首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular mechanism of genetic resistance of inbred mouse strains to mouse hepatitis virus, a murine coronavirus, was studied by comparing virus binding to plasma membranes of intestinal epithelium or liver from susceptible BALB/c and resistant SJL/J mice with a new solid-phase assay for virus-binding activity. Virus bound to isolated membranes from susceptible mice, but not to membranes from resistant mice. F1 progeny of SJL/J X BALB/c mice had an intermediate level of virus-binding activity on their enterocyte and hepatocyte membranes. This correlated well with previous studies showing that susceptibility to mouse hepatitis virus strain A59 is controlled by a single autosomal dominant gene (M. S. Smith, R. E. Click, and P. G. W. Plagemann, J. Immunol. 133:428-432). Because virus binding was not prevented by treating membranes with sodium dodecyl sulfate, the virus-binding molecule could be identified by a virus overlay protein blot assay. Virus bound to a single broad band of Mr 100,000 to 110,000 in membranes from hepatocytes or enterocytes of susceptible BALB/c and semisusceptible C3H mice, but no virus-binding band was detected in comparable preparations of resistant SJL/J mouse membranes. Therefore, SJL/J mice may be resistant to mouse hepatitis virus A59 infection because they lack a specific virus receptor which is present on the plasma membranes of target cells from genetically susceptible BALB/c and semisusceptible C3H mice.  相似文献   

2.
K Yokomori  M M Lai 《Journal of virology》1992,66(12):6931-6938
The SJL mouse strain is resistant to infection by some strains of the murine coronavirus mouse hepatitis virus (MHV), such as JHM and A59. The block to virus infection has been variously attributed to defects in virus receptors or virus spread. Since the cellular receptors for MHV, mmCGM1 and mmCGM2, have recently been identified as members of the carcinoembryonic antigen family, we reexamined the possible defectiveness of the MHV receptors in SJL mouse strain. Cloning and sequencing of the cDNAs of both mmCGMs RNAs from SJL mice revealed that they were identical in size to those of the susceptible C57BL/6 (B6) mouse. There was some sequence divergence in the N terminus of the mmCGM molecules between the two mouse strains, resulting in a different number of potential glycosylation sites. This was confirmed by in vitro translation of the mmCGM RNAs, which showed that the glycosylated mmCGM2 of SJL was smaller than that of B6 mice. However, transfection of either mmCGM1 or mmCGM2 from SJL mice into MHV-resistant Cos 7 cells rendered the cells susceptible to MHV infection. The ability of the SJL mmCGM molecules to serve as MHV receptors was comparable to that of those from B6. These molecules are expressed in SJL mouse brain and liver in a similar ratio and in amounts equivalent to those in the B6 mouse. Furthermore, we demonstrated that an SJL-derived cell line was susceptible to A59 but resistant to JHM infection. We concluded that the MHV receptor molecules in the SJL mouse are functional and that the resistance of SJL mice to infection by some MHV strains most likely results from some other factor(s) required for virus entry or some other step(s) in virus replication.  相似文献   

3.
Inoculation of the neurotropic JHM strain of mouse hepatitis virus (JHMV) into the central nervous system (CNS) of susceptible strains of mice results in wide-spread replication within glial cells accompanied by infiltration of virus-specific T lymphocytes that control virus through cytokine secretion and cytolytic activity. Virus persists within white matter tracts of surviving mice resulting in demyelination that is amplified by inflammatory T cells and macrophages. In response to infection, numerous cytokines/chemokines are secreted by resident cells of the CNS and inflammatory leukocytes that participate in both host defense and disease. Among these are the ELR-positive chemokines that are able to signal through CXC chemokine receptors including CXCR2. Early following JHMV infection, ELR-positive chemokines contribute to host defense by attracting CXCR2-expressing cells including polymorphonuclear cells to the CNS that aid in host defense through increasing the permeability the blood-brain-barrier (BBB). During chronic disease, CXCR2 signaling on oligodendroglia protects these cells from apoptosis and restricts the severity of demyelination. This review covers aspects related to host defense and disease in response to JHMV infection and highlights the different roles of CXCR2 signaling in these processes.  相似文献   

4.
The cytotoxic T lymphocyte (CTL) activity of spleen cells from BALB/c (H-2d) mice immunized with the neurotropic JHM strain of mouse hepatitis virus (JHMV) was stimulated in vitro for 7 days. CTL were tested for recognition of target cells infected with either JHMV or vaccinia virus recombinants expressing the four virus structural proteins. Only target cells infected with either JHMV or the vaccinia virus recombinant expressing the JHMV nucleocapsid protein were recognized. Cytotoxic T cell lines were established by limiting dilution from the brains of mice undergoing acute demyelinating encephalomyelitis after infection with JHMV. Twenty of the 22 lines recognized JHMV-infected but not uninfected syngeneic target cells, indicating that they are specific for JHMV. All T-cell lines except one were CD8+. The specificity of the CTL lines was examined by using target cells infected with vaccinia virus recombinants expressing the JHMV nucleocapsid, spike, membrane, and hemagglutinin-esterase structural proteins. Seventeen lines recognized target cells expressing the nucleocapsid protein. Three of the JHMV-specific T-cell lines were unable to recognize target cells expressing any of the JHMV structural proteins, indicating that they are specific for an epitope of a nonstructural protein(s) of JHMV. These data indicate that the nucleocapsid protein induces an immunodominant CTL response. However, no CTL activity specific for the nucleocapsid protein could be detected in either the spleens or cervical lymph nodes of mice 4, 5, 6, or 7 days after intracranial infection, suggesting that the CTL response to JHMV infection within the central nervous system may be induced or expanded locally.  相似文献   

5.
Kang BS  Lyman MA  Kim BS 《Journal of virology》2002,76(13):6577-6585
Theiler's virus infection of the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains, such as SJL/J, and serves as a relevant infectious model for human multiple sclerosis. It has been previously suggested that susceptible SJL/J mice do not mount an efficient cytotoxic T-lymphocyte (CTL) response to the virus. In addition, genetic studies have shown that resistance to Theiler's virus-induced demyelinating disease is linked to the H-2D major histocompatibility complex class I locus, suggesting that a compromised CTL response may contribute to the susceptibility of SJL/J mice. Here we show that SJL/J mice do, in fact, generate a CD8(+) T-cell response in the CNS that is directed against one dominant (VP3(159-166)) and two subdominant (VP1(11-20) and VP3(173-181)) capsid protein epitopes. These virus-specific CD8(+) T cells produce gamma interferon (IFN-gamma) and lyse target cells in the presence of the epitope peptides, indicating that these CNS-infiltrating CD8(+) T cells are fully functional effector cells. Intracellular IFN-gamma staining analysis indicates that greater than 50% of CNS-infiltrating CD8(+) T cells are specific for these viral epitopes at 7 days postinfection. Therefore, the susceptibility of SJL/J mice is not due to the lack of an early functional Theiler's murine encephalomyelitis virus-specific CTL response. Interestingly, T-cell responses to all three epitopes are restricted by the H-2K(s) molecule, and this skewed class I restriction may be associated with susceptibility to demyelinating disease.  相似文献   

6.
The receptor for mouse hepatitis virus strain A59 (MHV-A59) is a 110- to 120-kilodalton (kDa) glycoprotein which is expressed in MHV-susceptible mouse strains on the membranes of hepatocytes, intestinal epithelial cells, and macrophages. SJL/J mice, which are highly resistant to MHV-A59, were previously shown to lack detectable levels of receptor by using either solid-phase virus receptor assays or binding of a monoclonal anti-receptor antibody (MAb) which blocks infection of MHV-susceptible mouse cells. This MAb was used for affinity purification of the receptor glycoprotein from livers of MHV-susceptible Swiss Webster mice. The MHV receptor and an antigenically related protein of 48 to 58 kDa were copurified and then separated by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The first 15 amino acids of the receptor were sequenced, and a synthetic peptide of this amino acid sequence was prepared. Rabbit antiserum made against this peptide bound to the MHV receptor glycoprotein and the 48- to 58-kDa protein from livers of MHV-susceptible BALB/c mice and Swiss Webster mice and from the intestinal brush border of BALB/c mice. In immunoblots of intestinal brush border and hepatocyte membranes of MHV-resistant SJL/J mice, the antibody against the amino terminus of the receptor identified proteins that are 5 to 10 kDa smaller than the MHV receptor and the 48- to 58-kDa related protein from Swiss Webster or BALB/c mice. Thus, SJL/J mice express a protein which shares some sequence homology with the MHV receptor but which lacks virus-binding activity and is not recognized by the blocking anti-receptor MAb. These results suggest that resistance of SJL/J mice to MHV-A59 may be due to absence or mutation of the virus-binding domain in the nonfunctional receptor homolog in SJL/J mice.  相似文献   

7.
Although neurovirulent mouse hepatitis virus (MHV) strain JHMV multiplies in a variety of brain cells, expression of its receptor carcinoembryonic antigen cell adhesion molecule 1 (CEACAM 1) (MHVR) is restricted only in microglia. The present study was undertaken to clarify the mechanism of an extensive JHMV infection in the brain by using neural cells isolated from mouse brain. In contrast to wild-type (wt) JHMV, a soluble-receptor-resistant mutant (srr7) infects and spreads solely in an MHVR-dependent fashion (F. Taguchi and S. Matsuyama, J. Virol. 76:950-958, 2002). In mixed neural cell cultures, srr7 infected a limited number of cells and infection did not spread, although wt JHMV induced syncytia in most of the cells. srr7-infected cells were positive for GS-lectin, a microglia marker. Fluorescence-activated cell sorter analysis showed that about 80% of the brain cells stained with anti-MHVR antibody (CC1) were also positive for GS-lectin. Pretreatment of those cells with CC1 prevented virus attachment to the cell surface and also blocked virus infection. These results show that microglia express functional MHVR that mediates JHMV infection. As expected, in microglial cell-enriched cultures, both srr7and wt JHMV produced syncytia in a majority of cells. Treatment with CC1 of mixed neural cell cultures and microglia cultures previously infected with wt virus failed to block the spread of infection, indicating that wt infection spreads in an MHVR-independent fashion. Thus, the present study indicates that microglial cells are the major population of the initial target for MHV infection and that the wt spreads from initially infected microglia to a variety of cells in an MHVR-independent fashion.  相似文献   

8.
Mice of the SJL/J and BALB/cByJ inbred strains are naturally resistant to street rabies virus (SRV) injected via the intraperitoneal route. To determine the cellular mechanism of resistance, monoclonal antibodies specific for CD4+ or CD8+ subsets of T cells were used to deplete the respective cell population in SRV-infected animals. Elimination of CD4+ T-helper cells abrogated the production of immunoglobulin G (IgG) neutralizing antibodies in response to rabies virus infection and reversed the resistant status of SJL/J and BALB/cByJ mice. In contrast, in vivo depletion of CD8+ cytotoxic T cells had no measurable effect on host resistance to SRV. These results indicate that serum neutralizing antibodies of the IgG class are a primary immunological mechanism of defense against rabies virus infection in this murine model of disease. CD8+ cytotoxic T lymphocytes, which have been shown to transfer protection in other rabies virus systems, appear to have no role in protecting mice against intraperitoneally injected SRV.  相似文献   

9.
Neutralizing anti-tumor necrosis factor alpha (TNF-alpha) antibody treatment of mice infected with the neurotropic JHMV strain of mouse hepatitis virus showed no reduction of either virus-induced encephalomyelitis or central nervous system demyelination. TNF-alpha-positive cells were present in the central nervous system during infection; however, TNF-alpha could not be colocalized with JHMV-infected cells. In vitro, TNF-alpha mRNA rapidly accumulated following JHMV infection; however, no TNF-alpha was secreted because of inhibition of translation. Both live and UV-inactivated virus inhibited TNF-alpha secretion induced by lipopolysaccharide. These data show that TNF-alpha is not secreted from infected cells and indicate that if contributes to either JHMV-induced acute encephalomyelitis nor primary demyelination.  相似文献   

10.
Knowledge of the mechanisms of virus dissemination in acute measles is cursory, but cells of the monocyte/macrophage (MM) lineage appear to be early targets. We characterized the dissemination of the Edmonston B vaccine strain of measles virus (MV-Ed) in peripheral blood mononuclear cells (PBMC) of two mouse strains expressing the human MV-Ed receptor CD46 with human-like tissue specificity and efficiency. In one strain the alpha/beta interferon receptor is defective, allowing for efficient MV-Ed systemic spread. In both mouse strains the PBMC most efficiently infected were F4/80-positive MMs, regardless of the inoculation route used. Circulating B lymphocytes and CD4-positive T lymphocytes were infected at lower levels, but no infected CD8-positive T lymphocytes were detected. To elucidate the roles of MMs in infection, we depleted these cells by clodronate liposome treatment in vivo. MV-Ed infection of splenic MM-depleted mice caused strong activation and infection of splenic dendritic cells (DC), followed by enhanced virus replication in the spleen. Similarly, depletion of lung macrophages resulted in strong activation and infection of lung DC. Thus, in MV infections of genetically modified mice, blood monocytes and tissue macrophages provide functions beneficial for both the virus and the host: they support virus replication early after infection, but they also contribute to protecting other immune cells from infection. Human MM may have similar roles in acute measles.  相似文献   

11.
Resistance of SJL/J mice to intracranial inoculation with the JHM strain of mouse hepatitis, a coronavirus, is dependent upon the age of the animals at inoculation. Animals 12 weeks of age or older are resistant, whereas those 6 weeks or younger are uniformly susceptible to viral infection. Spleen cells or thioglycolate elicited peritoneal exudate cells can transfer resistance from 12-week-old to 6-week-old recipients. Removal of the adherent cells from either spleen or peritoneal cells ablated protection. Adherent cells from 12-week-old mice were protective even after depletion of Ia- and Thy-1-bearing cells. Antiviral antibody, thioglycolate injection into 6-week-old animals, and nylon wool-purified T cells were ineffective in mediating resistance. Adherent cells transferred 4 days before virus challenge, but not after challenge, were protective. Thus, there is an age-related change in SJL mice that protects from acute central nervous system disease, which may be due to maturation of a specialized adherent cell population.  相似文献   

12.
The ability of a neurotropic virus, mouse hepatitis virus type 3 (MHV3), to invade the central nervous system (CNS) and to recognize cells selectively within the brain was investigated in vivo and in vitro. In vivo, MHV3 induced in C3H mice a genetically controlled infection of meningeal cells, ependymal cells, and neurons. In vitro, purified MHV3 bound to the surface of isolated ependymal cells and cultured cortical neurons but not to oligodendrocytes or cultured astrocytes. MHV3 replicated within cultured cortical neurons and neuroblastoma cells (NIE 115); infected cultured neurons nonetheless survived and matured normally for a 7-day period postinfection. On the other hand, MHV3 had a low affinity for cortical glial cells or glioma cells (C6 line), both of which appear to be morphologically unaltered by viral infection. Finally, MHV3 infected and disrupted cultured meningeal cells. This suggests that differences in the affinity of cells for MHV3 are determinants of the selective vulnerability of cellular subpopulations within the CNS. In vivo, a higher titer of virus was needed for CNS penetration in the genetically resistant (A/Jx) mice than in the susceptible (C57/BL6) mouse strain. However, in spite of viral invasion, no neuropathological lesions developed. In vitro viral binding to adult ependymal cells of susceptible and resistant strains of mice was identical. Genetic resistance to MHV3-CNS infection appeared to be mediated both by a peripheral mechanism limiting viral penetration into the CNS and by intra-CNS mechanisms, presumably at a stage after viral attachment to target cells.  相似文献   

13.
Seven strains of mice were examined to determine why susceptibility differences and variations in clinical central nervous system (CNS) disease occurred among these animals after intraperitoneal inoculation of street rabies virus (SRV). Trace experiments for infectious virus indicated that these differences were associated with restriction of virus replication within the CNS. Limitation of viral replication appeared to correlate with the antibody response in that prominent serum anti-SRV neutralizing antibody titers were detected in resistant strains, whereas susceptible strains produced minimal amounts of antibody until their death. The importance of the immune response was reaffirmed with cyclophosphamide studies in that all resistant SJL/J mice died after immunosuppressive treatment. In contrast, cyclophosphamide-treated SJL/J mice whose immune systems were reconstituted with either unfractionated immune spleen cells or with sera 24 h after SRV inoculation survived a lethal dose of SRV. More importantly, immunosuppressed SJL/J and immunodeficient athymic mice were protected when reconstituted with immune serum 72 h after SRV inoculation, a time in which infectious virus was detected in the spinal cords of some mice but was not present in the peritoneal cavity. Additional studies showed that antibody in the cerebrospinal fluid was unimportant in the resistance of mouse strains which remained clinically asymptomatic, but it appeared to be associated with the survival of mice which developed clinical CNS disease. Furthermore, CNS resistance to intranasal or intracerebral inoculation with challenge virus standard rabies virus developed as early as 5 days post-intraperitoneal inoculation of SRV.  相似文献   

14.
Replication of the neurotropic mouse hepatitis virus strain JHM (JHMV) is controlled primarily by CD8(+) T-cell effectors utilizing gamma interferon (IFN-gamma) and perforin-mediated cytotoxicity. CD4(+) T cells provide an auxiliary function(s) for CD8(+) T-cell survival; however, their direct contribution to control of virus replication and pathology is unclear. To examine a direct role of CD4(+) T cells in viral clearance and pathology, pathogenesis was compared in mice deficient in both perforin and IFN-gamma that were selectively reconstituted for these functions via transfer of virus-specific memory CD4(+) T cells. CD4(+) T cells from immunized wild-type, perforin-deficient, and IFN-gamma-deficient donors all initially reduced virus replication. However, prolonged viral control by IFN-gamma-competent donors suggested that IFN-gamma is important for sustained virus control. Local release of IFN-gamma was evident by up-regulation of class II molecules on microglia in recipients of IFN-gamma producing CD4(+) T cells. CD4(+) T-cell-mediated antiviral activity correlated with diminished clinical symptoms, pathology, and demyelination. Both wild-type donor CD90.1 and recipient CD90.2 CD4(+) T cells trafficked into the central nervous system (CNS) parenchyma and localized to infected white matter, correlating with decreased numbers of virus-infected oligodendrocytes in the CNS. These data support a direct, if limited, antiviral role for CD4(+) T cells early during acute JHMV encephalomyelitis. Although the antiviral effector mechanism is initially independent of IFN-gamma secretion, sustained control of CNS virus replication by CD4(+) T cells requires IFN-gamma.  相似文献   

15.
Kang BS  Lyman MA  Kim BS 《Journal of virology》2002,76(22):11780-11784
Theiler's murine encephalomyelitis virus (TMEV) infection induces immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infectious model for human multiple sclerosis. To investigate the pathogenic mechanisms, two strains of TMEV (DA and BeAn), capable of inducing chronic demyelination in the central nervous system (CNS), have primarily been used. Here, we have compared the T-cell responses induced after infection with DA and BeAn strains in highly susceptible SJL/J mice. CD4(+) T-cell responses to known epitopes induced by these two strains were virtually identical. However, the CD8(+) T-cell response induced following DA infection in susceptible SJL/J mice was unable to recognize two of three H-2K(s)-restricted epitope regions of BeAn, due to single-amino-acid substitutions. Interestingly, T cells specific for the H-2K(s)-restricted epitope (VP1(11-20)) recognized by both strains showed a drastic increase in frequency as well as avidity after infection with DA virus. These results strongly suggest that the level and avidity of virus-specific CD8(+) T cells infiltrating the CNS could be drastically different after infection with these two strains of TMEV and may differentially influence the pathogenic and/or protective outcome.  相似文献   

16.
Baliji S  Liu Q  Kozak CA 《Journal of virology》2010,84(24):12841-12849
Laboratory mouse strains carry endogenous copies of the xenotropic mouse leukemia viruses (X-MLVs), named for their inability to infect cells of the laboratory mouse. This resistance to exogenous infection is due to a nonpermissive variant of the XPR1 gammaretrovirus receptor, a resistance that also limits in vivo expression of germ line X-MLV proviruses capable of producing infectious virus. Because laboratory mice vary widely in their proviral contents and in their virus expression patterns, we screened inbred strains for sequence and functional variants of the XPR1 receptor. We also typed inbred strains and wild mouse species for an endogenous provirus, Bxv1, that is capable of producing infectious X-MLV and that also contributes to the generation of pathogenic recombinant MLVs. We identified the active Bxv1 provirus in many common inbred strains and in some Japanese Mus molossinus mice but in none of the other wild mouse species that carry X-MLVs. Our screening for Xpr1 variants identified the permissive Xpr1(sxv) allele in 7 strains of laboratory mice, including a Bxv1-positive strain, F/St, which is characterized by lifelong X-MLV viremia. Cells from three strains carrying Xpr1(sxv), namely, SWR, SJL, and SIM.R, were shown to be infectable by X-MLV and XMRV; these strains carry different alleles at Fv1 and vary in their sensitivities to specific X/P-MLV isolates and XMRV. Several strains with Xpr1(sxv) lack the active Bxv1 provirus or other endogenous X-MLVs and may provide a useful model system to evaluate the in vivo spread of these gammaretroviruses and their disease potential in their natural host.  相似文献   

17.
A highly neurovirulent murine coronavirus JHMV (wild-type [wt] JHMV) is known to spread from cells infected via the murine coronavirus mouse hepatitis virus receptor (MHVR) to cells without MHVR (MHVR-independent infection), whereas a mutant virus isolated from wt JHMV, srr7, spread only in an MHVR-dependent fashion. These observations were obtained by the overlay of JHMV-infected cells onto receptor-negative cells that are otherwise resistant to wt JHMV infection. MHVR-independent infection is hypothetically thought to be attributed to a naturally occurring fusion activation of the wt JHMV S protein, which did not occur in the case of srr7. Attachment of S protein on cells without MHVR during the S-protein activation process seems to be a key condition. Thus, in the present study, we tried to see whether wt JHMV virions that are attached on MHVR-negative cells are able to infect those cells. In order to make virions attach to the cell surface without MHVR, we have used spinoculation, namely, the centrifugation of cells together with inoculated virus at 3,000 rpm for 2 h. This procedure forces viruses to attach to the cell surface, as revealed by quantitative estimation of attached virions by real-time PCR and also facilitated wt JHMV infection to MHVR-negative cells, but failed to do so for srr7. Virions of both wt and srr7 attached on MHVR-negative cells by spinoculation were facilitated for infection in the presence of a soluble form of MHVR that induces conformational changes of both wt and srr7. It was further revealed that wt JHMV S1, but not srr7, was released from the cell surface when S protein was expressed on cells. These observations support the hypothesis that attachment of the virion to MHVR-negative cells is a critical step and that a unique feature of wt JHMV S1 to be released from S2 in a naturally occurring event is involved in an MHVR-independent infection.  相似文献   

18.
Infection of the central nervous system (CNS) with Theiler's murine encephalomyelitis virus (TMEV) induces an immune-mediated demyelinating disease in susceptible mouse strains such as SJL/J (H-2(s)) but not in strains such as C57BL/6 (H-2(b)). In addition, it has been shown that (C57BL/6 × SJL/J)F1 mice (F1 mice), which carry both resistant and susceptible MHC haplotypes (H-2(b/s)), are resistant to both viral persistence and TMEV-induced demyelinating disease. In this study, we further analyzed the immune responses underlying the resistance of F1 mice. Our study shows that the resistance of F1 mice is associated with a higher level of the initial virus-specific H-2(b)-restricted CD8(+) T cell responses than of the H-2(s)-restricted CD8(+) T cell responses. In contrast, pathogenic Th17 responses to viral epitopes are lower in F1 mice than in susceptible SJL/J mice. Dominant effects of resistant genes expressed in antigen-presenting cells of F1 mice on regulation of viral replication and induction of protective T cell responses appear to play a crucial role in disease resistance. Although the F1 mice are resistant to disease, the level of viral RNA in the CNS was intermediate between those of SJL/J and C57BL/6 mice, indicating the presence of a threshold of viral expression for pathogenesis.  相似文献   

19.
Intracerebral inoculation of resistant mice (C57BL/10SNJ) with Theiler's murine encephalomyelitis virus (TMEV) results in acute encephalitis followed by subsequent clearance of virus from the central nervous system (CNS). In contrast, infection of susceptible mice (SJL/J) results in virus persistence and chronic immune-mediated demyelination. Both resistance and susceptibility to TMEV-induced disease appear to be immune mediated, since immunosuppression results in enhanced encephalitis in resistant mice but diminished demyelination in susceptible mice. The purpose of these experiments was to determine whether anti-TMEV cytotoxic T lymphocytes (CTLs) are generated during acute and chronic TMEV infection. Nonspecific lectin-dependent cellular cytotoxicity was used initially to detect the cytolytic potential of lymphocytes infiltrating the CNS irrespective of antigen specificity. Using TMEV-infected targets, H-2-restricted TMEV-specific CTLs of the CD8+ phenotype were demonstrated in lymphocytes from the CNS of susceptible and resistant mice, arguing against the hypothesis that the ability to generate CD8+ CTLs mediates resistance. In chronically infected SJL/J mice, TMEV-specific CTL activity was detected in the CNS as late as 226 days postinfection. These experiments demonstrate that virus-specific CTLs are present in the CNS during both acute and chronic TMEV infection. Anti-TMEV CTLs in the CNS of chronically infected SJL/J mice may play a role in demyelination through their ability to lyse TMEV-infected glial cells.  相似文献   

20.
Contributions of humoral and cellular immunity in controlling neurotropic mouse hepatitis virus persistence within the CNS were determined in B cell-deficient J(H)D and syngeneic H-2(d) B cell+ Ab-deficient mice. Virus clearance followed similar kinetics in all mice, confirming initial control of virus replication by cellular immunity. Nevertheless, virus reemerged within the CNS of all Ab-deficient mice. In contrast to diminished T cell responses in H-2(b) B cell-deficient muMT mice, the absence of B cells or Ab in the H-2(d) mice did not compromise expansion, recruitment into the CNS, or function of virus-specific CD4+ and CD8+ T cells. The lack of B cells and lymphoid architecture thus appears to manifest itself on T cell responses in a genetically biased manner. Increasing viral load did not enhance frequencies or effector function of virus-specific T cells within the CNS, indicating down-regulation of T cell responses. Although an Ab-independent antiviral function of B cells was not evident during acute infection, the presence of B cells altered CNS cellular tropism during viral recrudescence. Reemerging virus localized almost exclusively to oligodendroglia in B cell+ Ab-deficient mice, whereas it also replicated in astrocytes in B cell-deficient mice. Altered tropism coincided with distinct regulation of CNS virus-specific CD4+ T cells. These data conclusively demonstrate that the Ab component of humoral immunity is critical in preventing virus reactivation within CNS glial cells. B cells themselves may also play a subtle role in modulating pathogenesis by influencing tropism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号