首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between epithelial fluid transport, standing osmotic gradients, and standing hydrostatic pressure gradients has been investigated using a perturbation expansion of the governing equations. The assumptions used in the expansion are: (a) the volume of lateral intercellular space per unit volume of epithelium is small; (b) the membrane osmotic permeability is much larger than the solute permeability. We find that the rate of fluid reabsorption is set by the rate of active solute transport across lateral membranes. The fluid that crosses the lateral membranes and enters the intercellular cleft is driven longitudinally by small gradients in hydrostatic pressure. The small hydrostatic pressure in the intercellular space is capable of causing significant transmembrane fluid movement, however, the transmembrane effect is countered by the presence of a small standing osmotic gradient. Longitudinal hydrostatic and osmotic gradients balance such that their combined effect on transmembrane fluid flow is zero, whereas longitudinal flow is driven by the hydrostatic gradient. Because of this balance, standing gradients within intercellular clefts are effectively uncoupled from the rate of fluid reabsorption, which is driven by small, localized osmotic gradients within the cells. Water enters the cells across apical membranes and leaves across the lateral intercellular membranes. Fluid that enters the intercellular clefts can, in principle, exit either the basal end or be secreted from the apical end through tight junctions. Fluid flow through tight junctions is shown to depend on a dimensionless parameter, which scales the resistance to solute flow of the entire cleft relative to that of the junction. Estimates of the value of this parameter suggest that an electrically leaky epithelium may be effectively a tight epithelium in regard to fluid flow.  相似文献   

2.
This paper presents an exact analytical solution to the problem of locating the junction point between three branches so that the sum of the total costs of the branches is minimized. When the cost per unit length of each branch is known the angles between each pair of branches can be deduced following reasoning first introduced to biology by Murray. Assuming the outer ends of each branch are fixed, the location of the junction and the length of each branch are then deduced using plane geometry and trigonometry. The model has applications in determining the optimal cost of a branch or branches at a junction. Comparing the optimal to the actual cost of a junction is a new way to compare cost models for goodness of fit to actual junction geometry. It is an unambiguous measure and is superior to comparing observed and optimal angles between each daughter and the parent branch. We present data for 199 junctions in the pulmonary arteries of two human lungs. For the branches at each junction we calculated the best fitting value of x from the relationship that flow ∞ (radius)x. We found that the value of x determined whether a junction was best fitted by a surface, volume, drag or power minimization model. While economy of explanation casts doubt that four models operate simultaneously, we found that optimality may still operate, since the angle to the major daughter is less than the angle to the minor daughter. Perhaps optimality combined with a space filling branching pattern governs the branching geometry of the pulmonary artery.  相似文献   

3.
It is now generally accepted that the intercellular cleft between adjacent endothelial cells is the primary pathway for the transluminal movement of water and small ions in the vasculature. A steady-state theoretical model has been developed to show quantitatively how the geometry of the intercellular cleft between adjacent endothelial cells is related to both the water movement and pressure distribution in the subendothelial space and to examine how the existence of a subendothelial interaction layer affects the hydraulic resistance of the media of vessels of varying wall thickness. The velocity and pressure fields in the media are described using porous matrix theory based on Darcy's law and a lubrication-type analysis is used to describe the flow in a variable geometry intercellular cleft. These two equations are solved simultaneously to determine the unknown pressure distribution beneath the endothelium and the flow in the arterial media. Application of this model shows that, when the tight junction in the cleft is 26 A or less, more than half of the total hydraulic resistance of the wall occurs across the endothelial cell monolayer, for a vessel whose wall thickness is less than 0.02 cm. This finding is in good agreement with the experimental findings of Vargas, et al. (1978) for rabbit aorta. Contrary to previous belief, the model shows that the filtration resistance of an arterial wall with intact endothelium does not scale linearly with wall thickness due to the highly nonlinear resistance of the endothelial interaction layer.  相似文献   

4.
The blood–brain barrier (BBB) has unique structures in order to protect the central nervous system. In addition to the tight junction of the microvessel endothelium, there is a uniform and narrow matrix-like basement membrane (BM) sandwiched between the vessel wall and the astrocyte foot processes ensheathing the cerebral microvessel. To understand the mechanism by which these structural components modulate permeability of the BBB, we developed a mathematical model for water and solute transport across the BBB. The fluid flow in the cleft regions of the BBB were approximated by the Poiseuille flow while those in the endothelial surface glycocalyx layer (SGL) and BM were approximated by the Darcy and Brinkman flows, respectively. Diffusion equations in each region were solved for the solute transport. The anatomical parameters were obtained from electron microscopy studies in the literature. Our model predicts that compared to the peripheral microvessels with endothelium only, the BM and the wrapping astrocytes can reduce hydraulic conductivity (Lp) of the BBB and the permeability to sodium fluorescein (PNaF) by up to 6-fold when the fiber density in the BM is the same as that in the SGL. Even when the SGL and the tight junctions of the endothelium are compromised, the BM and astrocyte foot processes can still maintain the low Lp and PNaF of the BBB. Our model predictions indicate that the BM and astrocytes of the BBB provide a great protection to the CNS under both physiological and pathological conditions.  相似文献   

5.
Occludin, the putative tight junction integral membrane protein, is an attractive candidate for a protein that forms the actual sealing element of the tight junction. To study the role of occludin in the formation of the tight junction seal, synthetic peptides (OCC1 and OCC2) corresponding to the two putative extracellular domains of occludin were assayed for their ability to alter tight junctions in Xenopus kidney epithelial cell line A6. Transepithelial electrical resistance and paracellular tracer flux measurements indicated that the second extracellular domain peptide (OCC2) reversibly disrupted the transepithelial permeability barrier at concentrations of < 5 μM. Despite the increased paracellular permeability, there were no changes in gross epithelial cell morphology as determined by scanning EM. The OCC2 peptide decreased the amount of occludin present at the tight junction, as assessed by indirect immunofluorescence, as well as decreased total cellular content of occludin, as assessed by Western blot analysis. Pulse-labeling and metabolic chase analysis suggested that this decrease in occludin level could be attributed to an increase in turnover of cellular occludin rather than a decrease in occludin synthesis. The effect on occludin was specific because other tight junction components, ZO-1, ZO-2, cingulin, and the adherens junction protein E-cadherin, were unaltered by OCC2 treatment. Therefore, the peptide corresponding to the second extracellular domain of occludin perturbs the tight junction permeability barrier in a very specific manner. The correlation between a decrease in occludin levels and the perturbation of the tight junction permeability barrier provides evidence for a role of occludin in the formation of the tight junction seal.  相似文献   

6.
To investigate the effect of junction strands on microvessel permeability, we extend the previous analytical model developed by Fu et al. (1994, J. Biomech. Eng., 116, pp. 502-513), for the interendothelial cleft to include multiple junction strands in the cleft and an interface between the surface glycocalyx layer and the cleft entrance. Based on the electron microscopic observations by Adamson et al. (1998, Am. J. Physiol., 274(43), pp. H1885-H1894), that elevation of intracellular cAMP levels would increase number of tight junction strands, this two-junction-strand and two-pore model can successfully account for the experimental data for the decreased permeability to water, small and intermediate-sized solutes by cAMP.  相似文献   

7.
The role of a leaky tight junction in epithelia is examined by considering the flow of water and solute through a channel consisting of two sections representing the intercellular space and tight junction. Two cases are considered, flow through a channel with a circular cross-section and flow between parallel planes. Analytical solutions are obtained using the isotonic convection approximation. The flow is driven by active transport of solute and imposed concentration and pressure differences. Particular attention is paid to the flux of solute through the tight junction. It is shown that the shape of the channel cross-section is important.The theory is applied to the rat proximal tube epithelium. It is deduced that the emergent osmolarity is close to that predicted for a closed tight junction, but that transepithelial hydrostatic pressure differences are potentially important. The influence of transepithelial concentration differences appears to be unimportant in this model.  相似文献   

8.
The epithelial and endothelial barriers of the human body are major obstacles for drug delivery to the systemic circulation and to organs with unique environment and homeostasis, like the central nervous system. Several transport routes exist in these barriers, which potentially can be exploited for enhancing drug permeability. Beside the transcellular pathways via transporters, adsorptive and receptor-mediated transcytosis, the paracellular flux for cells and molecules is very limited. While lipophilic molecules can diffuse across the cellular plasma membranes, the junctional complexes restrict or completely block the free passage of hydrophilic molecules through the paracellular clefts. Absorption or permeability enhancers developed in the last 40 years for modifying intercellular junctions and paracellular permeability have unspecific mode of action and the effective and toxic doses are very close. Recent advances in barrier research led to the discovery of an increasing number of integral membrane, adaptor, regulator and signalling proteins in tight and adherens junctions. New tight junction modulators are under development, which can directly target tight or adherens junction proteins, the signalling pathways regulating junctional function, or tight junction associated lipid raft microdomains. Modulators acting directly on tight junctions include peptides derived from zonula occludens toxin, or Clostridium perfringens enterotoxin, peptides selected by phage display that bind to integral membrane tight junction proteins, and lipid modulators. They can reversibly increase paracellular transport and drug delivery with less toxicity than previous absorption enhancers, and have a potential to be used as pharmaceutical excipients to improve drug delivery across epithelial barriers and the blood-brain barrier.  相似文献   

9.
Definitions and analysis of DNA Holliday junction geometry   总被引:1,自引:1,他引:0  
Watson J  Hays FA  Ho PS 《Nucleic acids research》2004,32(10):3017-3027
A number of single-crystal structures have now been solved of the four-stranded antiparallel stacked-X form of the Holliday junction. These structures demonstrate how base sequence, substituents, and drug and ion interactions affect the general conformation of this recombination intermediate. The geometry of junctions had previously been described in terms of a specific set of parameters that include: (i) the angle relating the ends of DNA duplexes arms of the junction (interduplex angle); (ii) the relative rotation of the duplexes about the helix axes of the stacked duplex arms (Jroll); and (iii) the translation of the duplexes along these helix axes (Jslide). Here, we present a consistent set of definitions and methods to accurately calculate each of these parameters based on the helical features of the stacked duplex arms in the single-crystal structures of the stacked-X junction, and demonstrate how each of these parameters contributes to an overall conformational feature of the structure. We show that the values for these parameters derived from global rather than local helical axes through the stacked bases of the duplex arms are the most representative of the stacked-X junction conformation. In addition, a very specific parameter (Jtwist) is introduced which relates the relative orientation of the stacked duplex arms across the junction which, unlike the interduplex angle, is length independent. The results from this study provide a general means to relate the geometric features seen in the crystal structures to those determined in solution.  相似文献   

10.
MORPHOLOGICAL AND FUNCTIONAL ASPECTS OF AN INSECT EPIDERMAL GLAND   总被引:2,自引:2,他引:0       下载免费PDF全文
The sternal gland of primitive termites of the genus Zootermopsis (Z. nevadensis or Z. angusticollus) (Hagen) seems more organized than that of higher termites, in being comprised of three cell layers. It is also studded with about 200 campaniform sensilla. Below the meshwork cuticle of the gland lies a layer of columnar epithelial cells whose apical surfaces form a brush border, and whose basal surfaces are sculptured into a basketwork into which the second layer fits. Below the brush border are small microtubule-associated pits and coated vesicles. No channels can be seen either within or, except for the sensilla, between the cells. The second cell layer probably secretes the trail-following pheromone. Numerous electron-lucent droplets and large channels containing lipid micelles are found in the cytoplasm here, but the channels cannot be traced out of the secretory layer. The third layer consists of large pyriform cells. The campaniform sensilla are composed of three cells: the sensory cell proper whose dendrite carries a modified 9 + 0 sensory process, an accessory supporting cell that secretes an electron-opaque sheath, and an enveloping cell. At the cell borders of the sensillum, regions of septate and tight junction appear. There are also septate junctions between columnar cells and possibly tight junctions between columnar and secretory cells that would open an intracellular and molecular pathway to the endocuticle. The campaniform sensilla may be part of a feedback control system that determines the amount of pheromone deposited during trail laying.  相似文献   

11.
The mechanism of fluid transport in the developing preimplantation mouse embryo has been studiedin vitro by inhibiting zonular tight junction formation. Compaction, the morphogenetic process permitting zonular blastomere adhesions at the 8-cell stage, was suppressed by lowering extracellular calcium (Ca). The Ca threshold required for compaction is 0.04–0.06 mM, and in concentrations above the threshold, the rate of compaction is concentration dependent, whereas the rate of blastocyst formation is not and proceeds normally. At 0.02 mM Ca, both compaction and blastocyst development are completely prevented. Although focal tight and gap junctions are present, zonular tight junctions do not develop. We conclude that Ca is required for the maximization of cell-cell contact, but not for focal tight junction and gap junction formation. When early morulae are cultured in 0.02 mM Ca, small trophoblastic vesicles develop frequently with intracellular fluid vacuoles. If early 8-cell embryos are similarly cultured, cell division continues and many blastomeres acquire small intracellular membrane-bounded vaculoes. These coalesce, the cell volume increases, and the nucleus becomes eccentrically positioned, resulting in a giant vacuolated blastomere reminiscent of a miniaturized blastocyst. We propose that (1) vacuole formation may be an exaggeration of an intermediate intracellular step in fluid transport and (2) normal cell polarity established by zonular tight junctions is required for transcellular fluid transport.  相似文献   

12.
Intercellular junctions have been studied in the epithelia of digestive organs of Sepia officinalis (digestive gland, digestive duct appendages and caecum) by conventional staining, lanthanum tracer and freeze-fracturing techniques. In the three organs studied the same junctional complex occurs, consisting of a belt desmosome, a septate junction and gap junctions. The septate junction is of pleated-sheet type and the gap junction has its particles on the P face of the fracture. Circular structures have been found in the digestive gland septate junctions. Neither continuous nor tight junctions have been found. These results show that Cephalopods have junctional structures very close to those of other Molluscs and of Annelids. Some small differences between the septate junctions of the three organs could be related to their different physiology.  相似文献   

13.
Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction – the organising interface between parasite and host cell during entry. Formation of this structure is not, however, shared across all Apicomplexa or indeed all parasite lifecycle stages. Here, using an in silico integrative genomic search and endogenous gene-tagging strategy, we sought to characterise proteins that function specifically during junction-dependent invasion, a class of proteins we term invasins to distinguish them from adhesins that function in species specific host-cell recognition. High-definition imaging of tagged Plasmodium falciparum invasins localised proteins to multiple cellular compartments of the blood stage merozoite. This includes several that localise to distinct subcompartments within the rhoptries. While originating from the same organelle, however, each has very different dynamics during invasion. Apical Sushi Protein and Rhoptry Neck protein 2 release early, following the junction, whilst a novel rhoptry protein PFF0645c releases only after invasion is complete. This supports the idea that organisation of proteins within a secretory organelle determines the order and destination of protein secretion and provides a localisation-based classification strategy for predicting invasin function during apicomplexan parasite invasion.  相似文献   

14.
To explain how hydrostatic pressure differences between tubule lumen and interstitium modulate isotonic reabsorption rates, we developed a model of NaCl and water flow through paracellular pathways of the proximal tubule. Structural elements of the model are a tight junction membrane, an intercellular channel whose walls transport NaCl actively at a constant rate, and a basement membrane. Equations of change were derived for the channel, boundary conditions were formulated from irreversible thermodynamics, and a pressure-area relationship typical of thin-walled tubing was assumed. The boundary value problem was solved numerically. The principal conclusions are: 1) channel NaCl concentration must remain within a few mOsm of isotonic values for reabsorption rates to be modulated by transtubular pressure differences known to affect this system: 2) basement membrane and channel wall parameters determine reabsorbate tonicity; tight junction parameters affect the sensitivity of reabsorption to transmural pressure; 3) channel NaCl concentration varies inversely with transmural pressure difference; this concentration variation controls NaCl diffusion through the tight junction; 4) modulation of NaCl diffusion through the tight junction controls the rate of isotonic reabsorption; modulation of water flow can increase sensitivity to transmural pressure; 5) no pressure-induced change in permeability of the tight junction or basement membrane is needed for pressure to modulate reabsorption; and 6) system performance is indifferent to the distribution of active transport sites, to the numerical value of the compliance function, and to the relationship between lumen and cell pressures.  相似文献   

15.
Occludin is the only known integral membrane protein localized at the points of membrane– membrane interaction of the tight junction. We have used the Xenopus embryo as an assay system to examine: (a) whether the expression of mutant occludin in embryos will disrupt the barrier function of tight junctions, and (b) whether there are signals within the occludin structure that are required for targeting to the sites of junctional interaction. mRNAs transcribed from a series of COOH-terminally truncated occludin mutants were microinjected into the antero–dorsal blastomere of eight-cell embryos. 8 h after injection, the full-length and the five COOH-terminally truncated proteins were all detected at tight junctions as defined by colocalization with both endogenous occludin and zonula occludens-1 demonstrating that exogenous occludin correctly targeted to the tight junction. Importantly, our data show that tight junctions containing four of the COOH-terminally truncated occludin proteins were leaky; the intercellular spaces between the apical cells were penetrated by sulfosuccinimidyl-6-(biotinamido) Hexanoate (NHS-LC-biotin). In contrast, embryos injected with mRNAs coding for the full-length, the least truncated, or the soluble COOH terminus remained impermeable to the NHS-LC-biotin tracer. The leakage induced by the mutant occludins could be rescued by coinjection with full-length occludin mRNA. Immunoprecipitation analysis of detergent-solubilized embryo membranes revealed that the exogenous occludin was bound to endogenous Xenopus occludin in vivo, indicating that occludin oligomerized during tight junction assembly. Our data demonstrate that the COOH terminus of occludin is required for the correct assembly of tight junction barrier function. We also provide evidence for the first time that occludin forms oligomers during the normal process of tight junction assembly. Our data suggest that mutant occludins target to the tight junction by virtue of their ability to oligomerize with full-length endogenous molecules.  相似文献   

16.
Tight junctions are the most apical components of endothelial and epithelial intercellular cleft. In the endothelium these structures play an important role in the control of paracellular permeability to circulating cells and solutes. The only known integral membrane protein localized at sites of membrane–membrane interaction of tight junctions is occludin, which is linked inside the cells to a complex network of cytoskeletal and signaling proteins. We report here the identification of a novel protein (junctional adhesion molecule [JAM]) that is selectively concentrated at intercellular junctions of endothelial and epithelial cells of different origins. Confocal and immunoelectron microscopy shows that JAM codistributes with tight junction components at the apical region of the intercellular cleft. A cDNA clone encoding JAM defines a novel immunoglobulin gene superfamily member that consists of two V-type Ig domains. An mAb directed to JAM (BV11) was found to inhibit spontaneous and chemokine-induced monocyte transmigration through an endothelial cell monolayer in vitro. Systemic treatment of mice with BV11 mAb blocked monocyte infiltration upon chemokine administration in subcutaneous air pouches. Thus, JAM is a new component of endothelial and epithelial junctions that play a role in regulating monocyte transmigration.  相似文献   

17.
A comparison of the distribution of septate junctions in invertebrate epithelia and tight junctions in vertebrate systems suggests that these structures may be functionally analogous. This proposition is supported by the internal design of each junction which constitutes a serial arrangement of structures crossing the intercellular space between cells to effectively provide resistance to the paracellular flow of water and small molecules. We have tested the validity of such an analogy by examining whether the osmotic sensitivity of the septate junctions of planarian epidermis follow the rather striking pattern observed for the junctions of very tight vertebrate epithelia (e.g. toad urinary bladder). It has been found that the septate junctions in this system respond in similar fashion to their vertebrate counterparts, blistering with accumulated fluid when the medium outside the epidermis is made hypertonic with small, water-soluble molecules. We conclude that the two types of junction probably are functionally analogous and that, in each case, this rectified structural response to transepithelial osmotic gradients may be indicative of the role of such structures in the transport function of epithelia.  相似文献   

18.
Epsilon toxin is a potent neurotoxin produced by Clostridium perfringens types B and D, an anaerobic bacterium that causes enterotoxaemia in ruminants. In the affected animal, it causes oedema of the lungs and brain by damaging the endothelial cells, inducing physiological and morphological changes. Although it is believed to compromise the intestinal barrier, thus entering the gut vasculature, little is known about the mechanism underlying this process. This study characterizes the effects of epsilon toxin on fluid transport and bioelectrical parameters in the small intestine of mice and rats. The enteropooling and the intestinal loop tests, together with the single-pass perfusion assay and in vitro and ex vivo analysis in Ussing''s chamber, were all used in combination with histological and ultrastructural analysis of mice and rat small intestine, challenged with or without C. perfringens epsilon toxin. Luminal epsilon toxin induced a time and concentration dependent intestinal fluid accumulation and fall of the transepithelial resistance. Although no evident histological changes were observed, opening of the mucosa tight junction in combination with apoptotic changes in the lamina propria were seen with transmission electron microscopy. These results indicate that C. perfringens epsilon toxin alters the intestinal permeability, predominantly by opening the mucosa tight junction, increasing its permeability to macromolecules, and inducing further degenerative changes in the lamina propria of the bowel.  相似文献   

19.
《Proteins》2018,86(3):273-278
Unusual local arrangements of protein in Ramachandran space are not well represented by standard geometry tools used in either protein structure refinement using simple harmonic geometry restraints or in protein simulations using molecular mechanics force fields. In contrast, quantum chemical computations using small poly‐peptide molecular models can predict accurate geometries for any well‐defined backbone Ramachandran orientation. For conformations along transition regions—ϕ from −60 to 60°—a very good agreement with representative high‐resolution experimental X‐ray (≤1.5 Å) protein structures is obtained for both backbone C−1‐N‐Cα angle and the nonbonded O−1…C distance, while “standard geometry” leads to the “clashing” of O…C atoms and Amber FF99SB predicts distances too large by about 0.15 Å. These results confirm that quantum chemistry computations add valuable support for detailed analysis of local structural arrangements in proteins, providing improved or missing data for less understood high‐energy or unusual regions.  相似文献   

20.
A heterogeneous continuum theory of biological membrane interactions is presented which takes account of the spatial inhomogeneity of intramembranous particle patterns observed in ultrastructural studies of junctional complexes using the freeze-cleaved technique. The theory attempts to explain (i) how electrostatic and electrodynamic forces between particles of different biochemical composition in the same and opposing membranes might give rise to the specialized particle configurations characteristic of tight and gap junctions, (ii) how the spatial non-uniformity of the membrane proteins quantitatively modifies the local long range molecular level force field between adjacent membrane bilayers and (iii) how membrane elastic stresses and the modified molecular level forces combine to determine the equilibrium configurations of the various junctional complexes. The mathematical problem is highly non-linear since the molecular forces are a rapidly varying function of the local membrane spacing which is a priori unknown. The simplified dimensionless boundary value problem to determine the junction geometry has been reduced to a fourth order quasi one-dimensional equation with split end point conditions. The equation is singular in the vicinity of the junction complex and special solution techniques had to be employed. The numerical results are in reasonable quantitative agreement with electron microscopic observations of tight, gap and venous junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号