首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synchronously germinating aerial spores of Streptomyces granaticolor were used to study protein activation and expression during the transition from dormant to metabolically active vegetative forms. The first phase of protein activation is associated with the solubility of proteins. Three major chaperones, DnaK, Trigger factor, and GroEL, were identified in spores. Enhancement in rate of protein synthesis during germination was accompanied by the association of TF and DnaK with ribosomes. During germination, the chaperones TF, GroEL, and DnaK undergo reversible phosphorylation. GroEL was phosphorylated on both Ser and Thr, whereas phosphorylation of DnaK and TF was detected on Thr only. A proteomic approach was used to gain more information on protein expression during germination on two types of media differing in the ability of cells to produce antibiotic granaticin. To obtain an overview of the metabolic activity of germinating spores, glycolytic enzymes, enzymes of citric acid cycle, metabolism of amino acids and nucleic acids, and components of the protein synthesis system were identified and analyzed using the proteomic database. The results were deposited on the SWICZ proteomic server and are accessible on http://proteom.biomed.cas.cz.  相似文献   

2.
Microcyst germination in Polysphondylium pallidum can be used as a model for studying gene expression because temporally regulated modulations in protein synthesis occur in this developmental pathway. Germinating cysts were labeled with [35S]methionine for half-hourly periods during the synchronous germination sequence, and the proteins labeled in each period were resolved by two-dimensional polyacrylamide gel electrophoresis. Three major classes of proteins observed were distinguished by the time of onset and duration of their synthesis: (a) proteins made throughout germination; (b) proteins synthesized only during a portion of the germination pathway; and (c) polypeptides whose synthesis started at 1 or 1.5 h and then continued throughout germination.  相似文献   

3.
The onset of macromolecular synthesis in activated spores of Bacillus cereus occurs under conditions in which the amino acids and nucleotides to be used for building proteins and nucleic acids must be derived only from stored pools and turnover of macromolecules of the spore. Upon addition of the factors required to initiate germination, (14)C-uracil is incorporated with a lag of 30 to 60 sec; (14)C-amino acids, with a lag of 3 to 4 min. The progression of protein synthesis during germination has been studied, and the results suggest three phases of development of the protein synthetic pattern of these germinating spores. The initial synthesis which occurs during the early part of germination is limited to only a few proteins. When the initiated spores are put in a medium containing a complete set of growth requirements and outgrowth ensues, the cells synthesize a large number of different proteins so that the distribution of radioactivity into different fractions appears to be a continuous function. At a later time during outgrowth, the distribution of synthetic rates among the different proteins becomes more representative of that found during vegetative growth.  相似文献   

4.
Dormant aerial spores of Streptomyces granaticolor contain pre-existing pool of mRNA and active ribosomes for rapid translation of proteins required for earlier steps of germination. Activated spores were labeled for 30 min with [35S]methionine/cysteine in the presence or absence of rifamycin (400 microg/ml) and resolved by two-dimensional electrophoresis. About 320 proteins were synthesized during the first 30 min of cultivation at the beginning of swelling, before the first DNA replication. Results from nine different experiments performed in the presence of rifamycin revealed 15 protein spots. Transition from dormant spores to swollen spores is not affected by the presence of rifamycin but further development of spores is stopped. To support existence of pre-existing pool of mRNA in spores, cell-free extract of spores (S30 fraction) was used for in vitro protein synthesis. These results indicate that RNA of spores possesses mRNA functionally competent and provides templates for protein synthesis. Cell-free extracts isolated from spores, activated spores, and during spore germination were further examined for in vitro protein phosphorylation. The analyses show that preparation from dormant spores catalyzes phosphorylation of only seven proteins. In the absence of phosphatase inhibitors, several proteins were partially dephosphorylated. The activation of spores leads to a reduction in phosphorylation activity. Results from in vitro phosphorylation reaction indicate that during germination phosphorylation/dephosphorylation of proteins is a complex function of developmental changes.  相似文献   

5.
6.
7.
Spores ofBacillus cereus were germinated in a germination limited medium (GL-medium) which facilitates only germination but not the postgerminative development of spores. Under these conditions a limited protein synthesis occurs. However, this protein synthesis is stopped after a short time interval. The rate of synthesis of new proteins, as well as their total amount, is influenced by the length of the activation heat shock. Synthesis of the wall material continues for several hours and thick-walled cells with a changed ultrastructure are formed. Synthesis of the diaminopimelic acid (dap) containing material of the cell wall is sensitive to actinomycin D and relatively resistant to chloramphenicol. Similarly, protein synthesis is relatively chloramphenicol-resistant but is fully inhibited by azauracil or spiramycin. Whereas RNA formed in the control culture is partially decomposed after 30 min of incubation, chloramphenicol accelerates its synthesis and prevents its decay. Exudate components apparently stimulate synthesis of ribonucleic acid, proteins and the wall material. The14C-dap containing material released by prelabelled spores in the form of the exudate during the germination is not re-utilized by the spores germinated in the GL-medium. The results are discussed with respect to the atypical primary synthetic activities of spores under conditions when the postgerminative development is prevented and from the point of view of participation of the germination exudate during these syntheses.  相似文献   

8.
During germination of spores of Bacillus species the degradation of the spore's pool of small, acid-soluble proteins (SASP) is initiated by a protease termed GPR, the product of the gpr gene. Bacillus megaterium and B. subtilis mutants with an inactivated gpr gene grew, sporulated, and triggered spore germination as did gpr+ strains. However, SASP degradation was very slow during germination of gpr mutant spores, and in rich media the time taken for spores to return to vegetative growth (defined as outgrowth) was much longer in gpr than in gpr+ spores. Not surprisingly, gpr spores had much lower rates of RNA and protein synthesis during outgrowth than did gpr+ spores, although both types of spores had similar levels of ATP. The rapid decrease in the number of negative supertwists in plasmid DNA seen during germination of gpr+ spores was also much slower in gpr spores. Additionally, UV irradiation of gpr B. subtilis spores early in germination generated significant amounts of spore photoproduct and only small amounts of thymine dimers (TT); in contrast UV irradiation of germinated gpr+ spores generated almost no spore photoproduct and three to four times more TT. Consequently, germinated gpr spores were more UV resistant than germinated gpr+ spores. Strikingly, the slow outgrowth phenotype of B. subtilis gpr spores was suppressed by the absence of major alpha/beta-type SASP. These data suggest that (i) alpha/beta-type SASP remain bound to much, although not all, of the chromosome in germinated gpr spores; (ii) the alpha/beta-type SASP bound to the chromosome in gpr spores alter this DNA's topology and UV photochemistry; and (iii) the presence of alpha/beta-type SASP on the chromosome is detrimental to normal spore outgrowth.  相似文献   

9.
The object of this study was to characterize the pattern ofcell morphogenesis and synthesis of nucleic acids and proteinsduring phytochrome-controlled germination of spores of the fern,Pteris vittata. Phytochrome activation and germination wereinitiated in fully imbibed spores by exposure to a saturatingdose of red light. At timed intervals thereafter, spores werefixed in acrolein and embedded in glycol methacrylate for examinationin the light microscope. The first sign of germination, visiblein sections of the spore 12 h after irradiation, was the hydrolysisof storage protein granules. This was followed by a migrationof the nucleus from its central location to one side of thespore. Subsequently, the protoplast enlarged at the site ofthe nucleus and appeared outside the exine as a papillate structure.An asymmetrical division of the protoplast gave rise to a smallcolourless rhizoid cell and a large, chloroplast-containingprotonemal cell. During the early phase of germination, DNAwas synthesized both in the nucleus and cytoplasm as judgedby autoradiography of [3H]thymidine incorporation. [3H]Uridine,a precursor of RNA synthesis, was incorporated into the nucleolusand the rest of the nuclear material of germinating spores.Protein synthesis monitored by [3H]leucine incorporation occurredboth in the nucleus and cytoplasm during the early stage ofgermination, although a strictly cytoplasmic protein synthesiswas observed later. Addition of cycloheximide completely inhibitedgermination of photoinduced spores and incorporation of labelledprecursors of macromolecule synthesis into cellular components.Actinomycin D was much less effective as an inhibitor of germinationand, even in high concentrations of the drug which effectivelyinhibited DNA and RNA synthesis in spores, proteolysis and proteinsynthesis appeared normal. These findings are discussed withrespect to the regulation of nucleic acid and protein synthesisduring spore germination and the role of phytochrome in theprocess.  相似文献   

10.
11.
Disruption of the external sheath of Streptomyces granaticolor aerial spores and subsequent cultivation in a rich medium result in a synchronous germination. This method was used to analyze RNA and protein patterns during the germination. The germination process took place through a sequence of time-ordered events. RNA and protein synthesis started during the first 5 min and net DNA synthesis at 60-70 min of germination. Within the first 10 min of germination, synthesis of RNA was not sensitive to the inhibitory effect of rifamycin. During this period rRNA and other species including 4-5-S RNA were synthesized. Dormant spores contained populations of ribosomes or ribosomal precursors that were structurally and functionally defective. The ribosomal particles bound a sporulation pigment(s) of the melanine type. The ribosomal proteins complexed to the pigments formed insoluble aggregates which were easily removed from the ribosomes by one wash with 1 M NH4Cl. During the first 10 min of germination, pigment(s) were liberated from the complexes with the ribosomes and protein extracts of the washed ribosomes had essentially the same pattern as the extracts of ribosomes of vegetative cells. These structural alterations were accompanied by enhancement of the ribosome activities in polypeptide synthesis in vivo and in vitro. When the spores were incubated with a 14C-labelled amino acid mixture in the presence of rifamycin, only three proteins (GS1, GL1 and GS9) were identified to be radiolabelled in the extracts from the washed ribosomes. These experiments indicate that liberation of the sporulation pigment(s) from the complexes with ribosomal proteins and assembly of de novo synthesized proteins and proteins from a preexisting pool in the spore are involved in the reactivation of the ribosomes of dormant spores of S. granaticolor.  相似文献   

12.
13.
14.
Several lysosomal glycosidase activities were examined in vitro during heat-induced germination of Dictyostelium discoideum spores and were found not to be coordinately controlled. The level of beta-glucosidase activity increased significantly during the emergence stage of germination. Both alpha-glucosidase and N-acetyl-beta-glucosaminidase activities remained relatively constant until postemergence, when they increased slightly; alpha-mannosidase activity decreased during all stages of germination. The activity of beta-galactosidase increased slightly during spore swelling, fell below the level initially found in spores at zero time, and increased slightly during postemergence. The expression of all of these enzyme activities, except the increase in beta-galactosidase, appeared to require protein synthesis. Spores in the lag phase of germination which were exposed to severe environmental stress were deactivated and exhibited reduced levels of alpha-glucosidase, beta-glucosidase, and N-acetyl-beta-glucosaminidase activities. Prolonged heat activation treatment reduced the levels of lysosomal glycosidase activities in postactivated spores but did not change the subsequent enzyme patterns during the spore-swelling and emergence stages of germination.  相似文献   

15.
16.
Summary Synthesis of proteins, RNA and DNA is measured by incorporation of labelled precursors at different times during germination of Phycomyces spores.RNA and protein synthesis increases immediately after activation. DNa synthesis begins at a later stage (± 8 h) of germination when germ tubes are already present. Nuclear division occurs earlier in germination (±4–5 h) and is accompanied by a decrease in RNA synthesis. It can be concluded that at least most of the dormant spores are in the G2 phase of the cell cycle.Analysis of ribosomal RNA after pulse-chase labelling shows only three labelled compounds: a precursor molecule (2.25×106 daltons) and the two mature ribosomal RNA compounds (1.4×106 and 0.7×106 daltons). This suggests that the two rRNAs are formed directly from the precursor molecule. Cycloheximide totally blocks the transformation of the ribosomal precursor molecule into mature rRNA.  相似文献   

17.
At various stages during spore formation sporangia were shocked by cold treatment or with toluene, and the germination requirements of the prespores were examined. Up to 5 h after induction of sporulation (t5) germination was spontaneous; i.e., it occurred without any added germinants. After t5, during stages V and VI, the capacity for spontaneous germination diminished progressively, and the spores acquired a need for externally added germinants. At t6 this need was satisfied by either L-alanine or a mixture of KCl, glucose, and fructose. By t8, the latter response had disappeared. The spores germinated only with L-alanine, and the response was much slower. Experiments with chloramphenicol showed that the germination properties of the spores appearing between t6 and t8 were the expression of events in protein synthesis that had occurred before t5. Although the germination requirements developed at about the same time as heat resistance, they could be dissociated from heat resistance in wild-type and mutant cells. The germination properties of the developing spores are additional marker events characterizing the later stages of sporulation, as follows: (i) spontaneous germination (up to the end of stage IV); (ii) germination requirements that are satisfied by KCl-glucose-fructose or L-alanine (stage V); and (iii) slow germination response with L-alanine only (stage VI).  相似文献   

18.
The drug 4-nitroquinoline 1-oxide (4NQO) is a potent inhibitor of Dictyostelium discoideum spore germination. This inexpensive, water soluble drug is active at a concentration of 5 micrograms/ml (26 microM) and permeates the spore at all stages in germination. Spores subjected to 4NQO treatment exhibit an irreversible blockage of myxamoebae emergence, but spore activation, post-activation lag, and swelling are not affected. Swollen 4NQO-treated spores lose the outer two spore walls but lack the ability to degrade the innermost wall. The drug does not affect oxygen uptake during post-activation lag or swelling, and only a stage specific depression in O2 uptake is observed when control spores begin to release myxamoebae. When added early in germination, 4NQO blocks the incorporation of [3H] uracil into a cold trichloroacetic acid (TCA) insoluble fraction by 98%. However, when the drug is added midway through germination and followed by a pulse labelling period of 1 h, only 65% inhibition of RNA synthesis is observed. This lack of complete inhibition may occur because the drug requires metabolic activation; thus, new rounds of RNA synthesis may have initiated before the drug became fully activated. 4NQO also blocks the de novo expression of beta-glucosidase activity when added early in germination. Additionally, we observe that vegetative cellular slime mold cells are 100 times more resistant than spores to 4NQO-induced damage. Taken together, our results support the observation that RNA synthesis is only required for the emergence stage of germination and that dormant D. discoideum spores may lack efficient excision repair mechanisms.  相似文献   

19.
P K Herman  J Rine 《The EMBO journal》1997,16(20):6171-6181
Saccharomyces cerevisiae spore germination is a process in which quiescent, non-dividing spores become competent for mitotic cell division. Using a novel assay for spore uncoating, we found that spore germination was a multi-step process whose nutritional requirements differed from those for mitotic division. Although both processes were controlled by nutrient availability, efficient spore germination occurred in conditions that did not support cell division. In addition, germination did not require many key regulators of cell cycle progression including the cyclin-dependent kinase, Cdc28p. However, two processes essential for cell growth, protein synthesis and signaling through the Ras protein pathway, were required for spore germination. Moreover, increasing Ras protein activity in spores resulted in an accelerated rate of germination and suggested that activation of the Ras pathway was rate-limiting for entry into the germination program. An early step in germination, commitment, was identified as the point at which spores became irreversibly destined to complete the uncoating process even if the original stimulus for germination was removed. Spore commitment to germination required protein synthesis and Ras protein activity; in contrast, post-commitment events did not require ongoing protein synthesis. Altogether, these data suggested a model for Ras function during transitions between periods of quiescence and cell cycle progression.  相似文献   

20.
A genetic melanotic neoplasm of Drosophila melanogaster   总被引:6,自引:0,他引:6  
The construction of mature fruiting bodies occurs during the culmination stage of development of Dictyostelium discoideum. These contain at least two different cell types, spores and stalks, which originate from an initially homogenous population of vegetative amoebas. As an attempt to identify proteins whose synthesis is regulated in each cell type during differentiation, we have analyzed the two-dimensional profiles of proteins synthesized by spore and stalk cells during the culmination stage. We have identified 5 major polypeptides which are specifically synthesized by spore cells during culmination and 9 which are only made by stalk cells. Furthermore, synthesis of about 20 polypeptides appears to be enriched either in the spore or in the stalk cells. We also show that synthesis of actin, a major protein synthesized during Dictyostelium development, is specifically inhibited in the spore cells during culmination. Synthesis of most of the cell type-specific proteins initiates at 19–20 hr, during culmination. Moreover, the proteins whose synthesis is induced after formation of tight aggregates, the time when the major change in gene expression occurs, are not specifically incorporated into spores or stalk cells, and appear to be synthesized by both cell types. We conclude that a new class of genes is expressed during the culmination stage in Dictyostelium, giving rise to specific patterns of protein synthesis in spore and stalk cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号