首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. The construction and evaluation of a temperature-corrected in situ thermocouple psychrometer for measurement of leaf water potential (Ψ) is described. The instrument utilized two chromel-constantan thermocouples which allowed for detection of both the psychrometric zero offset and the temperature differential between the sample and the Peltier measuring junction. The psychrometer was subjected to stable temperature gradients while in contact with reference solutions of sodium chloride, and the effects of thermal gradients were quantified. Regression analysis indicated that temperature differentials were responsible for errors in water potential determinations of approximately –7.73 MPa°C−1. When installed on leaves of field-grown cotton ( Gossypium hirsutum L.), corn ( Zea mays L.) and soybean ( Glycine max L. Merr) the instrument detected temperature differentials up to 0.1°C (–6.0 μV) which were associated with relatively small shifts in psychrometric zero offsets (–0.05––0.75 μV). Results indicated that substantial errors in apparent Ψ were caused by non-isothermal conditions between the leaf and the psychrometer measuring junction. The relative magnitude of these errors could be quantified and the corrected results showed good agreement with conventional psychrometric determination of Ψ on excised samples during a diurnal cycle.  相似文献   

2.
Water potentials of leaves from well-watered plants were measured. There were species-specific differences in both the total and the osmotic potentials of pea (Pisum sativum), tradescantia (Tradescantia versicolor), rose (Rosa hybrida), bitter lemon (Citrus aurantium) and olive (Olea europaea). With tradescantia the potential measured after the destruction of turgor by freezing was less negative than before, a result which suggests that the value obtained is not identical with the real osmotic potential of the leaf. detached leaves of all species showed less negative water potential readings, and those of pea even a less negative osmotic potential, when cut into five pieces than when measured intact. Application of vaseline to the cut surface of the leaves reduced this effect with rose and olive, though not with tradescantia and pea. Measurements were also made of the water potentials of comparable leaves of tradescantia and bitter lemon, attached to and detached from their plants; when bitter lemon leaves were detached and watered through their petioles which protruded outside the thermocouple chamber, their potential became considerably less negative than when the same leaves had been attached to well watered plants. However, similar leaves whose cut petioles were introduced into the thermocouple chamber registered an even less negative potential. The results are consistent with the hypothesis that when a leaf is cut off a plant, and even more so when it is cut into sections, the water previously held by matrix forces becomes available to dilute the “spilled” cell sap and to be absorbed by adjacent cells and thereby to increase their turgor and render the net water potential of the leaf less negative. Similarly, the apparent negative turgor of the succulent, tradescantia leaves is likely to be due to dilution of the osmotic component by cell wall water. The discrepancies between the readings of attached and detached leaves indicate a considerable whole-plant matrix component, and the results as a whole suglest that thermocouple psychrometer readings carried out on detached and even more on cut-up leaves may be artifacts and that it is desirable to determine water potentials on leaves attached to their plants. The work was supported by a Government of Israel Fellowship and was conducted at the Department of Pomology and Viticulture, Faculty of Agriculture of the Hebrew University of Jerusalem, Rehovot, Israel.  相似文献   

3.
4.
The diurnal changes in leaf water potential of rice, barley and wheat corresponded to changes in air temperature. The soil moisture did not affect the diurnal changes in leaf water potential of rice and only slightly affected that of barley and wheat.  相似文献   

5.
Regeneration potential of different wheat, rye and barley species in leaf explant culture. Comparative analysis of the induction ability of morphogenetic processes in vitro has been carried out in 16 wheat genotypes, 4 barley species and 6 rye genotypes. It has been shown that tetra- and hexaploid wheat species as well as wild barley species exhibited the highest embryogenic potential in the leaf explant culture while diploid wheat species and rye genotypes showed the lowest one. Genotypic dependence of processes of callus formation, induction of embryogenic calli and regeneration was revealed in the studied species.  相似文献   

6.
Summary The need to compare pressure-chamber estimates of leaf water potential with a psychrometric method has been established for several crop species. We investigated this relationship for rice (Oryza sativa L.) as well as the need to protect leaves from water loss during sampling and measuring period in the pressure chamber. Two rice cultivars grown in containers on a clay-loam soil were stressed to varying degrees by withholding water. Fully expanded leaves were sampled for estimation of leaf water potential by the dew point hygrometer and pressure-chamber techniques. The same leaf was used in both methods allowing direct comparison. Additionally, two alternative methods of leaf handling for measurement by the pressure chamber technique were compared. Protection of leaf samples against water loss during excision, transport and handling was found to be more important at higher leaf water potentials (>−1.0 MPa). The two cultivars used appeared to differ in their response to protection of the leaf sample. These results serve to further caution pressure chamber users on extrapolating comparisons between the two measurement methods and between tissue handling techniques even within a crop species.  相似文献   

7.
A pot experiment was conducted in the greenhouse to determine and compare the responses of rice (Oryza sativa L. var, IR 36), maize (Zea mays L. var. DMR-2), and soybean (Glycine max [L.] Merr. var. Clark 63) to soil water stress. Leaf elongation, dawn leaf water potential, transpiration rate, and nutrient uptake in stressed rice declined earlier than in maize and soybean. Maize and soybean, compared with rice, maintained high dawn leaf water potential for a longer period of water stress before leaf water potential. Nutrient uptake under water stress conditions was influenced more by the capacity of the roots to absorb nutrients than by transpiration. Transport of nutrients to the shoots may occur even at reduced transpiration rate It is concluded that the ability of maize and soybean to grow better than rice under water stress conditions may be due to their ability to maintain turgor as a result of the slow decline in leaf water potential brought about by low, transpiration rate and continued uptake of nutrient, especially K, which must have allowed osmotic adjustment to occur.  相似文献   

8.
The effect of temperature on photosynthesis at constant water-vapor pressure in the air was investigated using two sclerophyll species, Arbutus unedo and Quercus suber, and one mesophytic species, Spinacia oleracea. Photosynthesis and transpiration were measured over a range of temperatures, 20–39° C. The external concentration of CO2 was varied from 340 bar to near CO2 compensation. The initial slope (carboxylation efficiency, CE) of the photosynthetic response to intercellular CO2 concentration, the CO2 compensation point (), and the extrapolated rate of CO2 released into CO2-free air (R i) were calculated. At an external CO2 concentration of 320–340 bar CO2, photosynthesis decreased with temperature in all species. The effect of temperature on was similar in all species. While CE in S. oleracea changed little with temperature, CE decreased by 50% in Q. suber as temperature increased from 25 to 34° C. Arbutus unedo also exhibited a decrease in CE at higher temperatures but not as marked as Q. suber. The absolut value of R i increased with temperature in S. oleracea, while changing little or decreasing in the sclerophylls. Variations in and R i of the sclerophyll species are not consistent with greater increase of respiration with temperature in the light in these species compared with S. oleracea.Abbreviations and symbols A net photosynthetic rate - C and C i CO2 concentration in the air and in the intercellular airspace of the leaf, respectively - CE carboxylation efficiency - E transpiration rate - R i CO2 release into CO2-free air estimated from extrapolation to 0 bar CO2 - T i leaf temerature - VPD difference in water-vapor pressure between mesophyll and air - CO2 compensation point  相似文献   

9.
Organization of the histone H3 genes in soybean, barley and wheat   总被引:4,自引:0,他引:4  
Several variants of the replacement histone H3 genes from soybean, barley and wheat have been cloned and sequenced. Analysis of segregating populations in barley and soybean, as well as analysis of clones isolated from a soybean genomic library, suggested that these genes are dispersed throughout the genome. Several genes contain introns located in similar positions, but of different lengths and sequence. Comparison of mRNA levels in different tissues revealed that the intron-containing and intronless genes have different expression patterns. The distribution of the introns in the histone H3 genes across several plant species suggests that some of the introns might have been lost during the evolution of the gene family. Sequence divergence among introns and gene-flanking sequences in cloned gene variants allowed us to use them as specific probes for localizing individual gene copies and analyzing the genomic distribution of these variants across a range of genotypes.Journal paper No. J-16127 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IowaMention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable  相似文献   

10.
The water potential of wheat and barley leaves considerably decreased with the decrease of the soil moisture percentage, with the increase of the eleotrical conductivity of the soil solution and with the increase in the exchangeable sodium percentage level. Also the leaf insertion level affected the values of water potential and the most negative values were found in the top leaves.  相似文献   

11.
Summary Eight leaf peroxidase isozymes were distinguished by IEF in Chinese Spring. Two genes which control the production of three of these isozymes were located on chromosome arms 1BS and 1DS by nullisomic analysis. These loci probably form part of a homoeoallelic series and have been designated Per-B1 and Per-D1 respectively. Analysis of chromosome 1B short arm terminal deletion stocks indicated that the Per-B1 locus is located between the nucleolar organiser region and another isozyme marker, Hk-B1. Two variant leaf peroxidase phenotypes were distinguished in a small sample of hexaploid wheat varieties. Analysis of wheat-alien addition and substitution lines identified homoeologous loci in rye (Per-R1) and barley (Per-H1).  相似文献   

12.
RNA-degrading enzymes play an important role in regulating gene expression, and sequence analyses have revealed significant homology among several plant RNA-degrading enzymes. In this study we surveyed crude extracts of the above-ground part of the common wheat (Triticum aestivum L.) and the cultivated barley (Hordeum vulgare L.) for major RNA-degrading enzymes using a substrate-based SDS-PAGE assay. Fifteen wheat and fourteen barley RNA-degrading enzymes, with apparent molecular masses ranging from 16.3 to 40.1 kD, were identified. These RNA-degrading enzymes were characterized by their response to pH changes and addition of EDTA and ZnCl2 to the preincubation or incubation buffers. The 33.2- to 40.1-kD wheat and barley, 31.7-kD wheat, and 32.0-kD barley enzyme activities were inhibited by both zinc and EDTA and were relatively tolerant to alkaline environment. The 22.7- to 28.2-kD enzymes were inhibited by zinc but stimulated by EDTA. The 18.8-kD enzyme exists in both wheat and barley. It was active in an acid environment, was inhibited by zinc, but was not affected by EDTA. Two enzyme activities (31.0 and 32.0 kD) are unique to the common wheat. Contribution from Agriculture Research Division, University of Nebraska, Journal Series No. 9895.  相似文献   

13.
14.
Earlier reports that the water potential of sliced leaf tissue is higher than that of unsliced control tissue are confirmed. The effect is shown to increase as damage to the tissue due to slicing is increased. However, there is some evidence that increase in damage beyond a certain point causes water potentials to fall again towards the control value. The electrical resistance of washings from sliced leaf tissue increases with increase in the time interval between slicing and washing. Both the rise in water potential of sliced tissue and the rise in electrical resistance of washings are partially and reversibly inhibited by low temperature. These results suggest that the remaining intact cells actively accumulate solutes released from the cells cut open on slicing. The sap from the sliced cells is thereby diluted and flows passively into the intact cells. Since pressure potential changes more rapidly with cell volume than does osmotic potential, the net result is a rise in the total water potential of sliced tissue. It is concluded that this effect may cause spuriously high water potential values to be measured if excessively small pieces of leaf tissue are used. This is demonstrated with stacks of annuli cut from leaves.  相似文献   

15.
This study was performed to compare the bioavailability of two organic zinc compounds, a zinc glycinate complex and a zinc amino acid chelate with that of zinc sulphate in growing pigs fed a basal diet composed mainly of wheat, barley and soybean meal. The experiment included 96 pigs with an average body weight of 8 kg, allotted to ten groups of nine to ten pigs each. The first group received the basal diet, containing 42 mg of native zinc per kg, without zinc supplementation over a period of five weeks. The other nine groups received the basal diet supplemented with 15, 30 or 50 mg of zinc/kg as zinc sulphate, zinc glycinate or the zinc amino acid chelate. Pigs fed the unsupplemented diet had a lower growth performance (body weight gain, feed conversion ratio) than the other nine groups. Supplementation of 15 mg zinc/kg diet (irrespective of zinc form) was sufficient to yield optimum growth performance. Plasma zinc concentration and activity of alkaline phosphatase were rising with increasing zinc supplementation levels up to a maximum reached at a supplementary level of 30 or 50 mg/kg diet for activity of alkaline phosphatase and plasma zinc concentration, respectively. The response of those parameters to zinc supplementation did, however, not differ between the three zinc compounds considered. The apparent digestibility of zinc from the diet was also not different for the three zinc compounds. In conclusion, these findings show that the bioavailability of the two organic zinc compounds did not differ from that of zinc sulphate in growing pigs fed a diet with wheat, barley and soybean meal as major components.  相似文献   

16.
17.
We review some general points about comparative mapping, the evolution of gene families and recent advances in the understanding of angiosperm phylogeny. These are considered in relation to studies of large-genome cereals, particularly barley (Hordeum vulgare) and wheat (Triticum aestivum), with reference to methods of gene isolation. The relative merits of direct map-based cloning in barley and wheat, utilization of the smaller genome of rice (Oryza sativa) and gene homology methods that utilize information from model species such as Arabidopsis thaliana are briefly discussed.  相似文献   

18.
This study was performed to compare the bioavailability of two organic zinc compounds, a zinc glycinate complex and a zinc amino acid chelate with that of zinc sulphate in growing pigs fed a basal diet composed mainly of wheat, barley and soybean meal. The experiment included 96 pigs with an average body weight of 8 kg, allotted to ten groups of nine to ten pigs each. The first group received the basal diet, containing 42 mg of native zinc per kg, without zinc supplementation over a period of five weeks. The other nine groups received the basal diet supplemented with 15, 30 or 50 mg of zinc/kg as zinc sulphate, zinc glycinate or the zinc amino acid chelate. Pigs fed the unsupplemented diet had a lower growth performance (body weight gain, feed conversion ratio) than the other nine groups. Supplementation of 15 mg zinc/kg diet (irrespective of zinc form) was sufficient to yield optimum growth performance. Plasma zinc concentration and activity of alkaline phosphatase were rising with increasing zinc supplementation levels up toa maximum reached at a supplementary level of 30 or 50 mg/kg diet for activity of alkaline phosphatase and plasma zinc concentration, respectively. The response of those parameters to zinc supplementation did, however, not differ between thethree zinc compounds considered. The apparent digestibility of zinc from the diet was also not different for the three zinc compounds. In conclusion, these findings show that the bioavailability of the two organic zinc compounds did not differ from that of zinc sulphate in growing pigs fed a diet with wheat, barley and soybean meal as major components.  相似文献   

19.
Excised wheat (Triticum aestivum L. var. Maris Freeman) and barley (Hordeum vulgare L. var. Maris Mink) embryos were grown on medium containing both nitrate and ammonium ions. Addition of lysine (1 mM) plus threonine (1 mM) caused a synergistic inhibition of growth measured by length of first leaf or dry weight. The inhibition was specifically relieved by methionine, homocysteine and homoserine. Threonine at 0.2–0.3 mM caused half-maximal inhibition of growth at all lysine concentrations whereas lysine increased the synergistic inhibition up to 3 mM. The inhibition is explained by a model in which lysine acts as a feedback inhibitor of aspartate kinase and threonine of homoserine dehydrogenase. This is compatible with published studies of the enzymes involved. The implications of these findings for using lysine plus threonine as a selection system for lysine-overproducing cereals are discussed.Abbreviations Lys Lysine - Thr Threonine - Met Methionine - Hser Homoserine - Hcys Homocysteine  相似文献   

20.
NADH-nitrate reductase (EC 1.6.6.1) was purified 800-fold from roots of two-row barley ( Hordeum vulgare L. cv. Daisen-gold) by a combination of Blue Sepharose and zinc-chelate affinity chromatographies followed by gel filtration on TSK-gel (G3000SW). The specific activity of the purified enzyme was 6.2 μmol nitrite produced (mg protein)−1 min−1 at 30°C.
Besides the reduction of nitrate by NADH, the root enzyme, like leaf nitrate reductase, also catalyzed the partial activities NADH-cytochrome c reductase, NADH-ferricyanide reductase, reduced methyl viologen nitrate reductase and FMNH2-nitrate reductase. Its molecular weight was estimated to be about 200 kDa, which is somewhat smaller than that for the leaf enzyme. A comparison of root and leaf nitrate reductases shows physiologically similar or identical properties with respect to pH optimum, requirements of electron donor, acceptor, and FAD, apparent Km for nitrate, NADH and FAD, pH tolerance, thermal stability and response to inorganic orthophosphate. Phosphate activated root nitrate reductase at high concentration of nitrate, but was inhibitory at low concentrations, resulting in increases in apparent Km for nitrate as well as Vmax whereas it did not alter the Km for NADH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号