.W. (1985) J. Biol. Chem. 260, 2069-2076).  相似文献   

15.
A comparative study was made of the metal ion requirement of rat liver mitochondrial phospholipase A2 in purified and membrane-associated forms. Membrane-bound enzyme was assayed using either exogenous or endogenous phosphatidylethanolamine. Although several divalent metal ions caused increased activity of the membrane-associated enzyme, only Ca2+ and Sr2+ activated the purified phospholipase A2. The activity in the presence of Sr2+ amounted to about 25% of that found with Ca2+. When the Ca2+ concentration was varied two activity plateaus were observed. The corresponding dissociation constants varied from 6 to 20 microM Ca2+ and from 1.4 to 12 mM Ca2+ for the high- and low-affinity binding sites, respectively, depending on the assay conditions and whether purified or membrane-bound enzyme was used. A kSr2+ of 60 microM was found for the high-affinity binding site. The effect of calmodulin and its antagonist trifluoperazine was also investigated using purified and membrane-associated enzyme. When membrane-bound enzyme was measured with exogenous phosphatidylethanolamine, small stimulations by calmodulin were found. However, these were not believed to indicate a specific role for calmodulin in the Ca2+ dependency of the phospholipase A2, since trifluoperazine did not lower the activity of the membrane-bound enzyme to levels below those found in the presence of Ca2+ alone. Membrane-bound enzyme in its action toward endogenous phosphatidylethanolamine was neither stimulated by calmodulin nor inhibited by trifluoperazine. Purified enzyme was also not stimulated by calmodulin, while trifluoperazine caused small stimulations, presumably due to interactions at the substrate level. These results indicate that calmodulin involvement in phospholipase A2 activation should not be generalized.  相似文献   

16.
Electrically permeabilized RINm5F cells were used to assess the factors required for activation of protein kinase C (PKC) and insulin secretion. PKC was activated either by phorbol 12-myristate 13-acetate (PMA) or by the generation of endogenous diacylglycerol in response to the nonhydrolyzable guanine nucleotide analog guanosine 5'-O-(thiotriphosphate) (GTP gamma S). As shown previously, both PMA and GTP gamma S elicit Ca2+-independent insulin secretion. This effect was mimicked by guanyl-5'-yl imidodiphosphate (Gpp(NH)p) but not by guanosine 5'-O-(3-fluorotriphosphate) and guanosine 5'-O-(3-phenyltriphosphate) possessing only one negative charge in the gamma-phosphate group. The action of PMA was mediated by PKC, since the agent caused both phosphorylation of specific protein substrates and association of the enzyme with cellular membranes. This translocation was independent of the Ca2+ concentration employed. In contrast, GTP gamma S only promoted association of PKC with membranes at 10(-6) and 10(-5) M Ca2+ and failed to alter significantly protein phosphorylation in the absence of Ca2+. Neither Gpp(NH)p, which stimulates insulin release, nor the other two GTP analogs, increased the proportion of PKC associated with membranes. To verify that the Ca2+-dependent effect of GTP gamma S on PKC is due to activation of phospholipase C, we measured the generation of diacylglycerol. GTP gamma S indeed stimulated diacylglycerol production in the leaky cells by about 50% at Ca2+ concentrations between 10(-7) and 10(-5) M, an effect which was almost abolished in the absence of Ca2+. Thus, at 10(-7) M Ca2+, the concentration found in resting intact cells, the generated diacylglycerol was not sufficient to cause PKC insertion into the membrane, demonstrating that both elevated Ca2+ and diacylglycerol are necessary for translocation to occur. It is concluded that while PKC activation by PMA elicits Ca2+-independent insulin secretion, the kinase seems not to mediate the stimulatory action of GTP analogs in the absence of Ca2+.  相似文献   

17.
The Ca2+ requirement for lipid hydrolysis catalyzed by phospholipase A2 from Agkistrodon piscivorus piscivorus (App-D49) and porcine pancreas has been examined using small, unilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC SUV). Hydrolysis was affected by product inhibition even at early times, and the extent of this inhibition depended on the concentration of divalent cations. The Ca2+ requirement for half-maximal rates of hydrolysis reflected, in part, this non-catalytic role of divalent cations. The presence of 10 mM Mg2+, a cation which does not support catalysis, reduced the Ca2+ required for half-maximal rates of hydrolysis from millimolar concentrations to 40 microM for App-D49. Since the dissociation constant of the enzyme for Ca2+ in solution is 2 mM, these results indicate a change in the interaction of the enzyme with Ca2+ under catalytic conditions. The kinetic dissociation constant of Ca2+ for the pancreatic enzyme was 20 microM which is substantially lower than the dissociation constant in solution, 0.35 mM. The similarity of apparent kinetic dissociation constants for these enzymes suggests that structurally similar features determine the affinity for Ca2+ under catalytic conditions. Evidence is presented that the affinity of phospholipase A2 for Ca2+ changes subsequent to the initial interaction of the enzyme with the substrate interface. However, the apparent Michaelis constant, KMapp, for App-D49, 0.03-0.06 mM, is independent of [Ca2+] and is about the same as the equilibrium dissociation constant for DPPC SUV, 0.14 mM. We thus suggest that KMapp is a steady-state constant.  相似文献   

18.
The bridging of IgE receptors on rat basophilic leukemia cells (RBL-2H3) results in a number of biochemical events that accompany histamine secretion. Prominent among these is the release of arachidonic acid from cellular phospholipids, which could be due to the activation of phospholipase enzymes. In the present experiments we studied the intracellular activation of phospholipase A2 (PLA2) during histamine release. RBL-2H3 cells were stimulated through the IgE receptor, and the homogenates were prepared and tested for phospholipase A2 activity on 1-stearoyl-2-[14C]arachidonyl-sn-3-phosphatidylcholine. The amount of activity in the homogenates was dependent on the concentration of secretagogue used to activate the cells. Under optimal conditions there was a 1.86 +/- 0.12-fold (mean +/- SEM, N = 44) increase in the activity found in homogenates of stimulated cells. Activity was present in homogenates prepared 30 sec after cell activation, was optimal between 5 and 10 min, and decreased later. In time course experiments the PLA2 activation preceded histamine release. The activation of the enzyme in the cell occurred in the presence of 10 microM EGTA in the extracellular medium, which completely inhibited release of arachidonic acid and histamine. However, the activity of the enzyme required Ca2+. The PLA2 activity in the homogenates and the extent of cell stimulation for histamine release were maximal at the same concentration of antigen, and both were blocked by the addition of a monovalent hapten. The enzyme in the homogenates was capable of cleaving arachidonic acid from different phospholipids. The production of lysophospholipids could play a critical role in histamine release from cells. These results demonstrate the activation of PLA2 enzyme in cellular homogenates during the secretory process.  相似文献   

19.
Ca2+-dependent phospholipases A require Ca2+ concentrations in the millimolar range for optimal activity toward artificial substrates. Because Ca2+-dependent phospholipases A2 degrade the phospholipids of Escherichia coli, treated with the membrane-active antibiotic polymixin B equally well with and without added Ca2+ (Weiss, J., Beckerdite-Quagliata, S., and Elsbach, P. (1979) J. Biol. Chem. 254, 11010-11014), we have examined the possibility that intramembrane Ca2+ can provide the Ca2+ needed for phospholipase action. We studied the effect of Ca2+ depletion on the hydrolysis of the phospholipids of polymixin B-killed E. coli by 1) added pig pancreas phospholipase A2 in E. coli S17 (a phospholipase A-lacking mutant) and 2) endogenous Ca2+-dependent phospholipase A1 in the parent strain E. coli S15. Transfer of E. coli from nutrient broth (Ca2+ concentration approximately 3 X 10(-5) M) to Ca2+-depleted medium (Ca2+ concentration less than 10(-6)M) reduced polymixin B-induced hydrolysis by 50-75%, in parallel with a reduction of bacterial Ca2+ from 19.6 +/- 2.8 to 3.9 +/- 0.6 nmol (mean +/- standard error) per 3 X 10(10) bacteria. The bacterial Ca2+ content was repleted and the sensitivity of the bacterial phospholipids to hydrolysis by both exogenous phospholipase A2 (E. coli S17) and endogenous phospholipase A (E. coli S15) was restored by adding Ca2+ back to the suspensions. Complete restoration occurred at low Ca2+ levels in the reaction mixture (3 X 10(-5) - 10(-4) M) and required time, suggesting that hydrolysis was restored because bacterial Ca2+ stores were gradually replenished and not because extracellular Ca2+ concentrations were raised to levels that were still at least 10X lower than needed for optimal phospholipase A activity. This conclusion is supported by the finding that Ca2+ depletion or addition caused respectively decreased and increased release of lipopolysaccharides by EGTA (ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid), suggesting that the bacterial Ca2+ pool bound to lipopolysaccharides in the outer membrane shrinks or expands depending on extracellular Ca2+ levels. Thus, the cationic membrane-disruptive polymixin B, thought to compete with Mg2+ and Ca2+ for the same anionic sites on lipopolysaccharides, may liberate the Ca2+ near where the phospholipids are exposed to phospholipase.  相似文献   

20.
Parathyroid hormone increases cellular cAMP, 1,2-diacylglycerol, inositol 1,4,5-trisphosphate and cytosolic Ca2+ concentration ([Ca2+]i) in OK cells. In the present study, we determined the importance of the PTH-dependent increase in [Ca2+]i in the control of sodium-dependent phosphate (Na+/Pi) cotransport. PTH (10(-7) M) results in a transient increase in [Ca2+]i from basal levels of 67 +/- 4 nM to maximal concentrations of 190 +/- 9 nM. The increase in [Ca2+]i was dose-dependent with half-maximal increases at about 5.10(-8) M PTH. These hormone levels were 10(3)-fold higher than that required for half-maximal inhibition of Na+/Pi cotransport. Clamping [Ca2+]i with either intracellular Ca2+ chelators or by ionomycin in the presence of high concentrations of extracellular Ca2+ did not alter PTH-dependent inhibition of Na/Pi cotransport. Nor did indomethacin, an inhibitor of the cyclooxygenase pathway, influence the hormonal inhibition of cotransport. Accordingly, these data suggest that changes in [Ca2+]i and/or activation of the phospholipase A2 and the cyclooxygenase pathways are not involved in signal induction of the PTH-mediated control of Na+/Pi cotransport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号