首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Directed cell migration is a crucial orchestrated process in embryonic development, wound healing, and immune response. The underlying substrate can provide physical and/or chemical cues that promote directed cell migration. Here, using electrospinning we developed substrates of aligned poly(lactic-co-glycolic acid) nanofibres to study the influence of glial cells on endothelial cells (ECs) in a 3-dimensional (3D) co-culture model. ECs build blood vessels and regulate their plasticity in coordination with neurons. Likewise, neurons construct nerves and regulate their circuits in coordination with ECs. In our model, the neuro-vascular cross-talk was assessed using a direct co-culture model of human umbilical vein endothelial cells (HUVECs) and rat Schwann cells (rSCs). The effect of rSCs on ECs behavior was demonstrated by earlier and higher velocity values and genetic expression profiles different of those of HUVECs when seeded alone. We observed 2 different gene expression trends in the co-culture models: (i) a later gene expression of angiogenic factors, such as interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), and (ii) an higher gene expression of genes involved in actin filaments rearrangement, such as focal adhesion kinase (FAK), Mitogen-activated protein kinase-activated protein kinase 13 (MAPKAPK13), Vinculin (VCL), and Profilin (PROF). These results suggested that the higher ECs migration is mainly due to proteins involved in the actin filaments rearrangement and in the directed cell migration rather than the effect of angiogenic factors. This co-culture model provides an approach to enlighten the neurovascular interactions, with particular focus on endothelial cell migration.  相似文献   

2.
Perivascular nerves and the regulation of cerebrovascular tone.   总被引:8,自引:0,他引:8  
Brain perfusion is tightly coupled to neuronal activity, is commonly used to monitor normal or pathological brain function, and is a direct reflection of the interactions that occur between neuronal signals and blood vessels. Cerebral blood vessels at the surface and within the brain are surrounded by nerve fibers that originate, respectively, from peripheral nerve ganglia and intrinsic brain neurons. Although of different origin and targeting distinct vascular beds, these "perivascular nerves" fulfill similar roles related to cerebrovascular functions, a major one being to regulate their tone and, therein, brain perfusion. This utmost function, which underlies the signals used in functional neuroimaging techniques and which can be jeopardized in pathologies such as Alzheimer's disease, stroke, and migraine headache, is thus regulated at several levels. Recently, new insights into our understanding of how neural input regulate cerebrovascular tone resulted in the rediscovery of the functional "neurovascular unit." These remarkable advances suggest that neuron-driven changes in vascular tone result from interactions that involve all components of the neurovascular unit, transducing neuronal signals into vasomotor responses not only through direct interaction between neurons and vessels but also indirectly via the perivascular astrocytes. Neurovascular coupling is thus determined by chemical signals released from activated perivascular nerves and astrocytes that alter vascular tone to locally adjust perfusion to the spatial and temporal changes in brain activity.  相似文献   

3.
Directed cell migration is a crucial orchestrated process in embryonic development, wound healing, and immune response. The underlying substrate can provide physical and/or chemical cues that promote directed cell migration. Here, using electrospinning we developed substrates of aligned poly(lactic-co-glycolic acid) nanofibres to study the influence of glial cells on endothelial cells (ECs) in a 3-dimensional (3D) co-culture model. ECs build blood vessels and regulate their plasticity in coordination with neurons. Likewise, neurons construct nerves and regulate their circuits in coordination with ECs. In our model, the neuro-vascular cross-talk was assessed using a direct co-culture model of human umbilical vein endothelial cells (HUVECs) and rat Schwann cells (rSCs). The effect of rSCs on ECs behavior was demonstrated by earlier and higher velocity values and genetic expression profiles different of those of HUVECs when seeded alone. We observed 2 different gene expression trends in the co-culture models: (i) a later gene expression of angiogenic factors, such as interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), and (ii) an higher gene expression of genes involved in actin filaments rearrangement, such as focal adhesion kinase (FAK), Mitogen-activated protein kinase-activated protein kinase 13 (MAPKAPK13), Vinculin (VCL), and Profilin (PROF). These results suggested that the higher ECs migration is mainly due to proteins involved in the actin filaments rearrangement and in the directed cell migration rather than the effect of angiogenic factors. This co-culture model provides an approach to enlighten the neurovascular interactions, with particular focus on endothelial cell migration.  相似文献   

4.
The mammalian central nervous system (CNS) is comprised of billions of neurons and glia that are intertwined with an elaborate network of blood vessels. These various neural and vascular cell types actively converse with one another to form integrated, multifunctional complexes, termed neurovascular units. Cell-cell communication within neurovascular units promotes normal CNS development and homeostasis, and abnormal regulation of these events leads to a variety of debilitating CNS diseases. This review will summarize (i) cellular and molecular mechanisms that regulate physiological assembly and maintenance of neurovascular units; and (ii) signaling events that induce pathological alterations in neurovascular unit formation and function. An emphasis will be placed on neural-vascular cell adhesion events mediated by integrins and their extracellular matrix (ECM) ligands. I will highlight the role of a specific adhesion and signaling axis involving αvβ8 integrin, latent transforming growth factor β’s (TGFβ’s), and canonical TGFβ receptors. Possible functional links between components of this axis and other signal transduction cascades implicated in neurovascular development and disease will be discussed. In summary, comprehensively understanding the pathways that regulate bidirectional neural-vascular cell contact and communication will provide new insights into the mechanisms of neurovascular unit development, physiology and disease.  相似文献   

5.
The mammalian central nervous system (CNS) is comprised of billions of neurons and glia that are intertwined with an elaborate network of blood vessels. These various neural and vascular cell types actively converse with one another to form integrated, multifunctional complexes, termed neurovascular units. Cell-cell communication within neurovascular units promotes normal CNS development and homeostasis, and abnormal regulation of these events leads to a variety of debilitating CNS diseases. This review will summarize (1) cellular and molecular mechanisms that regulate physiological assembly and maintenance of neurovascular units; and (2) signaling events that induce pathological alterations in neurovascular unit formation and function. An emphasis will be placed on neural-vascular cell adhesion events mediated by integrins and their extracellular matrix (ECM) ligands. I will highlight the role of a specific adhesion and signaling axis involving αvβ8 integrin, latent transforming growth factor β''s (TGFβ''s), and canonical TGFβ receptors. Possible functional links between components of this axis and other signal transduction cascades implicated in neurovascular development and disease will be discussed. Comprehensively understanding the pathways that regulate bidirectional neural-vascular cell contact and communication will provide new insights into the mechanisms of neurovascular unit development, physiology and disease.Key words: αvβ8 integrin, latent TGFβ, neurovascular unit, brain angiogenesis, cerebral hemorrhage  相似文献   

6.
Growth cones of nerves and endothelial cells of blood vessels are closely analogous in their migratory behavior, and they are both set a similar task during the early development of a limb. Both must invade the mesenchyme to form ramifying networks of large nerves and vessels. Both systems must densely pervade certain regions of the developing limb, such as muscle rudiments, and both form dense cutaneous plexuses at precisely the same depth beneath the epidermis. Moreover, adult tissues show many examples of neurovascular bundles in which nerves and blood vessels run closely parallel and branch in a correlated fashion, suggesting some interdependence during development. We have examined the interrelationship between developing nerves and blood vessels in chick wing skin because it allows a particularly convenient two-dimensional analysis of the two systems which can be revealed simultaneously in the same preparation by injection of Indian ink combined with silver-staining. We show that nerves do not use blood vessels as pathways along which to crawl, but that there are two other ways in which neurovascular associations arise: in some situations nerves and blood vessels follow the same route because they are responding independently to the same mesenchymal cues; and in some situations nerves induce blood vessels to remodel around them.  相似文献   

7.
The hypothalamo-neurohypophyseal system (HNS) is?the neurovascular structure through which the hypothalamic neuropeptides oxytocin and arginine-vasopressin exit the brain into the bloodstream, where they go on to affect peripheral physiology. Here, we investigate the molecular cues that regulate the neurovascular contact between hypothalamic axons and neurohypophyseal capillaries of the zebrafish. We developed a transgenic system in which both hypothalamic axons and neurohypophyseal vasculature can be analyzed in?vivo. We identified the cellular organization of the zebrafish HNS as well as the dynamic processes that contribute to formation of the HNS neurovascular interface. We show that formation of this interface is regulated during development by local release of oxytocin, which affects endothelial morphogenesis. This cell communication process is essential for the establishment of a tight axovasal interface between the neurons and blood vessels of the HNS. We present a unique example of axons affecting endothelial morphogenesis through secretion of a neuropeptide.  相似文献   

8.
During vertebrate development, morphologically and functionally very different tissue types and organ systems need to be generated and organised in close coordination with each other. Blood vessels, which become critically required during early embryogenesis and remain indispensable throughout life, need to integrate into a great diversity of tissue types and adapt to both local and systemic requirements of the organism. Far from being randomly placed and uniformly shaped tubes, blood vessels form, with some degree of flexibility, a highly organised and precisely arranged network. Their differentiation, ultrastructure and physiology are well adapted to the requirements and functions of the surrounding tissues. How coordinated development and differentiation are achieved at a molecular level remains to be characterised. This review highlights the large family of Eph receptor tyrosine kinases and their ligands, called ephrins, which, because of their versatile functions in many cell and tissue types and their molecular complexity, might well provide one example of a control system integrating blood vessel and tissue morphogenesis.  相似文献   

9.
The brain is critically dependent on a continuous supply of blood to function. Therefore, the cerebral vasculature is endowed with neurovascular control mechanisms that assure that the blood supply of the brain is commensurate to the energy needs of its cellular constituents. The regulation of cerebral blood flow (CBF) during brain activity involves the coordinated interaction of neurons, glia, and vascular cells. Thus, whereas neurons and glia generate the signals initiating the vasodilation, endothelial cells, pericytes, and smooth muscle cells act in concert to transduce these signals into carefully orchestrated vascular changes that lead to CBF increases focused to the activated area and temporally linked to the period of activation. Neurovascular coupling is disrupted in pathological conditions, such as hypertension, Alzheimer disease, and ischemic stroke. Consequently, CBF is no longer matched to the metabolic requirements of the tissue. This cerebrovascular dysregulation is mediated in large part by the deleterious action of reactive oxygen species on cerebral blood vessels. A major source of cerebral vascular radicals in models of hypertension and Alzheimer disease is the enzyme NADPH oxidase. These findings, collectively, highlight the importance of neurovascular coupling to the health of the normal brain and suggest a therapeutic target for improving brain function in pathologies associated with cerebrovascular dysfunction.  相似文献   

10.
In the last decades there has been a progressive advance in the development of techniques able to explore in humans neurophysiologic and neurochemical processes. Positron emission tomography (PET) is a very powerful technique allowing to study a quite variable range of physiological and biochemical processes in the healthy subjects and in diseases. Apart from its capacity to provide pathophysiological information, PET is also important for the objective assessment of therapeutic efficacy. Initial studies were performed measuring cerebral metabolic rate for glucose (CMRglc) and cerebral blood flow (CBF), representing an indirect index of synaptic activity. The advent of receptor tracers allowed measuring other important physiological parameters, such as receptor occupancy, and endogenous release. In neuropsychiatric disorders, as Alzheimer disease, schizophrenia, epilepsy and Huntington disease, PET has been useful to elaborate hypothesis of the pathogenesis, to relate symptoms to biological variables and to study individuals at increased risk. The new concepts of neurovascular unit and default network, preferentially active at rest, can significantly change the approach of PET, with images reflecting a complex scenario, not merely limited to neural activity, but involving the activity of the entire neurovascular unit and the multifunctional role of astrocytes. To detect dysfunction of the dialog between glutamatergic neurons and astrocytes could lead to a better understanding of altered functional brain images. In this direction a professional network between PET researchers and basic scientists, could give a determinant improvement in the capability to understand the complex physiological and pathophysiological cerebral world.  相似文献   

11.
The neurovascular unit (NVU) can be conceptualized as a functional entity consisting of neurons, astrocytes, pericytes, and endothelial and smooth muscle cells that operate in concert to affect blood flow to a very circumscribed area. Although we are currently in a “golden era” of bioengineering, there are, as yet, no living NVUs-on-a-chip modules available and the development of a neural chip that would mimic NVUs is a seemingly lofty goal. The sexually dimorphic nucleus of the preoptic area (SDN-POA) is a tiny brain structure (between 0.001~0.007 mm3 in rats) with an assessable biological function (i.e., male sexual behavior). The present effort was undertaken to determine whether there are identifiable NVUs in the SDN-POA by assessing its vasculature relative to its known neural components. First, a thorough and systematic review of thousands of histologic and immunofluorescent images from 201 weanling and adult rats was undertaken to define the characteristics of the vessels supplying the SDN-POA: its primary supply artery/arteriole and capillaries are physically inseparable from their neural elements. A subsequent immunofluorescent study targeting α-smooth muscle actin confirmed the identity of an artery/arteriole supplying the SDN-POA. In reality, the predominant components of the SDN-POA are calbindin D28k-positive neurons that are comingled with tyrosine hydroxylase-positive projections. Finally, a schematic of an SDN-POA NVU is proposed as a working model of the basic building block of the CNS. Such modules could serve the study of neurovascular mechanisms and potentially inform the development of next generation bioengineered neural transplants, i.e., the construct of an NVU neural chip.  相似文献   

12.
The blood-brain barrier (BBB) is formed primarily to protect the brain microenvironment from the influx of plasma components, which may disturb neuronal functions. The BBB is a functional unit that consists mainly of specialized endothelial cells (ECs) lining the cerebral blood vessels, astrocytes, and pericytes. The BBB is a dynamic structure that is altered in neurologic diseases, such as stroke. ECs and astrocytes secrete extracellular matrix (ECM) proteins to generate and maintain the basement membranes (BMs). ECM receptors, such as integrins and dystroglycan, are also expressed at the brain microvasculature and mediate the connections between cellular and matrix components in physiology and disease. ECM proteins and receptors elicit diverse molecular signals that allow cell adaptation to environmental changes and regulate growth and cell motility. The composition of the ECM is altered upon BBB disruption and directly affects the progression of neurologic disease. The purpose of this review is to discuss the dynamic changes of ECM composition and integrin receptor expression that control BBB functions in physiology and pathology.  相似文献   

13.
In the skeletal system, blood vessels not only function as a conduit system for transporting gases, nutrients, metabolic waste, or cells but also provide multifunctional signal molecules regulating bone development, regeneration, and remodeling. Endothelial cells (ECs) in bone tissues, unlike in other organ tissues, are in direct contact with the pericytes of blood vessels, resulting in a closer connection with peripheral connective tissues. Close-contact ECs contribute to osteogenesis and osteoclastogenesis by secreting various cytokines in the paracrine or juxtacrine pathways. An increasing number of studies have revealed that extracellular vesicles (EVs) derived from ECs can directly regulate maturation process of osteoblasts and osteoclasts. The different pathways focus on targets at different distances, forming the basis of the intimate spatial and temporal link between bone tissue and blood vessels. Here, we provide a systematic review to elaborate on the function of ECs in bone biology and its underlying mechanisms based on three aspects: paracrine, EVs, and juxtacrine. This review proposes the possibility of a therapeutic strategy targeting blood vessels, as an adjuvant treatment for bone disorders.  相似文献   

14.
Blood vessels and neurons share several types of guidance cues and cell surface receptors to control their behaviour during embryogenesis. The transmembrane protein NRP1 is present on blood vessels and nerves. NRP1 binds two structurally diverse ligands, the semaphorin SEMA3A and the VEGF164 isoform of vascular endothelial growth factor. SEMA3A was originally identified as a repulsive cue for developing axons that acts by signalling through receptor complexes containing NRP1 and plexins. In vitro, SEMA3A also inhibits integrin function and competes with VEGF164 for binding to NRP1 to modulate the migration of endothelial cells. These observations resulted in a widely accepted model of vascular patterning in which the balance of VEGF164 and SEMA3A determines endothelial cell behaviour. However, we now demonstrate that SEMA3A is not required for angiogenesis in the mouse, which instead is controlled by VEGF164. We find that SEMA3A, but not VEGF164, is required for axon patterning of limb nerves, even though the competition between VEGF164 and SEMA3A for NRP1 affects the migration of neuronal progenitor cells in vitro and has been hypothesised to control axon guidance. Moreover, we show that there is no genetic interaction between SEMA3A and VEGF164 during vasculogenesis, angiogenesis or limb axon patterning, suggesting that ligand competition for NRP1 binding cannot explain neurovascular congruence, as previously suggested. We conclude that NRP1 contributes to both neuronal and vascular patterning by preferentially relaying SEMA3A signals in peripheral axons and VEGF164 signals in blood vessels.  相似文献   

15.
16.
The formation of vascular structures requires precisely controlled proliferation of endothelial cells (ECs), which occurs through strict regulation of the cell cycle. However, the mechanism by which EC proliferation is coordinated during vascular formation remains largely unknown, since a method of analyzing cell-cycle progression of ECs in living animals has been lacking. Thus, we devised a novel system allowing the cell-cycle progression of ECs to be visualized in vivo. To achieve this aim, we generated a transgenic zebrafish line that expresses zFucci (zebrafish fluorescent ubiquitination-based cell cycle indicator) specifically in ECs (an EC-zFucci Tg line). We first assessed whether this system works by labeling the S phase ECs with EdU, then performing time-lapse imaging analyses and, finally, examining the effects of cell-cycle inhibitors. Employing the EC-zFucci Tg line, we analyzed the cell-cycle progression of ECs during vascular development in different regions and at different time points and found that ECs proliferate actively in the developing vasculature. The proliferation of ECs also contributes to the elongation of newly formed blood vessels. While ECs divide during elongation in intersegmental vessels, ECs proliferate in the primordial hindbrain channel to serve as an EC reservoir and migrate into basilar and central arteries, thereby contributing to new blood vessel formation. Furthermore, while EC proliferation is not essential for the formation of the basic framework structures of intersegmental and caudal vessels, it appears to be required for full maturation of these vessels. In addition, venous ECs mainly proliferate in the late stage of vascular development, whereas arterial ECs become quiescent at this stage. Thus, we anticipate that the EC-zFucci Tg line can serve as a tool for detailed studies of the proliferation of ECs in various forms of vascular development in vivo.  相似文献   

17.
The correct development of blood vessels is crucial for all aspects of tissue growth and physiology in vertebrates. The formation of an elaborate hierarchically branched network of endothelial tubes, through either angiogenesis or vasculogenesis, relies on a series of coordinated morphogenic events, but how individual endothelial cells adopt specific phenotypes and how they coordinate their behaviour during vascular patterning is unclear. Recent progress in our understanding of blood vessel formation has been driven by advanced imaging techniques and detailed analyses that have used a combination of powerful in vitro, in vivo and in silico model systems. Here, we summarise these models and discuss their advantages and disadvantages. We then review the different stages of blood vessel development, highlighting the cellular mechanisms and molecular players involved at each step and focusing on cell specification and coordination within the network.  相似文献   

18.
Enteric neural crest-derived cells (ENCCs) migrate along the intestine to form a highly organized network of ganglia that comprises the enteric nervous system (ENS). The signals driving the migration and patterning of these cells are largely unknown. Examining the spatiotemporal development of the intestinal neurovasculature in avian embryos, we find endothelial cells (ECs) present in the gut prior to the arrival of migrating ENCCs. These ECs are patterned in concentric rings that are predictive of the positioning of later arriving crest-derived cells, leading us to hypothesize that blood vessels may serve as a substrate to guide ENCC migration. Immunohistochemistry at multiple stages during ENS development reveals that ENCCs are positioned adjacent to vessels as they colonize the gut. A similar close anatomic relationship between vessels and enteric neurons was observed in zebrafish larvae. When EC development is inhibited in cultured avian intestine, ENCC migration is arrested and distal aganglionosis results, suggesting that ENCCs require the presence of vessels to colonize the gut. Neural tube and avian midgut were explanted onto a variety of substrates, including components of the extracellular matrix and various cell types, such as fibroblasts, smooth muscle cells, and endothelial cells. We find that crest-derived cells from both the neural tube and the midgut migrate avidly onto cultured endothelial cells. This EC-induced migration is inhibited by the presence of CSAT antibody, which blocks binding to β1 integrins expressed on the surface of crest-derived cells. These results demonstrate that ECs provide a substrate for the migration of ENCCs via an interaction between β1 integrins on the ENCC surface and extracellular matrix proteins expressed by the intestinal vasculature. These interactions may play an important role in guiding migration and patterning in the developing ENS.  相似文献   

19.
Embryonic blood vessel formation is initially mediated through the sequential differentiation, migration, and assembly of endothelial cells (ECs). While many molecular signals that promote vascular development have been identified, little is known about suppressors of this process. In higher vertebrates, including birds and mammals, the vascular network forms throughout the embryonic disk with the exception of a region along the midline. We have previously shown that the notochord is responsible for the generation and maintenance of the avascular midline and that BMP antagonists expressed by this embryonic tissue, including Noggin and Chordin, can mimic this inhibitory role. Here we report that the notochord suppresses the generation of ECs from the mesoderm both in vivo and in vitro. We also report that the notochord diminishes the ability of mature ECs to organize into a primitive plexus. Furthermore, Noggin mimics notochord-based inhibition by preventing mesodermal EC generation and mature EC network formation. These findings suggest that the mesoderm surrounding the midline is competent to give rise to ECs and to form blood vessels, but that notochord derived-BMP antagonists suppress EC differentiation and maturation processes leading to inhibition of midline vessel formation.  相似文献   

20.
Enteric neural crest-derived cells (ENCCs) migrate along the intestine to form a highly organized network of ganglia that comprises the enteric nervous system (ENS). The signals driving the migration and patterning of these cells are largely unknown. Examining the spatiotemporal development of the intestinal neurovasculature in avian embryos, we find endothelial cells (ECs) present in the gut prior to the arrival of migrating ENCCs. These ECs are patterned in concentric rings that are predictive of the positioning of later arriving crest-derived cells, leading us to hypothesize that blood vessels may serve as a substrate to guide ENCC migration. Immunohistochemistry at multiple stages during ENS development reveals that ENCCs are positioned adjacent to vessels as they colonize the gut. A similar close anatomic relationship between vessels and enteric neurons was observed in zebrafish larvae. When EC development is inhibited in cultured avian intestine, ENCC migration is arrested and distal aganglionosis results, suggesting that ENCCs require the presence of vessels to colonize the gut. Neural tube and avian midgut were explanted onto a variety of substrates, including components of the extracellular matrix and various cell types, such as fibroblasts, smooth muscle cells, and endothelial cells. We find that crest-derived cells from both the neural tube and the midgut migrate avidly onto cultured endothelial cells. This EC-induced migration is inhibited by the presence of CSAT antibody, which blocks binding to β1 integrins expressed on the surface of crest-derived cells. These results demonstrate that ECs provide a substrate for the migration of ENCCs via an interaction between β1 integrins on the ENCC surface and extracellular matrix proteins expressed by the intestinal vasculature. These interactions may play an important role in guiding migration and patterning in the developing ENS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号