首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刺细胞动物是一类具有刺细胞的水生无脊椎动物,分布在世界各地的海洋和淡水中.作为后生动物最早分化出的一支,刺细胞动物对研究后生动物的起源和早期演化具有极其重要的意义,也为研究后生动物系统发育、地层对比和古地理恢复等方面提供了重要的科研线索.本文简要介绍了刺细胞动物早期(埃迪卡拉纪至寒武纪苗岭世)的化石记录和研究现状,将刺...  相似文献   

2.
3.
The diploblastic Cnidaria form one of the most ancient metazoan phyla and thus provide a useful outgroup for comparative studies of the molecular control of development in the more complex, and more often studied, triploblasts. Among cnidarians, the reef building coral Acropora is a particularly appropriate choice for study. Acropora belongs to the Anthozoa, which several lines of evidence now indicate is the basal class within the phylum Cnidaria, and has the practical advantages that its reproduction is predictable, external and accessible and that the base content of its genome is not strongly biased. The Acropora system has already provided insights into ancestral linkages of homeobox genes and the evolution of the Pax genes, and has the potential to provide further new perspectives on the age, role in development, and evolution of these and other gene families.  相似文献   

4.
5.
CnidBase, the Cnidarian Evolutionary Genomics Database, is a tool for investigating the evolutionary, developmental and ecological factors that affect gene expression and gene function in cnidarians. In turn, CnidBase will help to illuminate the role of specific genes in shaping cnidarian biodiversity in the present day and in the distant past. CnidBase highlights evolutionary changes between species within the phylum Cnidaria and structures genomic and expression data to facilitate comparisons to non-cnidarian metazoans. CnidBase aims to further the progress that has already been made in the realm of cnidarian evolutionary genomics by creating a central community resource which will help drive future research and facilitate more accurate classification and comparison of new experimental data with existing data. CnidBase is available at http://cnidbase.bu.edu/.  相似文献   

6.
The sequencing of the starlet sea anemone (Nematostella vectensis) genome provides opportunities to investigate the function and evolution of genes associated with chemical neurotransmission and hormonal signaling. This is of particular interest because sea anemones are anthozoans, the phylogenetically basal cnidarians least changed from the common ancestors of cnidarians and bilaterian animals, and because cnidarians are considered the most basal metazoans possessing a nervous system. This analysis of the genome has yielded 20 orthologues of enzymes and nicotinic receptors associated with cholinergic function, an even larger number of genes encoding enzymes, receptors and transporters for glutamatergic (28) and GABAergic (34) transmission, and two orthologues of purinergic receptors. Numerous genes encoding enzymes (14), receptors (60) and transporters (5) for aminergic transmission were identified, along with four adenosine-like receptors and one nitric oxide synthase. Diverse neuropeptide and hormone families are also represented, mostly with genes encoding prepropeptides and receptors related to varying closeness to RFamide (17) and tachykinin (14), but also galanin (8), gonadotropin-releasing hormones and vasopressin/oxytocin (5), melanocortins (11), insulin-like peptides (5), glycoprotein hormones (7), and uniquely cnidarian peptide families (44). Surprisingly, no muscarinic acetylcholine receptors were identified and a large number of melatonin-related, but not serotonin, orthologues were found. Phylogenetic tree construction and inspection of multiple sequence alignments reveal how evolutionarily and functionally distant chemical transmitter-related proteins are from those of higher metazoans.  相似文献   

7.
Myxozoans are enigmatic endoparasitic organisms sharing morphological features with bilateria, protists and cnidarians. This, coupled with their highly divergent gene sequences, has greatly obscured their phylogenetic affinities. Here we report the sequencing and characterization of a minicollagen homologue (designated Tb-Ncol-1) in the myxozoan Tetracapsuloides bryosalmonae. Minicollagens are phylum-specific genes encoding cnidarian nematocyst proteins. Sequence analysis revealed a cysteine-rich domain (CRD) architecture and genomic organization similar to group 1 minicollagens. Homology modelling predicted similar three-dimensional structures to Hydra CRDs despite deviations from the canonical pattern of group 1 minicollagens. The discovery of this minicollagen gene strongly supports myxozoans as cnidarians that have radiated as endoparasites of freshwater, marine and terrestrial hosts. It also reveals novel protein sequence variation of relevance to understanding the evolution of nematocyst complexity, and indicates a molecular/morphological link between myxozoan polar capsules and cnidarian nematocysts. Our study is the first to illustrate the power of using genes related to a taxon-specific novelty for phylogenetic inference within the Metazoa, and it exemplifies how the evolutionary relationships of other metazoans characterized by extreme sequence divergence could be similarly resolved.  相似文献   

8.
9.
The isolation of Hox genes from two cnidarian groups, the Hydrozoa and Anthozoa, has sparked hypotheses on the early evolution of Hox genes and a conserved role for these genes for defining a main body axis in all metazoan animals. We have isolated the first five Hox genes, Scox-1 to Scox-5, from the third cnidarian class, the Scyphozoa. For all but one gene, we report full-length homeobox plus flanking sequences. Four of the five genes show close relationship to previously reported Cnox-1 genes from Hydrozoa and Anthozoa. One gene, Scox-2, is an unambiguous homologue of Cnox-2 genes known from Hydrozoa, Anthozoa, and also Placozoa. Based on sequence similarity and phylogenetic analyses of the homeobox and homeodomain sequences of known Hox genes from cnidarians, we suggest the presence of at least five distinct Hox gene families in this phylum, and conclude that the last common ancestor of the Recent cnidarian classes likely possessed a set of Hox genes representing three different families, the Cnox-1, Cnox-2, and Cnox-5 families. The data presented are consistent with the idea that multiple duplication events of genes have occurred within one family at the expense of conservation of the original set of genes, which represent the three ancestral Hox gene families.  相似文献   

10.
The vertebrate endocrine system is well-characterized, with many reports of disruption by environmental chemicals. In contrast, cnidarians are less compartmentalized, physiological regulation is poorly understood, and the potential for disruption is unknown. Endocrine-like activity has not been systematically studied in cnidarians, but several classical vertebrate hormones (e.g., steroids, iodinated organic compounds, neuropeptides, and indoleamines) have been identified in cnidarian tissues. Investigators have made progress in identifying putative bioregulatory molecules in cnidarians, and testing the effects of these individual compounds. Less progress has been made in elucidating signaling pathways. For example, putative gonadotropin-releasing hormone and sex steroids have been identified in cnidarian tissues, but it is unknown whether these compounds are components of a larger signal cascade comparable to the vertebrate hypothalamic-pituitary-gonadal axis. Further, while sex steroids and iodinated organic compounds may help to regulate cnidarian physiology, the mechanisms of action are unknown. Homologs to the vertebrate steroid and thyroid receptors have not been identified in cnidarians, so more research is needed to understand the mechanisms of endocrine-like signaling in cnidarians. Elucidation of cnidarian regulatory pathways will provide insight into evolution of hormonal signaling. These studies will also improve understanding of how cnidarians respond to environmental cues and will provide a basis to investigate disruption of physiological processes by physical and chemical stressors.  相似文献   

11.
12.
The symbiotic interaction between cnidarians, such as corals and sea anemones, and the unicellular algae Symbiodinium is regulated by yet poorly understood cellular mechanisms, despite the ecological importance of coral reefs. These mechanisms, including host–symbiont recognition and metabolic exchange, control symbiosis stability under normal conditions, but also lead to symbiosis breakdown (bleaching) during stress. This study describes the repertoire of the sterol‐trafficking proteins Niemann‐Pick type C (NPC1 and NPC2) in the symbiotic sea anemone Anemonia viridis. We found one NPC1 gene in contrast to the two genes (NPC1 and NPC1L1) present in vertebrate genomes. While only one NPC2 gene is present in many metazoans, this gene has been duplicated in cnidarians, and we detected four NPC2 genes in A. viridis. However, only one gene (AvNPC2‐d) was upregulated in symbiotic relative to aposymbiotic sea anemones and displayed higher expression in the gastrodermis (symbiont‐containing tissue) than in the epidermis. We performed immunolabelling experiments on tentacle cross sections and demonstrated that the AvNPC2‐d protein was closely associated with symbiosomes. In addition, AvNPC1 and AvNPC2‐d gene expression was strongly downregulated during stress. These data suggest that AvNPC2‐d is involved in both the stability and dysfunction of cnidarian–dinoflagellate symbioses.  相似文献   

13.
Laminins are a family of multidomain glycoproteins that are important contributors to the structure of metazoan extracellular matrices. To investigate the origin and evolution of the laminin family, we characterized the full complement of laminin-related genes in the genome of the sponge, Amphimedon queenslandica. As a representative of the Demospongiae, a group consistently placed within the earliest diverging branch of animals by molecular phylogenies, Amphimedon is uniquely placed to provide insight into early steps in the evolution of metazoan gene families. Five Amphimedon laminin-related genes possess the conserved molecular features, and most of the domains found in bilaterian laminins, but all display domain architectures distinct from those of the canonical laminin chain types known from model bilaterians. This finding prompted us to perform a comparative genomic analysis of laminins and related genes from a choanoflagellate and diverse metazoans and to conduct phylogenetic analyses using the conserved Laminin N-terminal domain in order to explore the relationships between genes with distinct architectures. Laminin-like genes appear to have originated in the holozoan lineage (choanoflagellates + metazoans + several other unicellular opisthokont taxa), with several laminin domains originating later and appearing only in metazoan (animal) or eumetazoan (placozoans + ctenophores + cnidarians + bilaterians) laminins. Typical bilaterian α, β, and γ laminin chain forms arose in the eumetazoan stem and another chain type that is conserved in Amphimedon, the cnidarian, Nematostella vectensis, and the echinoderm, Strongylocentrotus purpuratus, appears to have been lost independently from the placozoan, Trichoplax adhaerens, and from multiple bilaterians. Phylogenetic analysis did not clearly reconstruct relationships between the distinct laminin chain types (with the exception of the α chains) but did reveal how several members of the netrin family were generated independently from within the laminin family by duplication and domain shuffling and by domain loss. Together, our results suggest that gene duplication and loss and domain shuffling and loss all played a role in the evolution of the laminin family and contributed to the generation of lineage-specific diversity in the laminin gene complements of extant metazoans.  相似文献   

14.
Unexpectedly low levels of mitochondrial DNA (mtDNA) cytochrome b sequence divergence are found between species of the scleractinian coral genus Acropora. Comparison of 964 positions of the cytochrome b gene of two out of the three Caribbean Acropora species with seven of their Pacific congeners shows only 0.3-0.8% sequence difference. Species in these biogeographic regions have been evolving independently for at least three million years (since the rise of the Isthmus of Panama) and this geological date is used to estimate nucleotide divergence rates. The results indicate that the Acropora cytochrome b gene is evolving at least 10-20 times slower than the 'standard' vertebrate mtDNA clock and is one of the most slowly evolving animal mitochondrial genes described to date. The possibility is discussed that, unlike higher animals, cnidarians may have a functional mtDNA mismatch repair system.  相似文献   

15.
We have cloned a Hox-like gene, cnox-2Am, from a staghorn coral, Acropora millepora, an anthozoan cnidarian, and characterised its embryonic and larval expression. cnox-2Am and its orthologs in other cnidarians and Trichoplax most closely resemble the Gsx and, to a lesser extent, Hox 3/4 proteins. Developmental northern blots and in situ hybridisation are consistent in showing that cnox-2Am message appears in the planula larva shortly after the oral/aboral axis is formed following gastrulation. Expression is localised in scattered ectodermal cells with a restricted distribution along the oral/aboral body axis. They are most abundant along the sides of the cylindrical larva, rare in the oral region and absent from the aboral region. These cells, which on morphological grounds we believe to be neurons, are of two types; one tri-or multipolar near the basement membrane and a second extending projections in both directions from a mid-ectodermal nucleus. Anti-RFamide staining reveals neurons with a similar morphology to the cnox-2Am-expressing cells. However, RFamide-expressing neurons are more abundant, especially at the aboral end of the planula, where there is no cnox-2Am expression. The pattern of expression of cnox-2Am resembles that of Gsx orthologs in Drosophila and vertebrates in being expressed in a spatially restricted portion of the nervous system.  相似文献   

16.
Tyrosine kinase (TK) proteins play a central role in cellular behavior and development of animals. The expansion of this superfamily is regarded as a key event in the evolution of the complex signaling pathways and gene networks of metazoans and is a prominent example of how shuffling of protein modules may generate molecular novelties. Using the intron/exon structure within the TK domain (TK intron code) as a complementary tool for the assignment of orthology and paralogy, we identified and studied the 118 TK proteins of the amphioxus Branchiostoma floridae genome to elucidate TK gene family evolution in metazoans and chordates in particular. Unlike all characterized metazoans to date, amphioxus has members of all known widespread TK families, with not a single loss. Putting amphioxus TKs in an evolutionary context, including new data from the cnidarian Nematostella vectensis, the echinoderm Strongylocentrotus purpuratus, and the ascidian Ciona intestinalis, we suggest new evolutionary histories for different TK families and draw a new global picture of gene loss/gain in the different phyla. Surprisingly, our survey also detected an unprecedented expansion of a group of closely related TK families, including TIE, FGFR, PDGFR, and RET, due most probably to massive gene duplication and exon shuffling. Based on their highly similar intron/exon structure at the TK domain, we suggest that this group of TK families constitute a superfamily of TK proteins, which we termed EXpanding TK, after their seemingly unique propensity to gene duplication and exon shuffling, not only in amphioxus but also across all metazoan groups. Due to this extreme tendency to both retention and expansion of TK genes, amphioxus harbors the richest and most diverse TK repertoire among all metazoans studied so far, retaining most of the gene complement of its ancestors, but having evolved its own repertoire of genetic novelties.  相似文献   

17.
The genome of the cnidarian Nematostella vectensis (starlet sea anemone) provides a molecular genetic view into the first nervous systems, which appeared in a late common ancestor of cnidarians and bilaterians. Nematostella has a surprisingly large and diverse set of neuronal signaling genes including paralogs of most neuronal signaling molecules found in higher metazoans. Several ion channel gene families are highly expanded in the sea anemone, including three subfamilies of the Shaker K+ channel gene family: Shaker (Kv1), Shaw (Kv3) and Shal (Kv4). In order to better understand the physiological significance of these voltage-gated K+ channel expansions, we analyzed the function of 18 members of the 20 gene Shaker subfamily in Nematostella. Six of the Nematostella Shaker genes express functional homotetrameric K+ channels in vitro. These include functional orthologs of bilaterian Shakers and channels with an unusually high threshold for voltage activation. We identified 11 Nematostella Shaker genes with a distinct “silent” or “regulatory” phenotype; these encode subunits that function only in heteromeric channels and serve to further diversify Nematostella Shaker channel gating properties. Subunits with the regulatory phenotype have not previously been found in the Shaker subfamily, but have evolved independently in the Shab (Kv2) family in vertebrates and the Shal family in a cnidarian. Phylogenetic analysis indicates that regulatory subunits were present in ancestral cnidarians, but have continued to diversity at a high rate after the split between anthozoans and hydrozoans. Comparison of Shaker family gene complements from diverse metazoan species reveals frequent, large scale duplication has produced highly unique sets of Shaker channels in the major metazoan lineages.  相似文献   

18.
19.
The study of stem cells in cnidarians has a history spanning hundreds of years, but it has primarily focused on the hydrozoan genus Hydra. While Hydra has a number of self-renewing cell types that act much like stem cells—in particular the interstitial cell line—finding cellular homologues outside of the Hydrozoa has been complicated by the morphological simplicity of stem cells and inconclusive gene expression data. In non-hydrozoan cnidarians, an enigmatic cell type known as the amoebocyte might play a similar role to interstitial cells, but there is little evidence that I-cells and amoebocytes are homologous. Instead, self-renewal and transdifferentiation of epithelial cells was probably more important to ancestral cnidarian development than any undifferentiated cell lineage, and only later in evolution did one or more cell types come under the regulation of a “stem” cell line. Ultimately, this hypothesis and competing ones will need to be tested by expanding genetic and developmental studies on a variety of cnidarian model systems.  相似文献   

20.
Cnidarians are animals with a single (oral/aboral) overt body axis and with origins that nominally predate bilaterality. To better understand the evolution of axial patterning mechanisms, we characterized genes from the coral, Acropora millepora (Class Anthozoa) that are considered to be unambiguous markers of the bilaterian anterior/posterior and dorsal/ventral axes. Homologs of Otx/otd and Emx/ems, definitive anterior markers across the Bilateria, are expressed at opposite ends of the Acropora larva; otxA-Am initially around the blastopore and later preferentially toward the oral end in the ectoderm, and emx-Am predominantly in putative neurons in the aboral half of the planula larva, in a domain overlapping that of cnox-2Am, a Gsh/ind gene. The Acropora homologs of Pax-3/7, NKX2.1/vnd and Msx/msh are expressed in axially restricted and largely non-overlapping patterns in larval ectoderm. In Acropora, components of both the D/V and A/P patterning systems of bilateral animals are therefore expressed in regionally restricted patterns along the single overt body axis of the planula larva, and two 'anterior' markers are expressed at opposite ends of the axis. Thus, although some specific gene functions appear to be conserved between cnidarians and higher animals, no simple relationship exists between axial patterning systems in the two groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号