共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to determine whether the number of passages affected the developmental pluripotency of embryonic
stem (ES) cells as measured by the attainment of adult fertile mice derived from embryonic stem (ES) cell/tetraploid embryo
complementation. Thirty-six newborns were produced by the aggregation of tetraploid embryos and hybrid ES cells after various
numbers of passages. These newborns were entirely derived from ES cells as judged by microsatellite DNA, coat-color phenotype,
and germline transmission. Although 15 survived to adulthood, 17 died of respiratory failure, and four were eaten by their
foster mother. From the 15 mice that reached adulthood and that could reproduce, none arose from ES cells at passage level
15 or more. All 15 arose from cells at passages 3–11. Our results demonstrate that the number of passages affects the developmental
pluripotency of ES cells.
This work was supported by the National Natural Science Foundation of China (grant no. 30571336) and the President Foundation
of the Agricultural University of Hebei. 相似文献
2.
不同品系小鼠的 2 细胞期胚胎 (二倍体 ,2n) ,经电融合后 ,获得发育的 4 细胞期四倍体胚胎 (4n)的能力上存在着差异。将不同品系小鼠的 2n、 4n胚胎分别配对作聚合 ,所获 2n 4n聚合胚的发育结果表明 :在着床前 ,2n 4n聚合胚的获得率因胚胎品系组合的不同而异 ;胚胎移植后 ,聚合胚在与 4n胚胎相同或相近品系的移植受体中 ,其着床率较高 ;在着床后胎儿及出生仔鼠的获得率上 ,采用遗传杂合性的 2n胚胎所组成的 2n 4n聚合组合较高。上述结果提示 :小鼠的遗传背景可影响到 4n胚胎及相应 2n 4n聚合胚的制作效率。以GFP标记跟踪2n 4n聚合胚 4n细胞着床后的发育命运 ,发现 :妊娠中后期的孕体中 ,4n细胞限制性地分布至胚外组织 相似文献
3.
H. G. Slager W. van Inzen E. Freund A. J. M. van den Eijnden-Van Raaij C. L. Mummery 《Genesis (New York, N.Y. : 2000)》1993,14(3):212-224
In a search for functions of transforming growth factor-β during early embryonic development we used two different experimental approaches. In the first we made use of embryonic stem (ES) cells. ES cells in culture differentiate to derivatives of all three germ layers and mimic some aspects of organogenesis when grown as aggregates in suspension to form embryoid bodies. Differentiation procedes further when the embryold bodies attach to suitable substrates. Muscle and neuronal cells are among the most readily identified cell types then formed. We examined the effect of all-trans retinoic acid (RA) and members of the transforming growth factor-β family(TGF-βl, TGF-β2) under these conditions in an assay where single aggregates formed in hanging microdrops in medium supplemented with serum depleted of lipophilic substances which would include retinoids. Endoderm-like cells formed under all conditions tested. RA at concentrations of 108 M and 107 M induced the formation of neurons but in the absence of RA or at concentrations up to 10?9 M, neurons were not observed. Instead, beating muscle formed in about one-third of the plated aggregates; this was greatly reduced when RA concentrations increased above 10?9 M. Immunofluorescent staining for muscle specific myosin showed that two muscle cell types could be distinguished: elongated, non-contractile myoblasts and mononucleate flat cells. The mononucleate flat cells appeared to correspond with rhythmically contracting muscle. The number of non-contractile myoblasts increased 3-fold over controls in the presence of 10?9 M RA. TGF-βs increased the number of contractile and non-contractile muscle cells by a factor 3 to 7 over controls, depending on the TGF-β isoform added and the muscle cell type formed. TGF-β2 also invariably increased the rate at which contracting muscle cells were first observed in replated aggregates. The stimulatory effect of TGF-βs on the formation of mononucleate flat cells was completely abrogated by RA at 10?9 M while the number of myoblasts under similar conditions was unchanged. These data suggest that a complex interplay between retinoids and TGF-β isoforms may be involved in regulation of differentiation in early myogenesis. In the second approach, neutralizing polyclonal rabbit antibodies specific for TGF-β2 were injected into the cavity of mouse blastocysts 3.5 days post coitum (pc). After 1 day in culture, embryos were transferred to pseudopregnant females. The number of decidua, embryos and resorptions were counted at day 8.5–9.5 pc. Control antibody injected embryos implanted with high efficiency (87%) compared with anti-TGF-β2 injected embryos which implanted with an efficiency of only 43%. If empty decidua (resorptions) were included, the overall recovery was 71% and 32% for control and experimental embryos, respectively. Embryos that were recovered showed no overt macroscopic abnormalities. These results together impiy functions for TGF-βs in implantation as well as in later development of the embryo. © 1993Wiley-Liss, Inc. 相似文献
4.
M. Bernard S. Bernard 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1985,70(4):390-399
Summary Two F5 strains of tetraploid triticale (2n= 4x=28), obtained from 6x triticaleX2 rye progenies, were crossed with diploid and tetraploid rye, some durum and bread wheats, and various 8x and 6x triticale lines. Meiosis in the different hybrid combinations was studied. The results showed that the haploid complement of these triticales consists of seven chromosomes from rye and seven chromosomes from wheat. High frequencies of PMCs showing trivalents were observed in hybrids involving the reference genotypes of wheat and triticale. These findings proved that several chromosomes from the wheat component have chromosome segments coming from two parental wheat chromosomes. The origin of these heterogeneous chromosomes probably lies in homoeologous pairing occurring at meiosis in the 6x triticaleX2x rye hybrids from which 4x triticale lines were isolated. A comparison among different hybrids combinations indicated that the involvement of D-genome chromosomes in homoeologous pairing is quite limited. In contrast, meiotic patterns in 4x triticale X 2x rye hybrids showed a quite high pairing frequency between some R chromosomes and their A and B homoeologues. 相似文献
5.
6.
Mouse 2n (lacZ-) <--> 4n (lacZ+) aggregation chimeras were examined 5 or 10 days after uterine transfer to test the potential of 4n cells to contribute to embryonic tissues. Recovered embryos corresponded to embryonic day 7.5 approximately 8.0 and 12.5, respectively. Ten days after transfer, 4n cells were never detected, as reported earlier, in embryonic tissues of chimeras produced by the standard procedure in which one 2n embryo at the8-cell stage is aggregated with a4n embryo at the4-cell stage. However, beta-gal positive cells were present in embryonic tissues, though in a low number, in chimeras produced by a 2n and a 4n embryo at the 4-cell stage. Similar results were obtained when one 2n embryo atthe 8-cell stage was aggregated with two 4n embryos atthe 4-cell stage. beta-gal positive cells were found in the heart, liver, skin and intestinal epithelium. The majority of chimeras 5 days after uterine transfer retained beta-gal positive cells in embryonic tissues. The complete lack of 4n cell contribution to chimeras produced by the standard procedure is therefore attributed to the initial low proportion of 4n cells allocated to epiblast and their severe elimination from embryonic tissues. 相似文献
7.
Embryonic stem cells (ESCs) are capable of unlimited self-renewal and differentiation into multiple cell types. Recent large-scale analyses have identified various cell surface molecules on ESCs. Some of them are considered to be beneficial markers for characterization of cellular phenotypes and/or play an essential role for regulating the differentiation state. Thus, it is desired to efficiently produce affinity reagents specific to these molecules. In this study, to develop such reagents for mouse ESCs (mESCs), we selected RNA aptamers against intact, live mESCs using several selection strategies. The initial selection provided us with several anti-mESC aptamers of distinct sequences, which unexpectedly react with the same molecule on mESCs. Then, to isolate aptamers against different surface markers on mESCs, one of the selected aptamers was used as a competitor in the subsequent selections. In addition, one of the selections further employed negative selection against differentiated mouse cells. Consequently, we successfully isolated three classes of anti-mESC aptamers that do not compete with one another. The isolated aptamers were shown to distinguish mESCs from differentiated mouse cell lines and trace the differentiation process of mESCs. These aptamers could prove useful for developing molecular probes and manipulation tools for mESCs. 相似文献
8.
9.
10.
Baharvand H Hajheidari M Zonouzi R Ashtiani SK Hosseinkhani S Salekdeh GH 《Biochemical and biophysical research communications》2006,349(3):1041-1049
Pluripotent embryonic stem cells (ESCs) spontaneously differentiate via embryo-like aggregates into cardiomyocytes. A thorough understanding of the molecular conditions in ESCs is necessary before other potential applications of these cells such as cell therapy can be materialized. We applied two dimensional electrophoresis to analyze and compare the proteome profiling of spontaneous mouse ESC-derived cardiomyocytes (ESC-DCs), undifferentiated mouse ESCs, and neonatal-derived cardiomyocytes (N-DCs). Ninety-five percent of the proteins detected on the ESC-DCs and N-DCs could be precisely paired with one other, whereas only twenty percent of the ESC proteins could be reliably matched with those on the ESC-DCs and N-DCSs, suggesting a striking similarity between them. Having identified sixty proteins in the said three cell types, we sought to provide possible explanations for their differential expression patterns and discuss their relevance to cell biology. This study provides a new insight into the gene expression pattern of differentiated cardiomyocytes and is further evidence for a close relation between ESC-DCs and N-DCSs. 相似文献
11.
Mammalian development is associated with considerable changes in global DNA methylation levels at times of genomic reprogramming.
Normal DNA methylation is essential for development but, despite considerable advances in our understanding of the DNA methyltransferases,
the reason that development fails when DNA methylation is deficient remains unclear. Furthermore, although much is known about
the enzymes that cause DNA methylation, comparatively little is known about the mechanisms or significance of active demethylation
in early development. In this review, we discuss the roles of the various DNA methyltransferases and their likely functions
in development. 相似文献
12.
Non-human primate (NHP) embryonic stem (ES) cells show unlimited proliferative capacities and a great potential to generate multiple cell lineages. These properties make them an ideal resource both for investigating early developmental processes and for assessing their therapeutic potential in numerous models of degenerative diseases. They share the same markers and the same properties with human ES cells, and thus provide an invaluable transitional model that can be used to address the safety issues related to the clinical use of human ES cells. Here, we review the available information on the derivation and the specific features of monkey ES cells. We comment on the capacity of primate ES cells to differentiate into neural lineages and the current protocols to generate self-renewing neural stem cells. We also highlight the signalling pathways involved in the maintenance of these neural cell types. Finally, we discuss the potential of monkey ES cells for neuronal differentiation. 相似文献
13.
14.
Sato B Katagiri YU Miyado K Akutsu H Miyagawa Y Horiuchi Y Nakajima H Okita H Umezawa A Hata J Fujimoto J Toshimori K Kiyokawa N 《Biochemical and biophysical research communications》2007,364(4):838-843
The monoclonal antibody 6E2 raised against the embryonal carcinoma cell line NCR-G3 had been shown to also react with human germ cells. Thin-layer chromatography (TLC) immunostaining revealed that 6E2 specifically reacts with sialosylglobopentaosylceramide (sialylGb5), which carries an epitope of stage-specific embryonic antigen-4 (SSEA-4), known as an important cell surface marker of embryogenesis. The immunostaining of mouse preimplantation embryos without fixation showed that the binding of 6E2 caused the clustering and consequent accumulation of sialylGb5 at the interface between blastomeres. These results suggest that SSEA-4 actively moves on the cell surface and readily accumulates between blastomeres after binding of 6E2. 相似文献
15.
Aisada Uchugonova Wenluo Cao Robert M Hoffman Karsten Koenig 《Cell cycle (Georgetown, Tex.)》2015,14(21):3430-3433
Hair-follicle-associated pluripotent (HAP) stem cells can differentiate into many cell types, including neurons and heart muscle cells, and have been shown to repair peripheral nerves and the spinal cord in mice. HAP stem cells can be obtained from each individual patient for regenerative medicine which overcomes problems with immune rejection. Previously, we have demonstrated that genetically-encoded protein markers such as GFP in transgenic mice can be used to visualize HAP stem cells in vivo by multiphoton tomography. Detection and visualization of stem cells in vivo without exogenous labels such as GFP would be important for human application. In the present report, we demonstrate label-free visualization of hair follicle stem cells in mouse whiskers by multiphoton tomography due to the intrinsic fluorophores such as NAD(P)H/flavins. We compared multiphoton tomography of GFP-labeled HAP stem cells and unlabeled stem cells in isolated mouse whiskers. We show that observation of HAP stem cells by label-free multiphoton tomography is comparable to detection using GFP-labeled stem cells. The results described here have important implications for detection and isolation of human HAP stem cells for regenerative medicine. 相似文献
16.
Zinc-finger nucleases (ZFNs) are designer nucleases capable of cleaving a prespecified target DNA within complex genomes. ZFNs consist of a non-specific endonuclease domain fused to an engineered DNA-binding domain that tethers the nuclease activity to the chosen chromosomal site. The endonuclease-induced DNA double strand break triggers a cellular DNA damage response, resulting in double strand break repair by either accurate homologous recombination (HR) or error-prone non-homologous end-joining (NHEJ). Thus, ZFNs are powerful tools for targeted genome engineering in a variety of mammalian cell types, including embryonic (ESCs) and induced pluripotent stem cells (iPSCs). As a paradigm for genome editing in pluripotent stem cells, we describe the use of ZFNs in murine ESCs for generating knockout alleles by NHEJ without selection or by HR employing different selection schemes. 相似文献
17.
Milne HM Burns CJ Kitsou-Mylona I Luther MJ Minger SL Persaud SJ Jones PM 《Biochemical and biophysical research communications》2005,328(2):399-403
The therapeutic potential of transplantation of insulin-secreting pancreatic beta-cells has stimulated interest in using pluripotent embryonic stem (ES) cells as a starting material from which to generate insulin secreting cells in vitro. Mature beta-cells are endodermal in origin so most reported differentiation protocols rely on the identification of endoderm-specific markers. However, endoderm development is an early event in embryogenesis that produces cells destined for the gut and associated organs in the embryo, and for the development of extra-embryonic structures such as the yolk sac. We have demonstrated that mouse ES cells readily differentiate into extra-embryonic endoderm in vitro, and that these cell populations express the insulin gene and other functional elements associated with beta-cells. We suggest that the insulin-expressing cells generated in this and other studies are not authentic pancreatic beta-cells, but may be of extra-embryonic endodermal origin. 相似文献
18.
Pluripotent stem cells, termed embryonic germ (EG) cells, have been generated from both human and mouse primordial germ cells (PGCs). Like embryonic stem (ES) cells, EG cells have the potential to differentiate into all germ layer derivatives and may also be important for any future clinical applications. The development of PGCs in vivo is accompanied by major epigenetic changes including DNA demethylation and imprint erasure. We have investigated the DNA methylation pattern of several imprinted genes and repetitive elements in mouse EG cell lines before and after differentiation. Analysed cell lines were derived soon after PGC specification, “early”, in comparison with EG cells derived after PGC colonisation of the genital ridge, “late” and embryonic stem (ES) cell lines, derived from the inner cell mass (ICM). Early EG cell lines showed strikingly heterogeneous DNA methylation patterns, in contrast to the uniformity of methylation pattern seen in somatic cells (control), late EG cell and ES cell lines. We also observed that all analysed XX cell lines exhibited less methylation than XY. We suggest that this heterogeneity may reflect the changes in DNA methylation taking place in the germ cell lineage soon after specification. 相似文献
19.
20.
Anna M. Wobus W. Zschiesche R. Grosse 《Virchows Archiv. B, Cell pathology including molecular pathology》1990,59(1):339-342
Pluripotent embryonic stem cells (line BLC6), when cultivated in vitro as embryoid bodies and injected subcutaneously into syngeneic mice, form teratocarcinomas consisting of embryonal carcinoma cells and differentiated tissues of all three primary germ layers. In order to study the possible effects of the mammary-derived growth inhibitor (MDGI) on the differentiation pattern of the tumors developing in the mice, BLC6 cell-derived embryoid bodies were treated in vitro for 4 days with either MDGI or a synthetic peptide composed of the C-terminal 11 amino acids of MDGI. In those tumors, significantly more differentiated neural tissue and lesser proportions of undifferentiated embryonic carcinoma cells (ECC) were found in the MDGI-and peptide-treated groups, compared with controls. The results are discussed with respect to a possible differentiation-promoting capacity of MDGI. 相似文献