首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven healthy male subjects underwent a treadmill incremental work test in control conditions and during an intravenous epinephrine infusion (10 micrograms/min). At all exercise intensities, epinephrine increased heart rate, ventilation, respiratory quotient and plasma lactate levels without significant changes in oxygen consumption. Under epinephrine infusion, the "anaerobic threshold", considered as the critical intensity at which ventilation began to increase non linearly with oxygen consumption, appeared at a lower intensity and for a higher plasma lactate level than in control conditions. We conclude that the hyperventilation threshold does not necessarily reflect a muscular hypoxia. It could be due to an effect of catecholamines on peripheral chemoreceptors, maybe by alpha-adrenergic vasoconstriction in the carotid bodies.  相似文献   

2.
This study was undertaken to determine if patients who lack muscle phosphorylase (i.e., McArdle's disease), and therefore the ability to produce lactic acid during exercise, demonstrate a normal hyperventilatory response during progressive incremental exercise. As expected these patients did not increase their blood lactate above resting levels, whereas the blood lactate levels of normal subjects increased 8- to 10-fold during maximal exercise. The venous pH of the normal subjects decreased markedly during exercise that resulted in hyperventilation. The patients demonstrated a distinct increase in ventilation with respect to O2 consumption similar to that seen in normal individuals during submaximal exercise. However their hyperventilation resulted in an increase in pH because there was no underlying metabolic acidosis. End-tidal partial pressures of O2 and CO2 also reflected a distinct hyperventilation in both groups at approximately 70-85% maximal O2 consumption. These data show that hyperventilation occurs during intense exercise, even when there is no increase in plasma [H+]. Since arterial CO2 levels were decreasing and O2 levels were increasing during the hyperventilation, it is possible that nonhumoral stimuli originating in the active muscles or in the brain elicit the hyperventilation observed during intense exercise.  相似文献   

3.
A biofeedback model of hyperventilation during exercise was used to assess the independent effects of pH, arterial CO2 partial pressure (PaCO2), and minute ventilation on blood lactate during exercise. Eight normal subjects were studied with progressive upright bicycle exercise (2-min intervals, 25-W increments) under three experimental conditions in random order. Arterialized venous blood was drawn at each work load for measurement of blood lactate, pH, and PaCO2. Results were compared with those from reproducible control tests. Experimental conditions were 1) biofeedback hyperventilation (to increase pH by 0.08-0.10 at each work load); 2) hyperventilation following acetazolamide (which returned pH to control values despite ventilation and PaCO2 identical to condition 1); and 3) metabolic acidosis induced by acetazolamide (with spontaneous ventilation). The results showed an increase in blood lactate during hyperventilation. Blood lactate was similar to control with hyperventilation after acetazolamide, suggesting that the change was due to pH and not to PaCO2 or total ventilation. Exercise during metabolic acidosis (acetazolamide alone) was associated with blood lactate lower than control values. Respiratory alkalosis during exercise increases blood lactate. This is due to the increase in pH and not to the increase in ventilation or the decrease in PaCO2.  相似文献   

4.
We investigated whether a core temperature threshold for hyperthermic hyperventilation is seen during prolonged submaximal exercise in the heat when core temperature before the exercise is reduced and whether the evoked hyperventilatory response is affected by altering the initial core temperature. Ten male subjects performed three exercise trials at 50% of peak oxygen uptake in the heat (37°C and 50% relative humidity) after altering their initial esophageal temperature (T(es)). Initial T(es) was manipulated by immersion for 25 min in water at 18°C (Precooling), 35°C (Control), or 40°C (Preheating). T(es) after the water immersion was significantly higher in the Preheating trial (37.5 ± 0.3°C) and lower in the Precooling trial (36.1 ± 0.3°C) than in the Control trial (36.9 ± 0.3°C). In the Precooling trial, minute ventilation (Ve) showed little change until T(es) reached 37.1 ± 0.4°C. Above this core temperature threshold, Ve increased linearly in proportion to increasing T(es). In the Control trial, Ve increased as T(es) increased from 37.0°C to 38.6°C after the onset of exercise. In the Preheating trial, Ve increased from the initially elevated levels of T(es) (from 37.6 to 38.6°C) and Ve. The sensitivity of Ve to increasing T(es) above the threshold for hyperventilation (the slope of the T(es)-Ve relation) did not significantly vary across trials (Precooling trial = 10.6 ± 5.9, Control trial = 8.7 ± 5.1, and Preheating trial = 9.2 ± 6.9 L·min(-1)·°C(-1)). These results suggest that during prolonged submaximal exercise at a constant workload in humans, there is a clear core temperature threshold for hyperthermic hyperventilation and that the evoked hyperventilatory response is unaffected by altering initial core temperature.  相似文献   

5.
The present study was undertaken to investigate the respiratory system as an exercise limiting factor. Breathing and cycle endurance (i.e. the time until exhaustion at a given performance level) as well as physical working capacity 170 (i.e. the exercise intensity corresponding to a heart rate of 170 beats.min-1 on a cycle ergometer) were determined in four healthy sedentary subjects. Subsequently, the subjects trained their respiratory system for 4 weeks by breathing daily about 90 l.min-1 for 30 min. Otherwise they continued their sedentary lifestyle. Immediately after the respiratory training and 18 months later, all performance tests carried out at the beginning of the study were repeated. The respiratory training increased breathing endurance from 4.2 (SD 1.9) min to 15.3 (SD 3.8) min. Cycle endurance was improved from 26.8 (SD 5.9) min to 40.2 (SD 9.2) min whereas physical working capacity 170 remained essentially the same. During the endurance cycling test in the respiratory untrained state, the subjects continuously increased their ventilation up to hyperventilation [ventilation at exhaustion = 96.9 (SD 23.6) l.min-1] while after the respiratory training they reached a respiratory steady-state without hyperventilation [ventilation at exhaustion = 63.3 (SD 14.5) l.min-1]. The absence of this marked hyperventilation was the cause of the impressive increase of cycle endurance in normal sedentary subjects after respiratory training. The effects gained by the respiratory training were completely lost after 18 months. Our results indicated that the respiratory system was an exercise limiting factor during an endurance test in normal sedentary subjects.  相似文献   

6.
We determined how close highly trained athletes [n = 8; maximal oxygen consumption (VO2max) = 73 +/- 1 ml.kg-1.min-1] came to their mechanical limits for generating expiratory airflow and inspiratory pleural pressure during maximal short-term exercise. Mechanical limits to expiratory flow were assessed at rest by measuring, over a range of lung volumes, the pleural pressures beyond which no further increases in flow rate are observed (Pmaxe). The capacity to generate inspiratory pressure (Pcapi) was also measured at rest over a range of lung volumes and flow rates. During progressive exercise, tidal pleural pressure-volume loops were measured and plotted relative to Pmaxe and Pcapi at the measured end-expiratory lung volume. During maximal exercise, expiratory flow limitation was reached over 27-76% of tidal volume, peak tidal inspiratory pressure reached an average of 89% of Pcapi, and end-inspiratory lung volume averaged 86% of total lung capacity. Mechanical limits to ventilation (VE) were generally reached coincident with the achievement of VO2max; the greater the ventilatory response, the greater was the degree of mechanical limitation. Mean arterial blood gases measured during maximal exercise showed a moderate hyperventilation (arterial PCO2 = 35.8 Torr, alveolar PO2 = 110 Torr), a widened alveolar-to-arterial gas pressure difference (32 Torr), and variable degrees of hypoxemia (arterial PO2 = 78 Torr, range 65-83 Torr). Increasing the stimulus to breathe during maximal exercise by inducing either hypercapnia (end-tidal PCO2 = 65 Torr) or hypoxemia (saturation = 75%) failed to increase VE, inspiratory pressure, or expiratory pressure. We conclude that during maximal exercise, highly trained individuals often reach the mechanical limits of the lung and respiratory muscle for producing alveolar ventilation. This level of ventilation is achieved at a considerable metabolic cost but with a mechanically optimal pattern of breathing and respiratory muscle recruitment and without sacrifice of a significant alveolar hyperventilation.  相似文献   

7.
Dynamics of pulmonary ventilation, electric activity of the intercostal muscles and of the alveolar gas composition was studied in 12 healthy men during dosaged muscular work; these men were given different gas mixtures to breathe. The respiratory response at the initial period of work in inhalation of the hypoxic-hypercapnic gas mixture was greater than that in persons who breathed room air. This response practically disappeared after oxygen hyperventilation. Apparently the rapid component of the ventilation response to the muscular work was largely due to increased sensitivity of the respiratory centre to the chemoreceptive drive.  相似文献   

8.
Pulmonary CO2 flow (the product of cardiac output and mixed venous CO2 content) is purported to be an important determinant of ventilatory dynamics in moderate exercise. Depletion of body CO2 stores prior to exercise should thus slow these dynamics. We investigated, therefore, the effects of reducing the CO2 stores by controlled volitional hyperventilation on cardiorespiratory and gas exchange response dynamics to 100 W cycling in six healthy adults. The control responses of ventilation (VE), CO2 output (VCO2), O2 uptake (VO2), and heart rate were comprised of an abrupt increase at exercise onset, followed by a slower rise to the new steady state (t1/2 = 48, 43, 31, and 33 s, respectively). Following volitional hyperventilation (9 min, PETCO2 = 25 Torr), the steady-state exercise responses were unchanged. However, VE and VCO2 dynamics were slowed considerably (t1/2 = 76, 71 s) as PETCO2 rose to achieve the control exercise value. VO2 dynamics were slowed only slightly (t1/2 = 39 s), and heart rate dynamics were unaffected. We conclude that pulmonary CO2 flow provides a significant stimulus to the dynamics of the exercise hyperpnea in man.  相似文献   

9.
The metabolic acidosis resulting from an intense exercise bout is large in crocodilians. Here we studied recovery from this pH perturbation in the American alligator. Metabolic rate, minute ventilation, arterial pH and gases, and strong ion concentration were measured for 10 h after exhaustion to elucidate the mechanisms and time course of recovery. Exhaustion resulted in a significant increase in lactate, metabolic rate, and ventilation, and a decrease in arterial PCO2), pH and bicarbonate. By 15 min after exhaustion, oxygen consumption returned to rest though carbon dioxide excretion remained elevated for 30 min. Arterial PO2), [Na+], and [K+], increased following exhaustion and recovered by 30 min post-exercise. Minute ventilation, tidal volume, [Cl-], and respiratory exchange ratio returned to resting values by 1 h. The air convection requirement for oxygen was elevated between 15 and 60 min of recovery. Breathing frequency and pH returned to resting values by 2 h of recovery. Lactate levels remained elevated until 6 h post-exercise. Arterial PCO2) and [HCO3-] were depressed until 8 h post-exercise. Compensation during recovery of acid-base balance was achieved by altering ventilation: following the initial metabolic acidosis and titration of bicarbonate, a relative hyperventilation prevented a further decrease in pH.  相似文献   

10.
The purpose of these experiments was to examine the temporal pattern of arterial carbon dioxide tension (PaCO2) to assess the relationship between alveolar ventilation (VA) and CO2 return to the lung at the onset and offset of submaximal treadmill exercise. Five healthy ponies exercised for 8 min at two work rates: 50 m/min 6% grade and 70 m/min 12% grade. PaCO2 decreased (P less than 0.05) below resting values within 1 min after commencement of exercise at both work rates and reached a nadir at 90 s. PaCO2 decreased maximally by 2.5 and 3.5 Torr at the low and moderate rate, respectively. After the nadir, PaCO2 increased across time during both work rates and reached values that were not significantly different (P greater than 0.05) from rest at minute 4 of exercise. Partial pressure of O2 in arterial blood and arterial pH reflected hyperventilation during the first 3 min of exercise. At the termination of exercise PaCO2 increased (1.5 Torr) above rest (P less than 0.05), reaching a zenith at 2-3 min of recovery. These data suggest that VA and CO2 flow to the lung are not tightly matched at the onset and offset of exercise in the pony and thus challenges the traditional concept of blood gas homeostasis during muscular exercise.  相似文献   

11.
High frequency oscillatory ventilation (HFOV), contrary to conventional ventilation, enables a safe increase in tidal volume (V(T)) without endangering alveoli by volutrauma or barotrauma. The aim of the study is to introduce the concept of normocapnic high frequency oscillatory hyperventilation and to assess its effect upon oxygen gain under experimental conditions. Laboratory pigs (n = 9) were investigated under total intravenous anesthesia in three phases. Phase 1: Initial volume controlled HFOV period. Phase 2: Hyperventilation--V(T) was increased by (46 +/- 12) % when compared to normocapnic V(T) during phase 1. All other ventilatory parameters were unchanged. A significant increase in PaO(2) (by 3.75 +/- 0.52 kPa, p < 0.001) and decrease in PaCO(2) (by -2.05 +/- 0.31 kPa, p < 0.001) were obtained. Phase 3: Normocapnia during hyperventilation was achieved by an iterative increase in the CO(2) fraction in the inspiratory gas by a CO(2) admixture. All ventilatory parameters were unchanged. A significant increase in PaO(2) (by 3.79 +/- 0.73 kPa, p < 0.001), similar to that which was observed in phase 2, was preserved in phase 3 whereas normocapnia was fully re-established. The concept of high frequency normocapnic hyperventilation offers a lung protective strategy that significantly improves oxygenation whilst preserving normocapnia.  相似文献   

12.
Breathing pattern and metabolic behavior during anticipation of exercise   总被引:3,自引:0,他引:3  
The mechanisms responsible for the marked increase in ventilation at the onset of exercise are incompletely defined. A conditioned response to exercise anticipation has been suggested as an influencing factor, but systematic measurements have not been made during the transition from rest to the time when exercise is anticipated but has not yet commenced. We tested the hypothesis that cortical activity associated with the anticipation of exercise causes hyperpnea, which is at least partly responsible for the increased ventilation at the onset of exercise. To assess the influence of continuous cortical activity in the absence of exercise anticipation the subjects performed mental arithmetic tasks. Fifteen subjects performed the two experiments in a random order. Ventilation was measured noninvasively using a calibrated respiratory inductive plethysmograph and end-tidal CO2 concentration (FETCO2) was monitored at the nasal vestibule. Both exercise anticipation and mental arithmetic caused an increase in minute ventilation (VI) (P less than 0.01) and mean inspiratory flow (VT/TI, P less than 0.01), which reflects respiratory center drive, although the derivation differed in that the former was volume based, whereas the latter was due to alteration in timing. Despite the increase in VI, FETCO2 remained constant in both instances. In a complementary study the constant FETCO2 in the face of increased VI was shown to be due to increased CO2 output. The results show that the mere anticipation of exercise causes an increase in ventilation. The mechanism responsible for this hyperpnea cannot be due solely to respiratory center activation because of the constancy of FETCO2 and the associated alterations in cardiac and metabolic behavior.  相似文献   

13.
To determine whether exercise and hyperventilation produce the same intrathoracic thermal events in asthmatics, we used a thermal probe to record airstream temperatures during both stimuli at multiple points within the tracheobronchial tree. From these data, the global and regionally distributed exchanges of water and heat that occurred throughout the respiratory tract were calculated. During each provocation, intra-airway temperatures fell equivalently, thereby producing similar intrathoracic water fluxes and heat transfers. Neither stimulus was associated with airway drying, and both resulted in similar distributed losses of thermal energy from the tracheobronchial tree despite small regional heat and water exchanges. The degree of airway obstruction was identical after both challenges; however, the onset of airway narrowing was earlier with hyperventilation and developed in association with more rapid rewarming. These data demonstrate that the hyperpnea of exercise and hyperventilation produce identical thermal consequences within the respiratory tract of asthmatics.  相似文献   

14.
We examined whether an increase in skin temperature or the rate of increase in core body temperature influences the relationship between minute ventilation (Ve) and core temperature during prolonged exercise in the heat. Thirteen subjects exercised for 60 min on a cycle ergometer at 50% of peak oxygen uptake while wearing a suit perfused with water at 10 degrees C (T10), 35 degrees C (T35), or 45 degrees C (T45). During the exercise, esophageal temperature (Tes), skin temperature, heart rate (HR), Ve, tidal volume, respiratory frequency (f), respiratory gases, blood pressure (BP), and blood lactate were all measured. We found that oxygen uptake, carbon dioxide output, BP, and blood lactate did not differ among the sessions. Tes, HR, Ve, and f remained nearly constant from minute 10 onward in the T10 session, but all of these parameters progressively increased in the T35 and T45 sessions, and significantly higher levels were seen in the T45 than the T35 session. For all but two subjects in the T35 and T45 sessions, plotting Ve as a function of Tes revealed no threshold for hyperventilation; instead, increases in Ve were linearly related to Tes, and there were no significant differences in the slopes or intercepts between the T35 and T45 sessions. Thus, during prolonged submaximal exercise in the heat, Ve increases with core temperature, and the influences of skin temperature and the rate of increase in Tes on the relationship between Ve and Tes are apparently small.  相似文献   

15.
1. The energy required for sustained physical activity in flying and running birds is obtained from fatty acids mobilized from adipose stores under the influence of hormones. There is some evidence that glucagon, insulin and growth hormone may be involved in this process. 2. Energy expenditure can increase up to 14 times and 12 times resting values in flying and running birds, respectively. Energy expenditure varies only slightly over the normal range of flight speeds in individual species, but in running birds there is a linear correlation between oxygen consumption and speed. The slope of this relationship is an inverse function of body weight and indicates the energy cost of transport in ml O2.kg-1.m-1. 3. Increased oxygen demands by the working muscles are met by increased ventilation and circulation. Increased oxygen delivery by the blood is achieved by rises in cardiac output and oxygen extraction. Cardiac stroke volume changes relatively little and the increased cardiac output results mainly from an increase in heart rate. Regional blood distribution during exercise may be determined not only by the demands of the locomotory muscles but also by the need to increase heat loss from the skin and respiratory tract. 4. Ventilatory movements during flight are frequently synchronized in a I:I fashion with wing movements. Increased ventilation during flight and running may be stimulated, not only by the need for increased gas exchange, but also in order to raise heat loss by respiratory evaporation. Thermal hyperventilation carries a risk of CO, washout from the lungs and consequent blood alkalosis. The risk is minimized in some species by appropriate alterations in the rate and depth of breathing, which help to confine excess ventilation to the respiratory dead space. 5. Metabolic heat produced during exercise is either lost from the respiratory linings and the skin, or stored by the body with a resultant rise in body temperature. Changes in peripheral blood perfusion and active regulation of the feathers may assist cutaneous heat loss. Respiratory evaporation usually accounts for less than 30% of the total heat loss, even at high air temperatures, and becomes progressively less efficient at higher exercise intensities. At high air temperatures and high exercise intensities, most of the metabolic heat is stored, and exercise duration is limited as the body temperature approaches the upper lethal limit.  相似文献   

16.
Pulmonary gas exchange, SpO2 and heart rate at 15-min hypoxia (respiration by air with 0.17; 0.15 and 0.13 oxygen fractions) have been investigated in 24 health subjects. It has been established, results of the group analysis and the results of the individual analysis had been differed. Reaction on hypoxia at the group analysis had been found only at 0.13 02 fraction. It was only hyperventilation. The individual analysis had revealed 4 types of reaction on hypoxia already at 0.17 and 0.15 02 fractions: (1) hyperventilation, (2) decrease of oxygen consumption, (3) increase of ventilation effectiveness, (4) increase of CO2 production. The mechanisms of last reaction are unknown, but we supposed it was connected with anaerobic metabolism. The reactions were detected at light hypoxia (0.17 and 0.15 oxygen fractions) in 90% health subjects when SpO2 decreased to 87-93%. The increase ventilation has been detected at hypoxia within respiration 0.13 oxygen in 60% subjects when SpO2 decreased to 83-87%, while other reactions were nearly absent.  相似文献   

17.
Ventilation, metabolism, arterial blood gases, and blood and cerebrospinal fluid (CSF) acid-base status were measured in exercise studies on seven ponies during mild, moderate, and near-maximal treadmill exercise. CSF and arterial blood were sampled via indwelling catheters. Generally measurements were made during the 3rd, 6th, and 9th minute of steady-state exercise, with CSF sampled only during the 9th minute. Alveolar ventilation (VA) and metabolic rate (VO2) increased proportionately during exercise below the anaerobic threshold, but above this threshold, VA increased at a faster rate than VO2. The similarity of these response to those observed in man suggests the pony is a suitable animal model for study of exercise hyperpnea. No change in CSF acid-base balance occurred with light-to-moderate work; however, with near-maximal work a fall in CSF carbon dioxide partial pressure due to hyperventilation caused CSF to become alkaline (pH = 7.380) relative to rest (pH = 7.330). CSF lactate increased slightly with exercise but had no effect on CSF [HCO3-], which remained constant from rest to severe exercise. We conclude that it is unlikely the hyperpnea at any intensity of exercise results from an increased H+ stimulation at the medullary chemoreceptor.  相似文献   

18.
Our objective was to test the hypothesis that exposure to prolonged hypoxia results in altered responsiveness to chemoreceptor stimulation. Acclimatization to hypoxia occurs rapidly in the awake goat relative to other species. We tested the sensitivity of the central and peripheral chemoreceptors to chemical stimuli before and after 4 h of either isocapnic or poikilocapnic hypoxia (arterial PO2 40 Torr). We confirmed that arterial PCO2 decreased progressively, reaching a stable value after 4 h of hypoxic exposure (poikilocapnic group). In the isocapnic group, inspired minute ventilation increased over the same time course. Thus, acclimatization occurred in both groups. In goats, isocapnic hypoxia did not result in hyperventilation on return to normoxia, whereas poikilocapnic hypoxia did cause hyperventilation, indicating a different mechanism for acclimatization and the persistent hyperventilation on return to normoxia. Goats exposed to isocapnic hypoxia exhibited an increased slope of the CO2 response curve. Goats exposed to poikilocapnic hypoxia had no increase in slope but did exhibit a parallel leftward shift of the CO2 response curve. Neither group exhibited a significant change in response to bolus NaCN injections or dopamine infusions after prolonged hypoxia. However, both groups demonstrated a similar significant increase in the ventilatory response to subsequent acute exposure to isocapnic hypoxia. The increase in hypoxic ventilatory sensitivity, which was not dependent on the modality of hypoxic exposure (isocapnic vs. poikilocapnic), reinforces the key role of the carotid chemoreceptors in ventilatory acclimatization to hypoxia.  相似文献   

19.
To test the hypothesis that the decrease in plasma pH contributes to the hyperventilation observed in humans in response to exercise at high workloads, five healthy male subjects performed a ramp exercise [maximal workload: 352 W (SD 35)] in a control situation and when arterialized plasma pH was maintained at the resting level (pH clamp) by intravenous infusion of sodium bicarbonate [129 mmol (SD 23), beginning at 59% maximal workload (SD 5)]. Bicarbonate infusion did not modify O(2) consumption (Vo(2)) but significantly (P < 0.05) increased arterial Pco(2), plasma bicarbonate concentration, and respiratory exchange ratio (P < 0.05). At the three highest workloads, pulmonary ventilation (Ve) and Ve/Vo(2) were approximately 5-10% lower (P < 0.05) when bicarbonate was infused than in the control situation, and hyperventilation was reduced by 15-30%. These data suggest that the decrease in plasma pH is one of the factors that contribute to the hyperventilation observed at high workloads.  相似文献   

20.
It has been assumed that increases in both O2 uptake and ventilation occurring within the first few seconds after the onset of exercise cannot be the result of changes in blood gas composition reaching the central circulation because of the circulatory delay from the exercising limbs (A. Krogh and J. Lindhard, J. Physiol. Lond. 42: 112-136, 1913). We sought to validate this assumption by measuring the time course of pulmonary arterial blood gases during the transition from rest to exercise. Six healthy men underwent pulmonary arterial catheterization and then performed transitions from rest to moderate cycle ergometer exercise. An anaerobic sampling manifold withdrew 19 samples of blood during the rest-to-exercise transition; sampling interval was usually 4 s. Blood gas analysis showed that, on average, from rest-to-steady-state exercise, O2 saturation (Svo2) fell from 71 to 41% and mixed venous PCO2 (PvCO2) rose from 42 to 59 Torr. Contrary to our expectations, Svo2 decreased and PvCO2 increased with no discernible latency after exercise onset (by 10% and 2 Torr, respectively, within 6 s). The half time for the Svo2 decrease was 32 s, whereas for the PvCO2 increase it was 80 s. The time course of superior vena cava blood gas composition was determined in several experiments; no rapid changes after exercise onset were found. We conclude that at exercise onset there is a rapid fall in Svo2 and rise in PvCO2 well in advance of arrival of blood produced by exercising legs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号