首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tunicamycin acts on cell aggregation in Dictyostelium discoideum by changing cell movement and by inhibiting the EDTA-stable type of intercellular adhesion. Tunicamycin-treated cells show unco-ordinated pseudopodial activity such that pseudopods are simultaneously extended from all parts of the cell surface, and the cells are unable to move in straight paths. Concurrent with the inhibition of formation of EDTA-stable contacts, N-glycosylation of a glycoprotein specific for aggregation-competent cells is inhibited. This glycoprotein, previously called contact site A, has an apparent mol. wt. of 80 kilodaltons (kd). In membranes of tunicamycin-treated cells, two components are detected that react with certain monoclonal antibodies against contact sites A: one component of 66 kd, the other of 53 kd apparent mol. wt. Another group of monoclonal antibodies reacts only with the 80-kd glycoprotein and the 66-kd component. These results are in accord with the assumption that the glycoprotein carries two carbohydrate chains, and that the antibodies differ in their requirement for glycosylation of the antigen. Despite the coincidence between blockage of EDTA-stable cell adhesion and inhibited glycosylation of contact sites A, direct involvement of the carbohydrate moieties of this glycoprotein in intercellular adhesion seems questionable. EDTA-stable cell adhesion has not been blocked by Fab fragments from antibodies that specifically react with the glycosylated protein.  相似文献   

2.
In the cell adhesion of aggregation-competent Dictyostelium cells, the requirement for the carbohydrate moiety of the glycoprotein appeared to be indirect in that it acts to protect the protein moiety from proteolytic degradation; however, the effect was limited to the tunicamycin (TM)-sensitive carbohydrate moiety (Hirano, T., et al. (1983) J. Biochem. 93, 1249-1257). In the present study, we showed that the EDTA-stable adhesion of aggregation-competent Dictyostelium cells was abolished by the treatment of intact cells with jack bean alpha-mannosidase, whereas neuraminidase, beta-galactosidase, beta-N-acetylhexosaminidase, or alpha-L-fucosidase had no effect. The EDTA-stable cohesiveness of TM-treated cells in the presence of leupeptin (TM/LP cells) was also abolished by the treatment of the cells with alpha-mannosidase. The effect of alpha-mannosidase was not prevented in the presence of LP. The N-glycoside-deficient contact site A (an adhesion-mediating glycoprotein) was obtained from TM/LP cells and was shown to have a molecular weight of 70,000. This protein (p 70) was shown to still have carbohydrates as detected by polyacrylamide gel electrophoresis (PAGE) in the presence of sodium dodecyl sulfate (SDS) and subsequent staining of the gel with periodic acid-silver stain. Moreover, p 70 reacted with anti-gp 68, which has a specificity against alpha-mannosyl residues of carbohydrate chains. However, p 70 treated with alpha-mannosidase showed decreased reactivity with anti-gp 68. The monovalent antibody fragment of anti-contact site A or anti-p 70 inhibited EDTA-stable cell adhesion of both control and TM/LP cells. These results indicated that TM-resistant mannosyl residues of contact site A are directly involved in EDTA-stable adhesion of aggregation-competent cells. This is the first report of the direct involvement of the carbohydrate moiety in cell adhesion of aggregation-competent Dictyostelium cells. A schematic model is presented of the role of the carbohydrate moiety in EDTA-stable cell adhesion, including the direct effect of carbohydrates.  相似文献   

3.
The carbohydrate requirement for cell adhesion of aggregation-competent cells of Dictyostelium discoideum has been examined by use of a selective glycosylation inhibitor of N-glycosyl protein, tunicamycin (TM). TM completely inhibited EDTA-stable cell adhesion and glycosylation of some membrane glycoproteins in aggregation-competent cells of D. discoideum (Yamada, H., et al. (1982) J. Biochem. 92, 399-406). The present study showed that the inhibition of EDTA-stable cell adhesion by TM was prevented significantly when the cells were treated with TM in the presence of a protease inhibitor, leupeptin (LP), whereas the inhibition of glycosylation by TM was not prevented. The cell extract of aggregation-competent cells contained acid proteases, and LP strongly inhibited acid protease from D. discoideum in vitro. On analysis by SDS-polyacrylamide gel electrophoresis (PAGE), many protein bands present in the membrane fraction of control cells disappeared or decreased on TM treatment of the cells in the absence of LP, however, some of these proteins were restored when the cells were treated with TM in the presence of LP. These results strongly support an idea that EDTA-stable cell adhesion characteristic to aggregation-competent cells is mediated by glycoproteins with asparagine-linked carbohydrate. However, the requirement for the carbohydrate moiety of the glycoprotein in cell adhesion appears to be indirect in that it acts to protect the protein moiety from proteolytic degradation.  相似文献   

4.
We isolated mutants defective in aggregation (aggregation-less) by mutagenizing the "double-bypass" mutant HG592 of Dictyostelium discoideum as the parental strain. One of the mutants expressed the contact site A glycoprotein with an apparent molecular weight of 80 X 10(3) on the cell surface in the normal developmental stage and retained EDTA-stable cell contact as well as EDTA-sensitive cell contact. However, the mutant failed to aggregate on agar plates with bacteria. This mutant was designated HG700. We could not identify any differences between this mutant and the parental strain in levels of adenylate cyclase or extracellular phosphodiesterase activity, or in its chemotaxis toward cAMP. The mutant had greatly decreased the incorporation of [35S] sulfate into the particulate fractions of the cells starved for 6 h. This suggests that the modification by sulfation may crucially affect the mechanism of cell aggregation.  相似文献   

5.
Wheat germ agglutinin (WGA), a lectin that primarily reacts with N-acetylglucosamine residues, specifically inhibits the EDTA-stable type of intercellular adhesion of aggregation competent Dictyostelium discoideum cells. The major WGA-binding protein of these cells is a developmentally-regulated glycolipoprotein of 80 kd apparent mol. wt., designated as contact site A. This glycoprotein is a target site of antibody fragments that block the EDTA-stable cell adhesion, and is characterized by sulfated carbohydrate residues. WGA does not significantly bind to glycoproteins of a mutant, HL220, which produces a 68-kd component in place of the 80-kd glycoprotein. Inhibition of N-glycosylation by tunicamycin causes wild-type cells to produce a WGA-binding but unsulfated 66-kd component and a non-binding 53-kd component. These results indicate that the 80-kd glycoprotein contains two classes of carbohydrate residues, a WGA-binding one that is defective in HL220, and another, sulfated, one that is absent from the 66-kd wild-type product; both are missing in the 53-kd protein. WGA and a monoclonal antibody that is blocked by N-acetylglucosamine were further used to probe for glycoproteins in the multicellular slug stage that share carbohydrate structures - and possibly functions - with the contact site A glycoprotein. Glycoproteins in the 95-kd range have previously been implicated in cell-to-cell adhesion during the slug stage. We distinguished a 95-kd glycoprotein that binds WGA from another one that binds antibody.  相似文献   

6.
The stage-specific antigen, gp68 (Hirano, T., Yamada, H., & Miyazaki, T. (1983) Biochim. Biophys. Acta 742, 224-234), was purified from a phenol/water extract of aggregation-competent cells of Dictyostelium discoideum by preparative polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). Anti-gp68 was produced against purified gp68 which was determined to be homogeneous by silver staining on analysis by SDS-polyacrylamide gel electrophoresis. The cross-reactivity of anti-gp68 against cellular antigens was estimated by immuno-affinity chromatography on anti-gp68 immunoglobulin G (IgG)/Sepharose. When the whole cell lysate was applied to this affinity column, three major proteins, with molecular weights of 80,000, 68,000, and 56,000, were obtained in the absorbed fraction. When the butanol extract, which was enriched in contact site A, an adhesion mediating glycoprotein, was applied to the same column, two major proteins with molecular weights of 80,000 (corresponding to contact site A) and 56,000 were obtained in the absorbed fraction but, however, gp68 was negligible. Reversely, when the phenol/water extract was applied to anti-contact site A-IgG/Sepharose, only gp68 was obtained in the absobed fraction. Moreover, contact site A was seen to compete with [3H]mannose-labeled gp68 in a competition radioimmunoassay using anti-gp68 serum. The effect of Pronase or exo-alpha-mannosidase digestion on the antigenic activity of gp68 was examined by radioimmunoassaying. The results indicated that the alpha-mannosyl residue of the non-reducing terminal in the carbohydrate moiety of gp68 was a major immunodeterminant. However, the polypeptide chain did not participate in the antigenic reactivity against anti-gp68. Both anti-gp68 and anti-contact site A agglutinated heat killed-yeast cells. Also, both anti-sera inhibited EDTA-stable cell adhesion of aggregation-competent cells in the presence of Fab from goat anti-rabbit IgG. These results indicate that gp68 and contact site A have a common antigenic determinant against anti-gp68, and that the target antigen of anti-gp68 was somehow involved in cell adhesion.  相似文献   

7.
A membrane glycoprotein of 150000 D, gp150, has been implicated in the mechanism of cell-cell adhesion which arises during development of Dictyostelium discoideum. This conclusion was founded on the observation that monovalent Fab′ fragments prepared from an antiserum raised against partially purified gp150 are able to block cell-cell adhesion. We show that this serum contains antibodies to a distinct membrane glycoprotein, gp80, previously implicated in cell-cell adhesion. Reaction of Fab′ to this surface molecule can account for the adhesion-blocking activity in the antiserum to gp150. Moreover, binding of gp80 neutralized Fab′ to gp150 does not block adhesion. If gp150 carries other determinants which bind adhesion-blocking Fab′, these determinants must also be present on gp80. Thus, it is not clear that gp150 is directly involved in cell-cell adhesion of Dictyostelium.  相似文献   

8.
An 80-kDa glycoprotein of Dictyostelium discoideum, designated contact site A, has been implicated in EDTA-stable cell adhesion. This protein is known to be the major sulfated protein of aggregation-competent cells and has been shown to contain two types of carbohydrate, sulfated type 1 and unsulfated type 2 carbohydrate moieties. Here we investigate the cell-free sulfation of this protein. In the homogenate of developing cells, [35S]sulfate was transferred by endogenous sulfotransferase from [35S]3'-phosphoadenosine-5'-phosphosulfate to the contact site A glycoprotein and to various other endogenous proteins. The sulfate was transferred to carbohydrate rather than to tyrosine residues. After differential centrifugation of the homogenate, the capacity for sulfation of the contact site A glycoprotein was barely detected in the plasma membrane-enriched 10,000 X g pellet fraction which contained the bulk of this glycoprotein, but was largely recovered in the 100,000 X g pellet fraction which contained only a small portion of this glycoprotein. After sucrose gradient centrifugation, the membranes containing the sulfation capacity were found to have a density characteristic for Golgi membranes. In immunoblots, monoclonal antibodies raised against the contact site A glycoprotein recognized not only this 80-kDa protein, but also a sulfatable 68-kDa protein found in the 100,000 X g pellet fraction. The 68-kDa protein did not react with monoclonal antibodies against type 2 carbohydrate but was converted by endoglycosidases F and H into a 53-kDa protein, indicating that it was a partially glycosylated form of the 80-kDa glycoprotein containing only type 1 carbohydrate. Isoelectric focusing showed that a substantial portion of the 68-kDa glycoprotein was unsulfated, even after cell-free sulfation. The 68-kDa glycoprotein was not found in the plasma membrane-enriched 10,000 X g pellet fraction and did not accumulate in parallel with the 80-kDa contact site A glycoprotein during cell development. We conclude that the 68-kDa glycoprotein is a precursor that is converted by attachment of type 2 carbohydrate and sulfation of type 1 carbohydrate into the mature 80-kDa glycoprotein. The precursor nature of the 68-kDa glycoprotein was supported by results obtained with mutant HL220 which is defective in glycosylation (Murray, B. A., Wheeler, S., Jongens, T., and Loomis, W. F. (1984) Mol. Cell. Biol. 4, 514-519). This mutant specifically lacks type 2 carbohydrate and produces a 68-Kda glycoprotein instead of the 80-kDa contact site A glycoprotein (Yoshida, M., Stadler, J., Bertholdt, G., and Gerisch, G. (1984) EMBO J. 3, 2663-2670).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The cytotoxicity of A chain immunotoxins containing IgG or Fab fragments specific for the surface immunoglobulin of the Daudi cell line was assessed in the presence of B chain immunotoxins (IgG or Fab) or lysosomotropic amines, or both. The concentration required for 50% inhibition of protein synthesis (IC50) in Daudi cells was 1.3 X 10(-8) M for IgG-A and 5 X 10(-8) M for Fab-A. The toxicity of both A chain immunotoxins was enhanced twofold by ammonium chloride. In the presence of A chain immunotoxins and ammonium chloride, a maximum of 99 and 90% reduction of clonal precursors was obtained with IgG and Fab-A chain immunotoxins respectively. Immunotoxins containing ricin B chain and IgG or Fab fragments specific for the antibody portion of A chain immunotoxins were used as secondary "piggyback" immunotoxins to treat cells that were pretreated with A chain immunotoxins. Both B chain immunotoxins were nontoxic at 1 X 10(-6) M. When added to target cells pretreated with specific A chain immunotoxins, the IC50 of the A chain immunotoxins was decreased up to 16-fold in the absence of ammonium chloride. In contrast to the results obtained with A chain immunotoxins alone, ammonium chloride significantly increased the toxicity of the complete piggyback system, resulting in the killing of 99.999% or five logs of target cells in the clonal assay. This decreased the IC50 of A chain immunotoxins up to 116-fold when compared with A chain immunotoxin alone. This enhanced toxicity was independent of the valency of either immunotoxin.  相似文献   

10.
Two different types of oligosaccharides, designated type 1 and 2 carbohydrate residues, are present on the contact site A molecule, an 80-kDa glycoprotein involved in the formation of EDTA-stable cell adhesion during cell aggregation in Dictyostelium discoideum. The first precursor detected by pulse-chase labeling with [35S]methionine was a 68-kDa glycoprotein carrying type 1 carbohydrate. Conversion of the precursor into the 80-kDa form occurred simultaneously with the addition of type 2 carbohydrate. Tunicamycin inhibited type 1 glycosylation more efficiently than type 2 glycosylation. The first precursor detected in tunicamycin-treated cells by pulse-chase labeling was a 53-kDa protein lacking both carbohydrates, which was converted through addition of type 2 carbohydrate into a 66-kDa final product. Labeling of intact cells indicated that this 66-kDa glycoprotein is transported to the cell surface. Prolonged treatment with tunicamycin resulted in the accumulation within the cells of the 53-kDa precursor with no detectable exposure of this protein on the cell surface. It is concluded that type 1 carbohydrate, which is cotranslationally added in N-glycosidic linkages, is neither required for transport of the protein to the Golgi apparatus nor for type 2 glycosylation or protection of the protein against proteolytic degradation. Incapability of tunicamycin-treated cells of forming EDTA-stable cell contacts suggests a role for type 1 carbohydrate in cell adhesion. Type 2 carbohydrate is added posttranslationally. It is required in the absence of type 1 glycosylation for transport of the protein to the cell surface.  相似文献   

11.
M Kaleko  F G Rothman 《Cell》1982,28(4):801-811
Postaggregative gene expression in Dictyostelium discoideum requires cell contact. Polyspecific monovalent antibodies (Fab) prepared from sera raised against membranes of aggregation- and postaggregation-stage cells were used to probe the cell interactions that induce rapid postaggregative synthesis of UDP-glucose pyrophosphorylase. When cells of strain V12M2 were dissociated after 8 hr of development and replated in the presence of immune Fab, both reaggregation and pyrophosphorylase synthesis were blocked. Fab neutralized by incubation with EDTA-high salt extracts of cells developed for 3 hr blocked pyrophosphorylase synthesis but not reaggregation. Therefore, some cell-surface components that regulate pyrophosphorylase synthesis (called E sites) are antigenically distinct from those required for reaggregation. The Fab provides a means to assay E sites during their purification. Addition of 10(-3) M cyclic AMP or cyclic GMP enabled the cells to bypass the blocking of E sites by Fab; pyrophosphorylase was synthesized in the absence of reaggregation. We hypothesize that E sites function by raising the level of intracellular cyclic AMP.  相似文献   

12.
Mutants of Dictyostelium discoideum were isolated and found to be defective in the epitope recognized by the monoclonal antibody 120 against the carbohydrate moieties of an integral membrane glycoprotein, contact site A, with the apparent molecular mass of 80 x 10(3). One mutant, HG764, did not express any contact site A and had lost cell contact resistant to EDTA. The others, including HG794, expressed a 68-kDa form of contact site A. In comparison with the parental strain HG592, HG794 showed weaker EDTA-resistant cell contact and the same degree of EDTA-sensitive cell contact. This suggested that the moieties which HG794 lacked were involved in EDTA-resistant cell contact. The 68-kDa contact site A in HG794 could be labeled with wheat germ agglutinin and incorporated [35S] sulfate. The modB mutant HL220 also expresses 68-kDa contact site A, although it cannot be labeled with wheat germ agglutinin. Therefore, the mutants HG794 and HL220 were compared by a complementation test. The diploid strain DG701 expressed 80-kDa contact site A and showed the same degree of EDTA-resistant cell contact as strain HG592. In its EDTA-resistant cell contact, HG794 was stronger than HL220. These results suggest that HG794 is a new mutant, and that there might be at least two processes in the glycosylation of 68-kDa contact site A to the 80-kDa form. The carbohydrate moieties recognized by monoclonal antibody 120 and by wheat germ agglutinin might be involved in EDTA-resistant cell contact.  相似文献   

13.
In Dictyostelium discoideum, a surface glycoprotein with Mr 80,000 (gp80) has been found to mediate the EDTA-resistant contact sites A at the aggregation stage of development. To evaluate the role of the carbohydrate moiety in cell-cell adhesion, we have examined the accumulation and activity of an altered gp80 molecule in two glycosylation (modB) mutants. Both mutants synthesize an altered gp80 of lower molecular size. This modB-gp80 can be detected by the monoclonal antibody 80L5C4, which is capable of blocking cell-cell adhesion (C. -H. Siu, T. Y. Lam, and A. Choi, (1985) J. Biol. Chem. 260, 16,030-16,036). The mutant cells exhibit both EDTA-sensitive and EDTA-resistant types of cell-cell binding, though to a lesser extent than that of the parental strain, and the EDTA-resistant binding sites are blocked in the presence of 80L5C4 Fab. Mutant cells can also bind Covaspheres conjugated with gp80. These results suggest that the modB-gp80 protein still retains the domain essential for its cell binding activity and the carbohydrate moiety affected by the modB mutation is not directly involved in cell-cell adhesion.  相似文献   

14.
The functions of type 1 and 2 carbohydrates of the contact site A (csA) glycoprotein of Dictyostelium discoideum have been investigated using mutants lacking type 2 carbohydrate. In two mutant strains, HG220 and HG701, a 68-kd glycoprotein was synthesized as the final product of csA biosynthesis. This glycoprotein accumulated to a much lower extent on the surfaces of mutant cells than the mature 80-kd glycoprotein did in wild-type cells. There was also no accumulation of the 68-kd glycoprotein observed within the mutant cells nor was a precursor of lower molecular mass detected, in accordance with previous findings that indicated cotranslational linkage of type 1 carbohydrate by N-glycosylation. Pulse-chase labelling showed that a 50-kd glycopeptide was cleaved off from the mutant 68-kd glycoprotein and released into the medium, while the fully glycosylated 80-kd glycoprotein of the wild type was stable. These results assign a function to type 2 carbohydrate in protecting the cell-surface-exposed csA glycoprotein against proteolytic cleavage. HG220 cells were still capable of forming EDTA-stable contacts to a reduced extent, consistent with the low amounts of the 68-kd glycoprotein present on their surfaces. Thus type 1 rather than type 2 carbohydrate appears to be directly involved in intercellular adhesion that is mediated by the csA glycoprotein. Tunicamycin-treated wild-type and mutant cells produce a 53-kd protein that lacks both type 1 and 2 carbohydrates. While this protein is stable and not transported to the cell surface in the wild type, it is cleaved in the mutants and fragments of it are released into the extracellular medium. These results suggest that the primary defect in the two mutants studied is relief from a restriction in protein transport to the cell surface, and that the defect in type 2 glycosylation is secondary.  相似文献   

15.
This paper presents further investigation of the properties of carbohydrate II in the cell adhesion molecule, contact site A, fromDictyostelium discoideum.A purified contact site A was digested withAchromobacterprotease I to produce a 31-kDa fragment to which carbohydrate II was mainly bound and a 21-kDa fragment containing the NH2terminus of contact site A, which was identified as Ala-Pro-Thr-Ile-Thr-Ala. The NH2terminus of the 31-kDa fragment was Thr-Glu-Ala-Thr-Thr-Ser. It was estimated from the cDNA sequence data of contact site A that more than 20 Ser/Thr residues exist as target sites for the O-linked oligosaccharides in the 31-kDa fragment, but not for the N-linked oligosaccharides. These results suggest that carbohydrate II exists as clustered O-linked oligosaccharides in the COOH terminus of contact site A. The results of two-dimensional electrophoresis confirm that oligosaccharides of contact site A contain sialic acids. Immunoelectron microscopy was carried out to define the organelle in which O-glycosylation by carbohydrate II occurs and how carbohydrate II antigens are distributed on the cell surface. The results show that O-glycosylation can occur in the Golgi apparatus inD. discoideumas observed in other cells, although this O-glycosylation was inhibited by tunicamycin. Furthermore, gold particles were densely concentrated in cell–cell contact regions but sparsely distributed in noncontact regions.  相似文献   

16.
J Faix  G Gerisch    A A Noegel 《The EMBO journal》1990,9(9):2709-2716
The contact site A (csA) glycoprotein is a developmentally regulated cell adhesion molecule which mediates EDTA-stable cell contacts during the aggregation stage of Dictyostelium discoideum. A transformation vector was constructed which allows overexpression of the csA protein during the growth phase. In that stage the csA protein is normally not expressed; in the transformants it was transported to the cell surface and carried all modifications investigated, including a phospholipid anchor and two types of oligosaccharide chain. csA expression enabled the normal non-aggregative growth-phase cells to form EDTA-stable contacts in suspension and to assemble into three-dimensional aggregates when moving on a substratum. After prolonged cultivation of csA overexpressing transformants in nutrient medium the developmental program was found to be turned on, as it normally occurs only in starving cells. During later development of transformed cells, the csA glycoprotein remained present on the cell surface, while it is down-regulated in the wild type. It was detected in both the prestalk and prespore regions of the multicellular slugs made from transformed cells.  相似文献   

17.
The neural cell adhesion molecules L1 and N-CAM have been suggested to interact functionally by formation of a complex between the two molecules (Kadmon, G., A. Kowitz, P. Altevogt, and M. Schachner. 1990. J. Cell Biol. 110:193-208). To determine the molecular mechanisms underlying this functional cooperation, we have studied the contribution of carbohydrates to the association of the two molecules at the cell surface. Aggregation or adhesion between L1- and N-CAM-positive neuroblastoma N2A cells was reduced when the synthesis of complex and/or hybrid glycans was modified by castanospermine. Fab fragments of polyclonal antibodies to L1 inhibited aggregation and adhesion of castanospermine-treated cells almost completely, whereas untreated cells were inhibited by approximately 50%. Fab fragments of polyclonal antibodies to N-CAM did not interfere with the interaction between castanospermine-treated cells, whereas they inhibited aggregation or adhesion of untreated cells by approximately 50%. These findings indicate that cell interactions depending both on L1 and N-CAM ("assisted homophilic" binding) can be reduced to an L1-dominated interaction ("homophilic binding"). Treatment of cells with the carbohydrate synthesis inhibitor swainsonine did not modify cell aggregation in the absence or presence of antibodies compared with untreated cells, indicating that castanospermine-sensitive, but swainsonine-insensitive glycans are involved. To investigate whether the appropriate carbohydrate composition is required for an association of L1 and N-CAM in the surface membrane (cis-interaction) or between L1 on one side and L1 and N-CAM on the other side of interacting partner cells (trans-interaction), an L1-positive lymphoid tumor cell line was coaggregated with and adhered to neuroblastoma cells in the various combinations of castanospermine-treated and untreated cells. The results show that it is the cis-interaction between L1 and N-CAM that depends on the appropriate carbohydrate structures.  相似文献   

18.
The symptoms of Clostridium difficile infections are caused by two exotoxins, TcdA and TcdB, which target host colonocytes by binding to unknown cell surface receptors, at least in part via their combined repetitive oligopeptide (CROP) domains. A combination of the anti-TcdA antibody actoxumab and the anti-TcdB antibody bezlotoxumab is currently under development for the prevention of recurrent C. difficile infections. We demonstrate here through various biophysical approaches that bezlotoxumab binds to specific regions within the N-terminal half of the TcdB CROP domain. Based on this information, we solved the x-ray structure of the N-terminal half of the TcdB CROP domain bound to Fab fragments of bezlotoxumab. The structure reveals that the TcdB CROP domain adopts a β-solenoid fold consisting of long and short repeats and that bezlotoxumab binds to two homologous sites within the CROP domain, partially occluding two of the four putative carbohydrate binding pockets located in TcdB. We also show that bezlotoxumab neutralizes TcdB by blocking binding of TcdB to mammalian cells. Overall, our data are consistent with a model wherein a single molecule of bezlotoxumab neutralizes TcdB by binding via its two Fab regions to two epitopes within the N-terminal half of the TcdB CROP domain, partially blocking the carbohydrate binding pockets of the toxin and preventing toxin binding to host cells.  相似文献   

19.
1. The relationship between glycosylation of contact site A (csA) of 80 kDa with two types of N-linked carbohydrates, I and II, and EDTA-resistant cell contact of Dictyostelium was investigated by tunicamycin treatment. 2. Carbohydrate I glycosylation, involved in a shift of csA from 66 to 80 kDa, was more sensitive to tunicamycin than carbohydrate II glycosylation in its shift from 53 to 66 kDa. 3. The appearance of csA of 80 kDa corresponded to that of EDTA-resistant cell contact. Carbohydrate I may be essential for EDTA-resistant cell contact. 4. In starved cells treated with tunicamycin, only 4-8% of moieties labeled with wheat germ agglutinin in carbohydrate II were modified.  相似文献   

20.
A eukaryotic cell-free system based on Spodoptera frugiperda cells was developed for the convenient synthesis of Fab antibody fragments and other disulfide bridge containing proteins. The system uses (i) a cell lysate that is mildly prepared under slightly reduced conditions, thus maintaining the activity of vesicles derived from the endoplasmic reticulum, (ii) signal peptide dependent translocation into these vesicles, and (iii) a redox potential based on reduced and oxidized glutathione. Monomeric heavy and light immunoglobulin chains are almost completely converted to highly active dimeric Fab joined by intermolecular disulfide bridges without supplementation of chaperones or protein disulfide isomerase. The applicability of the system is demonstrated by the synthesis of anti-lysozyme and anti-CD4 Fab antibody fragments yielding approximately 10 μg Fab per milliliter reaction mixture. The lack of endotoxins in this system is a prerequisite that synthesized Fab can be applied directly using whole synthesis reactions in cell-based assays that are sensitive to this substance class. Moreover, the system is compatible with PCR-generated linear templates enabling automated generation of antibody fragments in a high-throughput manner, and facilitating its application for screening and validation purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号