共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Morphological characterization of purified SARS-associated virus(SARS-CoV) from Hubei patient was carried out by negative stain and ultrathin section electronmicroscopy. The spike of isolated SARS-CoV virus is shorter and smaller than Human coronavirus. A large quantity of SARS-CoV particles could be observed in the infected Vero cells. The process of infection, assembly and morphogenesis was observed. 相似文献
3.
The lantibiotic nisin is produced by Lactococcus lactis. In the biosynthesis of nisin, the enzyme NisB dehydrates nisin precursor, and the enzyme NisC is needed for lanthionine formation. In this study, the nisA gene encoding the nisin precursor, and the genes nisB and nisC of the lantibiotic modification machinery were expressed together in vitro by the Rapid Translation System (RTS). Analysis of the RTS mixture showed that fully modified nisin precursor was formed. By treating the mixture with trypsin, active nisin was obtained. However, no nisin could be detected in the mixture without zinc supplementation, explained by the fact that NisC requires zinc for its function. The results revealed that the modification of nisin precursor, which is supposed to occur at the inner side of the membrane by an enzyme complex consisting of NisB, NisC, and the transporter NisT, can take place without membrane association and without NisT. This in vitro production system for nisin opens up the possibility to produce nisin variants that cannot be producedin vivo. Moreover, the system is a promising tool for utilizing the NisB and NisC enzymes for incorporation of thioether rings into medical peptides and hormones for increased stability. 相似文献
4.
C Di Nunno I Silletti C Pascazio D Di Monte 《Bollettino della Società italiana di biologia sperimentale》1983,59(12):1855-1860
The authors have conducted a study on the genic frequency within the Rh system in 3.000 subjects of certain Apulia ancestry. The results, in agreement with those of previous authors, have demonstrated that the frequency of the haplotypes containing "d" appears clearly lower than the national average value. 相似文献
5.
6.
Studies on aldosterone biosynthesis in vitro 总被引:1,自引:0,他引:1
7.
Fecik RA 《Nature chemical biology》2007,3(9):531-532
8.
9.
10.
In 23 healthy subjects and in 115 patients with various degrees of chronic iron deficiency anaemia without congenital abnormalities of globin synthesis, Hb ranged from 3.4 to 16.3 g/100 ml. HbA2 ranged from 0.0550 to 0.5250 g/100 ml. Hb and HbA2 were statistically correlated, as shown by linear regression analysis (a equals --0.1387; b equals 0.0372; r equals 0.8198; P smaller than 0.001). The second degree parabola was not statistically different, but it gave a biologically preferable Figure for intercept (a equals --0.0006; b equals 0.0070; c equals 0.0015; r equals 0.8324; P smaller than 0.001). The second degree parabola was to be preferred also on the basis of previous literature results. Shortness of iron seems to reduce more the HbA2 than the Hb levels. 相似文献
11.
Membrane lipid biosynthesis in Chlamydomonas reinhardtii. In vitro biosynthesis of diacylglyceryltrimethylhomoserine
下载免费PDF全文

Diacylglyceryltrimethylhomo-Ser (DGTS) is an abundant lipid in the membranes of many algae, lower plants, and fungi. It commonly has an inverse concentration relationship with phosphatidylcholine, thus seemingly capable of replacing this phospholipid in these organisms. In some places this replacement is complete; Chlamydomonas reinhardtii is such an organism, and was used for these investigations. We have assayed headgroup incorporation to form DGTS in vitro. The precursor for both the homo-Ser moiety and the methyl groups was found to be S-adenosyl-L-Met. DGTS formation was associated with microsomal fractions and is not in plastids. By analogy with phosphatidylcholine and phosphatidylethanolamine biosynthesis in higher plants, the microsomal activity probably is associated with the endoplasmic reticulum. The pH optimum for the total reaction was between 7.5 and 8.0, and the best temperature was 30 degrees C. The apparent K(m) and V(max) for S-adenosyl-L-Met in the overall reaction were 74 and 250 microM, respectively. 相似文献
12.
In vitro biosynthesis of the lysosomal cathepsin H 总被引:1,自引:0,他引:1
A lysosomal thiol protease cathepsin H has been synthesized in vitro and shown to undergo co-translational segregation into the lumen of microsomal vesicles. Using cell-free synthesis, a 36 K Da cathepsin H was found to be synthesized exclusively on membrane-bound polysomes. When the microsomal membrane were present during translation, a glycosylated 41 K Da proenzyme appeared in the microsomal lumen. This proenzyme was converted to a 34 K Da protein by endoglycosidase H treatment. These results suggest that the nascent chain of cathepsin H has a transient N-terminal prepropeptide. 相似文献
13.
14.
15.
In vitro biosynthesis of volicitin in Spodoptera litura 总被引:2,自引:0,他引:2
Yoshinaga N Morigaki N Matsuda F Nishida R Mori N 《Insect biochemistry and molecular biology》2005,35(2):175-184
Volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and N-linolenoyl-L-glutamine, originally identified in the regurgitant of Spodoptera exigua, induce damaged corn leaves to release volatile compounds which enable parasitic wasps to locate host caterpillars. Here we demonstrate the in vitro biosynthesis of volicitin for the first time by using gut tissues of Spodoptera litura larvae, as well as N-linolenoyl-L-glutamine. When crop, midgut tissues, peritrophic membrane and gut contents isolated from S. litura were incubated with sodium linolenate and L-[alpha-15N] glutamine, not only 15N-labeled N-linolenoyl-L-glutamine but 15N-labeled volicitin was detected mainly in the midgut incubation by LCMS and LCMSMS analysis. In contrast, there were negligible amounts of the newly biosynthesized compounds in the gut content incubation. Furthermore, the microsomal fraction obtained from the gut tissues clearly showed specific incorporation of glutamine. This substrate selectivity accounts for the exclusive uptake of glutamine by fatty acid amides (FAAs) in the noctuid caterpillars, even though glutamine was not a major component in the regurgitant. Additionally, intensive chemical analyses revealed that more than 20% of glutamine in hemolymph was present as conjugates in gut contents. These results suggest that FAA compounds are actively synthesized by caterpillar tissues and might play important physiological role(s) in glutamine metabolism. 相似文献
16.
S Basu M Basu K K Das F Daussin R J Schaeper P Banerjee F A Khan I Suzuki 《Biochimie》1988,70(11):1551-1563
The assembly of most of the ceramide-linked glycolipids (GSLs) in eukaryotic cells occurs in Golgi bodies. At least 18 different glycolipid:glycosyltransferases (GSL:GLTs) have been characterized, 10 of which have been solubilized. These GLTs can be classified into 2 distinct groups: 1) GLTs dedicated to either Dol-P-P-sugar(s) or ceramide-linked sugar(s); and 2) GLTs with dual loyalties (i.e., they compete with glycolipid- and glycoprotein-bound oligosaccharides). Studies with solubilized and purified GalNAcT-1 and GalNAcT-2 from embryonic chicken brains prove that GalNAcT-1 (UDP-GalNAc:GM3 beta 1-4GalNAcT) is specific for GSL, whereas GalNAcT-2 (UDP-GalNAc:Gb3 beta 1-3GalNAcT) can transfer to an oligosaccharide containing the alpha-linked terminal galactose. Similarly, GalT-3 (UDP-Gal:GM2 beta 1-3GalT) is more specific for ganglio-oligosaccharide and GalT-4 (UDP-Gal:Lc3 beta 1-4GalT) can transfer galactose to N-acetylglucosamine linked to p-nitrophenol, glycolipid or glycoprotein. Both GalT-3 and GalT-4 have been separated and purified from embryonic chicken brains. Studies with solubilized SAT-4 and SAT-3, from bovine spleen and embryonic chicken brains, respectively, suggest the existence of 2 different gene-expressed alpha 2-3SATs. The newly discovered FucT-3 (GDP-Fuc:NeuGc-iLc6-alpha 1-3FucT) from human colon carcinoma (Colo-205) has also been solubilized and separated from other GSL:GLTs. Using a new activity gel-Western blot combined technique, the molecular mass of this FucT-3 was determined to be 105 kDa. 相似文献
17.
Fontaine T Smith TK Crossman A Brimacombe JS Latgé JP Ferguson MA 《Biochemistry》2004,43(48):15267-15275
Glycosylphosphatidylinositol (GPI) represents a mechanism for the attachment of proteins to the plasma membrane found in all eukaryotic cells. GPI biosynthesis has been mainly studied in parasites, yeast, and mammalian cells. Aspergillus fumigatus, a filamentous fungus, produces GPI-anchored molecules, some of them being essential in the construction of the cell wall. An in vitro assay was used to study the GPI biosynthesis in the mycelium form of this organism. In the presence of UDP-GlcNAc and coenzyme A, the cell-free system produces the initial intermediates of the GPI biosynthesis: GlcNAc-PI, GlcN-PI, and GlcN-(acyl)PI. Using GDP-Man, two types of mannosylation are observed. First, one or two mannose residues are added to GlcN-PI. This mannosylation, never described in fungi, does not require dolichol phosphomannoside (Dol-P-Man) as the monosaccharide donor. Second, one to five mannose residues are added to GlcN-(acyl)PI using Dol-P-Man as the mannose donor. The addition of ethanolamine phosphate groups to the first, second, and third mannose residue is also observed. This latter series of GPI intermediates identified in the A. fumigatus cell-free system indicates that GPI biosynthesis in this filamentous fungus is similar to the mammalian or yeast systems. Thus, these biochemical data are in agreement with a comparative genome analysis that shows that all but 3 of the 21 genes described in the Saccharomyces cerevisiae GPI pathways are found in A. fumigatus. 相似文献
18.
The biosynthesis of cytochrome P-450 in vitro 总被引:1,自引:0,他引:1
19.
The folding of ovalbumin. Renaturation in vitro versus biosynthesis in vitro. 总被引:2,自引:0,他引:2
下载免费PDF全文

R D Klausner C Kempf J N Weinstein R Blumenthal J Van Renswoude 《The Biochemical journal》1983,212(3):801-810
Hen ovalbumin, the major secretory product of oviduct cells, is a 43 000-dalton glycoprotein. Many studies have led to controversy over the question of whether ovalbumin (OA) can be fully renatured after chemical denaturation. We have studied the renaturation of OA after denaturation with guanidinium chloride, urea or alkaline pH. Denatured OA displays an intrinsic viscosity consistent with nearly complete unfolding of the protein. Removal of the denaturant results in a complete reversal of the changes in intrinsic viscosity. However, closer examination of the renatured protein reveals major differences from the native form. Renatured OA (OAR) can be completely separated from the native form (OAN) by affinity chromatography on phenyl-Sepharose. OAR displays altered tryptophan fluorescence, u.v.-absorption and c.d. spectra. Only OAR binds anilinonaphthalenesulphonate (as measured by fluorescence enhancement). OAR, but not OAN, binds about 2 mol of the covalent hydrophobic affinity probe phenyl isothiocyanate/mol. Renaturation, and the production of OAR, occurs regardless of the oxidation state of the disulphide bonds, of phosphorylation of the protein, and of the presence or the absence of the single carbohydrate chain. OAR may be either monomeric or an irreversible aggregate. Which of these two states is formed depends on the protein concentration during renaturation. Monomeric and aggregated OAR can be distinguished on the basis of some spectroscopic characteristics, but they share the essential hydrophobic characteristics that distinguish them from OAN. OAN and OAR do not spontaneously interconvert. Antibodies raised to each can be made monospecific by immunoabsorption. Thus two stable forms of OA can be obtained, one of which, OAR, displays hydrophobic characteristics. OAN, but not OAR, is formed when OA is synthesized in vitro in a translation system. 相似文献
20.
In vitro biosynthesis of ether-type glycolipids in the methanoarchaeon Methanothermobacter thermautotrophicus
下载免费PDF全文

The biosynthesis of archaeal ether-type glycolipids was investigated in vitro using Methanothermobacter thermautotrophicus cell-free homogenates. The sole sugar moiety of glycolipids and phosphoglycolipids of the organism is the beta-D-glucosyl-(1-->6)-D-glucosyl (gentiobiosyl) unit. The enzyme activities of archaeol:UDP-glucose beta-glucosyltransferase (monoglucosylarchaeol [MGA] synthase) and MGA:UDP-glucose beta-1,6-glucosyltransferase (diglucosylarchaeol [DGA] synthase) were found in the methanoarchaeon. The synthesis of DGA is probably a two-step glucosylation: (i) archaeol + UDP-glucose --> MGA + UDP, and (ii) MGA + UDP-glucose --> DGA + UDP. Both enzymes required the addition of K(+) ions and archaetidylinositol for their activities. DGA synthase was stimulated by 10 mM MgCl(2), in contrast to MGA synthase, which did not require Mg(2+). It was likely that the activities of MGA synthesis and DGA synthesis were carried out by different proteins because of the Mg(2+) requirement and their cellular localization. MGA synthase and DGA synthase can be distinguished in cell extracts greatly enriched for each activity by demonstrating the differing Mg(2+) requirements of each enzyme. MGA synthase preferred a lipid substrate with the sn-2,3 stereostructure of the glycerol backbone on which two saturated isoprenoid chains are bound at the sn-2 and sn-3 positions. A lipid substrate with unsaturated isoprenoid chains or sn-1,2-dialkylglycerol configuration exhibited low activity. Tetraether-type caldarchaetidylinositol was also actively glucosylated by the homogenates to form monoglucosyl caldarchaetidylinositol and a small amount of diglucosyl caldarchaetidylinositol. The addition of Mg(2+) increased the formation of diglucosyl caldarchaetidylinositol. This suggested that the same enzyme set synthesized the sole sugar moiety of diether-type glycolipids and tetraether-type phosphoglycolipids. 相似文献