首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The thermal and photochemical reactions of CpRe(PPh3)2H4 and CpRe(PPh3)H4 (Cp = η5-C5H5) with PMe3, P(p-tolyl)3, PMe2Ph, DMPE, DPPE, DPPM, CO, 2,6-xylylisocyanide and ethylene have been examined. While CpRe(PPh3)2H2 is thermally inert, it will undergo photochemical substitution of one or two PPh3 ligands. With ethylene, substitution is followed by insertion of the olefin into the C-H bond of benzene, giving ethylbenzene. CpRe(PPh3)H4 undergoes thermal loss of PPh3, which leads to substituted products of the type CpRe(L) H4. Photochemically, reductive elimination of dihydrogen occurs preferentially. The complex trans-CpRe(DMPE)H2 was structurally characterized, crystallizing in the monoclinic space group P21/n (No. 14) with a = 6.249(6), b = 16.671(8), c = 13.867(7) Å, β = 92.11(6)°, V = 1443.7(2.9) Å and Z = 4. The complex trans-CpRe(PMe2Ph)2H2 was structurally characterized, crystallizing in the monoclinic space group P21/n (No. 14) with a = 7.467(3), b = 23.874(14), c = 11.798(6) Å, β = 100.16(4)°, V = 2070.2(3.4) Å3 and Z = 4.  相似文献   

2.
The complex [Et4N][W(CO)5OMe] (1) has been prepared from the reaction of the photochemically generated W(CO)5THF adduct and [Et4N][OH] in methanol. Complex 1 was shown to undergo rapid CO dissociation in THF to quantitatively provide the dimeric dianion, [W(CO)4OMe]22−. The resulting THF insoluble salt [Et4N]2[W(CO)4OMe]2 (2) has been structurally characterized by X-ray crystallography, with the doubly bridging methoxide ligands being in an anti configuration. Complex 2 was found to subsequently react with excess methoxide ligand in a THF slurry to afford the face-sharing octahedron complex [Et4N]3[W2(CO)6(OMe)3] (3) which contains three doubly bridging methoxide groups. In the absence of excess methoxide ligand complex 2 cleanly yields the tetrameric complex [Et4N]4[W(CO)3OMe]4 (4) which has been structurally characterized as a cubane-like arrangement with triply bridging μ3-methoxide groups and W(CO)3 units. Although complex 3 was not characterized in the solid state, the closely related glycolate derivative [Et4N]3[W2(CO)6(OCH2CH2OH)3] (5) was synthesized and its structure determined by X-ray crystallography. The trianions of complex 5 are linked in the crystal lattice by strong intermolecular hydrogen bonds. Crystal data for 2: space group P21/n, a = 7.696(2), b = 22.019(4), c = 9.714(2) Å, β = 92.22(3)°, Z = 4, R = 6.43%. Crystal data for 4: space group Fddd, a = 12.433(9), b = 24.01(2), c = 39.29(3) Å, Z = 8, R = 8.13%. Crystal data for 5: space group P212121, a = 11.43(2), b = 12.91(1), c = 29.85(6) Å, Z = 8, R = 8.29%. Finally, the rate of CO ligand dissociation in the closely related aryloxide derivatives [Et4N][W(CO)5OR] (R = C6H5 and 3,5-F2C6H3) were measured to be 2.15 × 10−2 and 1.31 × 10−3 s−1, respectively, in THF solution at 5°C. Hence, the value of the rate constant of 2.15 × 10−2 s−1 establishes a lower limit for the first-order rate constant for CO loss in the W(CO)5OMe anion, since the methoxide ligand is a better π-donating group than phenoxide.  相似文献   

3.
New mixed metal complexes SrCu2(O2CR)3(bdmap)3 (R = CF3 (1a), CH3 (1b)) and a new dinuclear bismuth complex Bi2(O2CCH3)4(bdmap)2(H2O) (2) have been synthesized. Their crystal structures have been determined by single-crystal X-ray diffraction analyses. Thermal decomposition behaviors of these complexes have been examined by TGA and X-ray powder diffraction analyses. While compound 1a decomposes to SrF2 and CuO at about 380°C, compound 1b decomposes to the corresponding oxides above 800°C. Compound 2 decomposes cleanly to Bi2O3 at 330°C. The magnetism of 1a was examined by the measurement of susceptibility from 5–300 K. Theoretical fitting for the susceptibility data revealed that 1a is an antiferromagnetically coupled system with g = 2.012(7), −2J = 34.0(8) cm−1. Crystal data for 1a: C27H51N6O9F9Cu2Sr/THF, monoclinic space group P21/m, A = 10.708(6), B = 15.20(1), C = 15.404(7) Å, β = 107.94(4)°, V = 2386(2) Å3, Z = 2; for 1b: C27H60N6O9Cu2Sr/THF, orthorhombic space group Pbcn, A = 19.164(9), B = 26.829(8), C = 17.240(9) Å, V = 8864(5) Å3, Z = 8; for 2: C22H48O11N4Bi2, monoclinic space group P21/c, A = 17.614(9), B = 10.741(3), C = 18.910(7) Å, β = 109.99(3)°, V = 3362(2) Å3, Z = 4.  相似文献   

4.
The reactions of the polysulfur and selenium cationic clusters S82+ and Se82+ with various iron carbonyls were investigated. Several new chalcogen containing iron carbonyl cluster cations were isolated, depending on the nature of the counteranion. In the presence of SbF6 as a counterion, the cluster [Fe3(E2)2(CO)10] [SbF6]2·SO2 (E = S, Se) could be isolated from the reaction of E82+ and excess iron carbonyl. The cluster is a picnic-basket shaped molecule of two iron centers linked by two Se2 groups, with the whole fragment capped by an Fe(CO)4 group. Crystallographic data for C10O12Fe3Se4Sb2F12S (I): space group monoclinic P21/c, A = 11.810(9), b = 24.023(6), c = 10.853(7) Å, β = 107.15(5)°, V = 2942(3) Å3, Z = 4, R = 0.0426, Rw = 0.0503. When Sb2F11 is present as the counterion, or Se4[Sb2F11]2 is used as the cluster cation source, a different cluster can be isolated, which has the formula [Fe4(Se2)3(CO)12] [SbF6]2·3SO2. The dication contains two Fe2Se2 fragments bridged by an Se2 group. Crystallographic data for C12O18Fe4Se6Sb2F12S3 (III): space group triclinic , b = 18.400(9), C = 10.253(4) Å, = 93.10(4), β = 103.74(3), γ = 93.98(3)°, V = 1995(1) Å3, Z = 2, R = 0.0328, Rw = 0.0325. The CO stretches in the IR spectrum all show a large shift to higher wavenumbers, suggesting almost no τ backbonding from the metals. This also correlates with the observed bond distances. All the compounds are extremely sensitive to air and water, and readily lose SO2 when removed from the solvent. Thus all the crystals were handled at −100°C. The clusters seem to be either insoluble or unstable in all solvents investigated.  相似文献   

5.
Rapid reactions occur between [OsVI(tpy)(Cl)2(N)]X (X = PF6, Cl, tpy = 2,2′:6′,2″-terpyridine) and aryl or alkyl phosphi nes (PPh3, PPh2Me, PPhMe2, PMe3 and PEt3) in CH2Cl2 or CH3CN to give [OsIV(tpy)(Cl)2(NPPh3)]+ and its analogs. The reaction between trans-[OsVI(tpy)(Cl)2(N)]+ and PPh3 in CH3CN occurs with a 1:1 stoichiometry and a rate law first order in both PPh3 and OsVI with k(CH3CN, 25°C) = 1.36 ± 0.08 × 104 M s−1. The products are best formulated as paramagnetic d4 phosphoraniminato complexes of OsIV based on a room temperature magnetic moment of 1.8 μB for trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6), contact shifted 1H NMR spectra and UV-Vis and near-IR spectra. In the crystal structures of trans-[OsIV(tpy)(Cl)2( NPPh3)](PF6)·CH3CN (monoclinic, P21/n with a = 13.384(5) Å, b = 15.222(7) Å, c = 17.717(6) Å, β = 103.10(3)°, V = 3516(2) Å3, Z = 4, Rw = 3.40, Rw = 3.50) and cis-[OsIV(tpy)(Cl)2(NPPh2Me)]-(PF6)·CH3CN (monoclinic, P21/c, with a = 10.6348(2) Å, b = 15.146(9) ÅA, c = 20.876(6) Å, β = 97.47(1)°, V = 3334(2) Å3, Z = 4, R = 4.00, Rw = 4.90), the long Os-N(P) bond lengths (2.093(5) and 2.061(6) Å), acute Os-N-P angles (132.4(3) and 132.2(4)°), and absence of a significant structural trans effect rule out significant Os-N multiple bonding. From cyclic voltammetric measurements, chemically reversible OsV/IV and OsIV/III couples occur for trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6) in CH3CN at +0.92 V (OsV/IV) and −0.27 V (OsIV/III) versus SSCE. Chemical or electrochemical reduction of trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6) gives isolable trans-OsIII(tpy)(Cl)2(NPPh3). One-electron oxidation to OsV followed by intermolecular disproportionation and PPh3 group transfer gives [OsVI(tpy)Cl2(N)]+, [OSIII(tpy)(Cl)2(CH3CN)]+ and [Ph3=N=PPh3]+ (PPN+). trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6) undergoes reaction with a second phosphine under reflux to give PPN+ derivatives and OsII(tpy)(Cl)2(CH3CN) in CH3CN or OsII(tpy)(Cl)2(PR3) in CH2Cl2. This demonstrates that the OsVI nitrido complex can undergo a net four-electron change by a combination of atom and group transfers.  相似文献   

6.
An improved synthetic procedure for pentabenzylcyclopentadiene Bz5C5H was developed. Six new organomolybdenum and organotungsten halides η5-Bz5C5M(CO)3X(M = Mo, W; X = Cl, Br, I) were syntesized through the reaction of η5-Bz5C5M(CO)3Li (derived from Bz5C5H, n-BuLi and M(CO)6) with PCl3, PBr3 or I2 and characterized by elemental analysis, IR and 1H NMR spectroscopy. The structure of η5-Bz5C5Mo(CO)3I was determined by single-crystal X-ray diffraction techniques. It crystallized in the monoclinic space groupp P2/c with cell parameters a = 13.294(4), B = 15.147(4), C = 19.027(3) Å, β = 108.32(2)°, V = 3637(2) Å3, Z = 4 and Dx = 1.50 g cm−3. The final R value was 0.035 for 4564 observed reflections.  相似文献   

7.
A series of square-planar complexes [MLCl]ClO4 (M = Pd(II), Pt(II); L = bis(3-(diphenylphosphino)propyl)sulfide (psp), bis(3-(diphenylarsino)propyl)sulfide (asa)) have been prepared and characterized. The X-ray crystal structures of two of them have been determined: [Pd(psp)Cl]ClO4, P21/c, A = 12.519(2), B = 15.766(2), C = 16.501(2) Å, β = 105.22(1)°, Z = 4; and [Pt(asa)Cl]ClO4, P21/c, a = 12.583(5), B = 16.007(6), C = 16.549(6) Å, β = 104.89(3)°, Z = 4. In both structures, there is a conformational disorder between the chair and skew-boat orientation in one of the two six-membered chelate rings. The C---H…O hydrogen bond between the hybrid ligand and the perchlorate counter ion that induces the conformational disorder is discussed.  相似文献   

8.
Benzene solutions of Cp*2ZrCl2 (1) (Cp* = η5-C5Me5) react with the alkynes Me3SiC≡CPh, Me3SiC≡C(c-C5H9) and Me3SiC≡CCMe3 in the presence of Na/Hg amalgam to afford high yields of the respective alkyne complexes Cp*2Zr(Me3SiC≡CPh) (2), Cp*2Zr{Me3SiC≡C(c-C5H9)} (3) and Cp*2Zr(Me3SiC≡CCMe3) (4) as crystalline compounds. Complex 2 crystallizes in the triclinic space group with a = 9.791(6), b = 10.466(6), c = 15.756(12) Å, = 86.09 (5), β = 72.09(5), γ = 72.06(4)° and Z = 2. The least-squares refinement converged to R(F) = 0.0604 and R(wF) = 0.0628 for the 3655 unique data with Fo > 4σ (Fo). Salient metrical parameters of the bound alkyne include the following: C(30)-C(31) = 1.340(9) Å; Zr-C(30) = 2.178(6) Å; Zr-C(31) = 2.219(5) Å; C(30)-C(31)-Si = 141.0(5)°; C(31)-C(30)-C(26) = 135.5(5)°. Nitrous oxide reacts with 2 or 3 to afford ((5) R = Ph; (6) R = c-C5H9) and 1 equiv. of N2 via an intermediate, , which is unstable with respect to loss of dinitrogen to give the oxametallacyclobutene derivatives 5 and 6. The oxygen-atom insertion is regiospecific for the Zr-C bond that is attached to the carbyl (Ph or c-C5H9) substituent. Under similar conditions, complex 4, in which the alkyne is particularly labile, gives a myriad of products in its reaction with N2O.  相似文献   

9.
Perfluorophenanthrene and decamethylferrocene cocrystallize as a molecular adduct in monoclinic space group P21/c with a = 8.842(2), b = 11.262(1), c = 30.695(8) Å, β = 95.89(2)°, V = 3040.3(8) Å3, Z = 4. The structure was refined to R = 0.0537 for 1567 observed reflections. The perfluoroarene is twisted and chiral; the crystal is a racemate, however.  相似文献   

10.
Two novel, weakly antiferromagnetically coupled, tetranuclear copper(II) complexes [Cu4(PAP)22-1,1-N3)22-1,3-N3)22-CH3OH)2(N3)4 (1) (PAP = 1,4-bis-(2′-pyridylamino)phthalazine) and [Cu4(PAP3Me)22-1,1-N3)22-1,3-N3)2(H2O)2(NO2)2]- (NO3)2 (2) (PAP3Me = 1,4-bis-(3′-methyl-2′-pyridyl)aminophthalazine) contain a unique structural with two μ2-1,1-azide intramolecular bridges, and two μ2-1,3-azide intermolecular bridges linking pairs of copper(II) centers. Four terminal azide groups complete the five-coordinate structures in 1, while two terminal waters and two nitrates complete the coordination spheres in 2. The dinuclear complexes [Cu2(PPD)(μ2-1,1-N3)(N3)2(CF3SO3)]CH3OH) (3) and [Cu2(PPD)(μ2-1,1-N3)(N3)2(H2O)(ClO4)] (4) (PPD = 3,6-bis-(1′-pyrazolyl)pyridazine) contain pairs of copper centers with intramolecular μ2-1,1-azid and pyridazine bridges, and exhibit strong antiferromagnetic coupling. A one-dimensional chain structure in 3 occurs through intermolecular μ2-1,1-azide bridging interactions. Intramolecular Cu-N3-Cu bridge angles in 1 and 2 are small (107.9 and 109.4°, respectively), but very large in 3 and 4 (122.5 and 123.2°, respectively), in keeping with the magnetic properties. 2 crystallizes in the monoclinic system, space group C2/c with a = 26.71(1), b = 13.51(3), c = 16.84(1) Å, β = 117.35(3)° and R = 0.070, Rw = 0.050. 3 crystallizes in the monoclinic system, space group P21/c with a = 8.42(1), b = 20.808(9), c = 12.615(4) Å, β = 102.95(5)° and R = 0.045, Rw = 0.039. 4crystallizes in the triclinic system, space group P1, with a = 10.253(3), b = 12.338(5), c = 8.072(4) Å, = 100.65(4), β = 101.93(3), γ = 87.82(3)° and R = 0.038, Rw = 0.036 . The magnetic properties of 1 and 2 indicate the presence of weak net antiferromagnetic exchange, as indicated by the presence of a low temperature maximum in χm (80 K (1), 65 K (2)), but the data do not fit the Bleaney-Bowers equation unless the exchange integral is treated as a temperature dependent term. A similar situation has been observed for other related compounds, and various approaches to the problem will be discussed. Magnetically 3 and 4 are well described by the Bleaney-Bowers equation, exhibiting very strong antiferromagnetic exchange (− 2J = 768(24) cm−1 (3); − 2J = 829(11) cm−1 (4)).  相似文献   

11.
The N,N-diethylcarbamato derivative of zirconium(IV), Zr(O2CNEt2)4 has been studied by X-ray crystallography. Crystal data: C20H40Na4O8Zr, monoclinic, space group C2/c, a = 14.057(1), b = 12.168(1), c = 16.746(2) Å, β = 108.071(4)°, Z = 4, Dc = 1.356, F(000) = 1168, T = 213 K. The compound is isotypic with the corresponding niobium(IV) derivative with a dodecahedral coordination at the zirconium atom. By reaction of NbCl4(THF)2 with Tl(hfacac), the hexafluoroacetylacetonato derivative of niobium (IV), Nb(hfacac)4, has been prepared and structurally characterized. The compound crystallizes in the orthorhombic space group Pna21 with the following cell constants: a = 10.399(4), b = 15.852(9), c = 119.073(1) Å. It is not isotypic with the corresponding zirconium(IV) derivative, Zr(hfacac)4. Crystal data: C20H4F24O8Zr, monoclinic, space group P21/n, a = 11.974(4), b = 20.451(6), c = 13.140(3) Å, β = 104.487(11)°, Z = 4, Dc = 1.960, F(000) = 1776, T = 223 K. Although in both compounds the central metal atom shows a square antiprismatic coordination, the coordination mode of the ligands is different and slight deviations from the D4(llll) and C2(llss) ideal geometries have been observed in the case of niobium and zirconium, respectively. An EPR study has been performed on the Nb(IV) derivatives as diluted solid solutions in frozen organic solvents or in the diamagnetic matrix of the corresponding zirconium(IV) compound. The EPR spectra have confirmed the presence of non-interacting paramagnets in the solid solutions and, in the case of Nb(O2CNEt2)4, the point symmetry of the paramagnetic centre has been found to be in agreement with the results of the X-ray investigation. An EPR spectrum of rhombic symmetry has been observed for the hexafluoroacetylacetonato derivative of Nb(IV) when diluted in frozen THF solution or in Zr(hfacac)4.  相似文献   

12.
Unsymmetrical di(phosphine) ligands (dpp)2Rop (1a, b = bis(diphenylphosphino)-2-alkyl-3-oxapropane (alkyl = methyl and ethyl)) and (dpp)2oCy (1c = trans-2-diphenylphosphinocyclohexyl diphenylphosphinite) and their Pt(II) dichloride complexes, PtCl2((dpp)2mop) (2a), PtCl2((dpp)2eop) (2b) and PtCl2((dpp)2oCy) (2c), have been synthesized and characterized by NMR spectroscopy. The crystal structures of 2b and 2c show that the geometry about the platinum centers is square planar. In 2b, the metal and di(phosphine) ligand chelate ring are in a chair conformation, whereas in 2c, the chelate ring conformation is a skewed boat. Initial reaction of sodium borohydride with 2a, b, c yields the monohydride monochloride complexes PtHCl((dpp)2mop) (5a), PtHCl((dpp)2eop) (5b) and PtHCl((dpp)2oCy) (5c). At longer reaction times, fluxional dimeric species are obtained, [PtH((dpp)2mop)]2 (4a), [PtH((dpp)2eop)]2 (4b) and [PtH((dpp)2oCy)]2 (4c),and in the case of 4c two different isomers exist. The dihydride complexes PtH2((dpp)2mop) (3a), PtH2((dpp)2eop) (3b) and PtH2((dpp)2oCy) (3c), are prepared by further reaction of NaBH4 and 2. Hydrogen cycling is facile in the dihydride complexes 3a, b, c, and oxidative addition of H2 proceeds in a pairwise manner as determined by the observation of parahydrogen induced polarization (PHIP) in the 1H NMR spectra. The reductive elimination of H2 is also shown to be concerted by reaction of dihydride complexes with D2. Crystal data: 2b (C30H32Cl6OP2Pt), monoclinic, space group P21/c (No. 14), a = 13.7040(1), b = 11.3430(7), c = 21.3880(9) Å, β = 97.923(9)°, V = 3292.9(2) Å3 and Z = 4; 2c (C30H30Cl2OP2Pt), monoclinic, space group P21 (No. 4), a = 11.7360(2), b = 8.4311(2), c = 14.2789(2) Å, β = 101.290(1)°, V = 1385.52(4) Å3 and Z = 2.  相似文献   

13.
Reaction of (NEt4)2MS4 (M = Mo, W) with CuCl and KSCN (or NH4SCN) in acetone or acetonitrile affords a new set of mixed metal–sulfur compounds: infinite anionic chains Cu4(NCS)5MS43− (1,2), (CuNCS)3WS42− (3) and two dimensional polymeric dianions (CuNCS)4MS42− (4,5). Crystal of 1 (M = W) and 3 are triclinic, space group P1(1:a = 10.356(2),b = 15.039(1),c = 17.356(2)Å, = 78.27(1)°, β = 88.89(2)° and γ = 88.60(1)°,Z = 2,R = 0.04 for 3915 independent data;3:a = 8.449(2),b = 14.622(4),c = 15.809(8)Å, = 61.84(3)°, β = 73.67(3)° and γ = 78.23(2)°,Z = 2,R = 0.029 for 6585 independent data). Crystals of 4 (M = W) and 5 (M = Mo) are monoclinic, space group P21/m,Z = 2 (4:a = 12.296(4),b = 14.794(4),c = 10.260(3)Åand β = 101.88(3)°,R = 0.034 for 4450 independent data;5:a = 12.306(2),b = 14.809(3),c = 10.257(2)Åand β = 101.99(3)°,R = 0.043 for 3078 independent data). The crystal structure determinations of 4 and 5 show that four edges of the tetrahedral MS42− core are coordinated by copper atoms forming WS4Cu4 aggregates linked by eight-membered Cu(NCS)2Cu rings. A two-dimensional network is thus formed in the diagonal (101) plane. The space between the anionic two-dimensional networks is filled with the NEt4+ cations. Additional NCS groups lead to the [Cu4(NCS)5WS4]3− (1) trianion connected by NCS bridges forming pseudo-dimers. These latter are held together by weak CuS(NCS) interactions giving rise to infinite chains along a direction parallel to [100]. In contrast complex3 develops infinite chains from WS4Cu3 aggregates with the same Cu(NCS)2Cu bridges as in 4 and 5. These chains are running along a direction parallel to [010]. The structural data of the different types of polymeric compounds containing MS42− and CuNCS have been used to interpret vibrational spectroscopic data of the thiocyanate groups.  相似文献   

14.
The interaction of 1,3,5-triamino-1,3,5-trideoxy-cis-inositol (taci) and its N-methylated derivative 1,3,5-trideoxy-1,3,5-tris(dimethylamino)-cis-inositol (tdci) with the incomplete [Mo3S4]4+ cube and the heterometallic [Mo3S4Cu]4+ cube have been investigated by X-ray analysis. The crystal structures of [Mo3S4(taci+ rmC3H6O-H2O)3-4H]·2OH2O (1a, rhombohedral, space group R32, A = 15.964(3), C = 40.59(1) Å, Z = 6), [Mo3S4(tdci)3]Br4·9.5EtOH·5H2O (2a, triclinic, space group and [CuBrMo3S4(tdci)3]Br3·11 H2O·EtOH (3a, monoclinic, space group P2,/n, A = 14.887(3), B = 22.570(4), C = 21.974(5) Å, β = 98.54(2)°, Z = 4) revealed andN-N-O and an N-O-O coordination mode for taci and tdci, respectively. In 1a, taci is coordinated as an anion with deprotonated oxygen and nitrogen donors. In addition, the non-coordinating amino group reacted with one equivalent; of acetone, forming a Schiff base condensation product. For 2a, short Mo---O bonds and high pKa values (compared to the aqua ion [Mo3S4(H2O)9]4+) indicate the formation of a zwitterionic form of the tdci ligand with coordinated alkoxo groups and peripheral dimethylammonium groups. No significant differences were found for the structural properties of the Mo-tdci fragment in 2a and 3a. The coordination modes of taci and tdci, as observed in the solid state, are in agreement with the previously reported solution structures, established by NMR spectroscopy. They are attributed to the specific steric requirements of the two ligands and to a pronounced preference of the [Mo3(μS)33S)]4+ core to coordinate a nitrogen donor trans to μ3S.  相似文献   

15.
The labile cations [Cu(F-BF3)(PCy3)2] and [Cu(OTf)(PCy3)2] are versatile precursors for the formation of [Cu(X)(PCy3)2] (X = Br, I, SCN, N3) complexes by metathesis with NaX. The azide [Cu(N3)(PCy3)2] is triclinic, space group , a = 9.755(4), B = 22.78(1), C = 9.284(6) Å, = 96.76(3), β = 115.36(3), γ = 94.20(5)°, Z = 2.  相似文献   

16.
The reactions of [(H5C6)3P]2ReH6 with (CH3CN)3Cr(CO)3, (diglyme)Mo(CO)3 or (C3H7CN)3W(CO)3 led to the formation of [(H5C6)3P]2ReH6M(CO)3 (M = Cr, Mo, W) complexes. These have been characterized by IR and NMR spectroscopies, as well as elemental analyses. A single crystal X-ray diffraction study has also been carried out for the M = Cr complex as a K(18-crown-6)+ salt. The complex crystallizes as a THF monosolvate in the monoclinic space group P21/n with a = 22.323(6), B = 9.523(2), C = 27.502(5) Å, β = 104.98(2)0 and V = 5648 Å3 for Z = 4. The Re---Cr separation is 2.5745(12) Å, and the two phosphine ligands are oriented unsymmetrically. Although the hydride ligands were not found, the presence of three bridging hydrides and a dodecahedral coordination geometry about rhenium could be inferred. Low temperature 1H and 31P NMR spectroscopic studies did not reveal the low symmetry of the solid state structure.  相似文献   

17.
Metathetical exchange between carbon dioxide and the tin(II) dimer, {Sn[N(SiMe3)2](μ-OBu1)}2 (3) has been observed to cleanly produce the two new heteroleptic tin(II) dimers, Sn[N(SiMe3)2](μ-OBut)2Sn(OSiMe3) (6) and [Sn(OSiMe3)](μ-OBut)]2 (7]). In addition, reaction of 3 with I equiv, of tert-butylisocyanate (8), at 25°C, quantitatively provides 6, and with 2 equiv., quantitatively provides 7. Likewise 6 reacts with 1 equiv, of 8 to quantitatively provide 7. The mechanism for these latter processes has been investigated by low temperature 1H NMR spectroscopy which reveals that metathetical exchange does not involve the tri-coordinate tin(II) centers of the dimeric structures, but rather, it occurs, in each case, via the transient monomeric tin(II) species, Sn[N(SiMe3)2](μ-OBut) (4), that undergoes metathesis to produce, initially the open dimer intermediate, Sn(OCNBut)(OSiMe3)(μ-OBut)Sn(OBut) (OSiMe3) (12), that is observed at −10°C. Subsequent redistribution reactions then generate the final products that are observed. Together, these mechanistic details provide additional support for the ‘monomeric tin(II)’ hypothesis proposed earlier for metathetical exchange between XCO and Sn[N (SiMe3)2]2 (1).  相似文献   

18.
The hydrothermal reactions of (Ph4P)[VO2Cl2] and H2C2O4 at 150 and 125°C yield (Ph4P)2[V2O2(H2O)2(C2O4)3]·4H2O (1) and (Ph4P)[VOCl(C2O4)] (2), respectively. The structure of the molecular anion of 1 consists of a binuclear unit of oxovanadium(IV) octahedra bridged by a bisbidentate oxalate group. The VO6 coordination geometry at each vanadium site is defined by a terminal oxo group, an aquo ligand, and four oxygen donors — two from the bisbidentate bridging oxalate and two from the terminal bidentate oxalate. The structure of 2 consists of discrete Ph4P+ cations occupying regions between [VOCl(C2O4)] spiral chains. The structure of the one-dimensional anionic chain exhibits V(IV) octahedra bridged by bisbidentate oxalate groups. Crystal data: 1·4H2O, monoclinic P21/n, A = 12.694(3), B = 12.531(3), C = 17.17(3) Å, β = 106.32(2)°, V = 2621.3(13) Å3, Z = 2, Dcalc = 1.501 g cm−3, structure solution and refinement converged at a conventional residual of 0.0518; 2, tetragonal P43, A = 12.145(2), C = 15.991(3) Å, V = 2358.7(12) Å3, Z = 4, R = 0.0452.  相似文献   

19.
The methanothermal reactions of M(CO)6 (M = Mo, W) with Na2S2 gave a series of homonuclear clusters [{M(CO)4}n(MS4)]2− (M=Mo, W; N=1, 2), i.e. (Ph4P)2[(CO)4Mo(MoS4)] (I), (Ph4P)2[(CO)4W(WS4)] (II), (Ph4P)2[(CO)4Mo(MoS4)Mo(CO)4] (III) and (Ph4P)2[(CO)4W(WS4)W(CO)4] (IV). The two dimers, I and II, as well as the two trimers, III and IV, are isostructural to each other, respectively. All compounds crystallize in the triclinic space group with Z=2. The cell dimensions are: a=12.393(8), b=19.303(9), c=11.909(6) Å, =102.39(5), β=111.54(5), γ=73.61(5)°, V=2522(3) Å3 at T=23 °C for I; a=12.390(3), b=19.314(4), c=11.866(2) Å, =102.66(2), β=111.49(1), γ=73.40(2)°, V=2511(1) Å3 at T=23 °C for II; a=11.416(3), b=22.524(4), c=10.815(4) Å, =91.03(2), β=100.57(3), γ=88.96(2)°, V=2733(1) Å3 at T=−100 °C for III, a=11.498(1), b=22.600(4), c=10.864(3) Å, =90.92(2), β=100.85(1), γ=88.58(1)°, V=2771(2) Å3 at T=23 °C for IV. The dimers are each formed by the coordination of the tetrathiometalate as a bidentate chelating ligand to an M(CO)4 fragment while addition of another M(CO)4 fragment to the dimers results in the trimers. All compounds contain both tetrahedral and octahedral metal centers with the formal 6+ and 0 oxidation states, respectively.  相似文献   

20.
The reaction of ReH92− with Mo(diglyme)(CO)3 leads to the formation of the mixed metal cluster trianion, ReMo3H4(CO)123−. This species has been characterized analytically, spectroscopically and through X-ray diffraction analysis. A pseudo-tetrahedral arrangement of M(CO)3 fragments is adopted, such that each set of three carbonyl ligands eclipses the adjacent three tetrahedral edges, an apparent result of the location of the hydride ligands on the tetrahedral faces. Variable temperature NMR studies revealed a fluctional process for some of the carbonyl ligands, but not for the hydrides. Crystal data for [Me4N]3[ReMo3H4(CO)12]·THF; space group P21/n, a = 12.157(2), B = 21.480(4), C = 15.964(3) Å, β = 98.26(1)°, Z = 4, R = 0.067 and Rw = 0.076.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号