首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of environmental factors on wood formation in Scots pine stems   总被引:10,自引:0,他引:10  
Summary To find the optimal conditions for growth and development of tracheid walls in Scots pine stems the effects of temperature and precipitation on xylem cell production by the cambium, radial cell expansion and secondary wall thickening have been studied. The observations were carried out on 10 specially chosen 50 to 60-year-old trees, growing in central Siberia, over 2 seasons. The data on the number of cells in differentiation zones and mature xylem along radial rows of tracheids, radial and tangential sizes of tracheids and their lumens were used for calculating cambial activity, the rates and durations of cell development in the zones, and both the thickness and cross sectional areas of tracheid walls. The mean day, mean maximal diurnal and mean minimal nocturnal temperatures have been shown by correlation and regression analyses to affect differentially separate stages of cytogenesis. The temperature influenced the initial division the side of xylem and radial cell expansion mainly in May–June, while the influence of precipitation increased in July–August. Throughout all seasons it was the temperature that had the main influence on the biomass accumulation in cell walls. Optimal values of temperature and precipitation for cell production by cambium, radial cell expansion and secondary wall thickening have been calculated. The data are discussed in connection with productivity and quality of wood.  相似文献   

2.

Key message

The retrospective analysis of wood anatomical features evidences how a long-term deterioration of hydraulic performance and carbon use portend drought-induced mortality in Scots pine.

Abstract

Widespread episodes of drought-induced tree mortality are predicted to become more frequent as climate becomes warmer and drier. Nevertheless, growth trends and their links to changes in wood anatomy before tree dies are still poorly understood. Wood anatomical features provide valuable information that can be extracted to infer the mechanisms leading to tree death. In this study, we characterize drought-induced mortality affecting two Scots pine (Pinus sylvestris) sites (Prades and Arcalís) located in the North Eastern Iberian Peninsula. Co-occurring now-dead and living Scots pine trees were sampled and their wood anatomical features were measured and compared. We aimed to detect differences in anatomical features between living and dead trees, and to infer past physiological performances that might have determined their subsequent death or survival. Now-dead trees showed lower tracheid and resin duct production, and smaller radial lumen diameters than co-occurring living trees. At the more xeric Prades site, these anatomical differences were larger and chronic, i.e. were observed over the three studied decades, whilst they were less pronounced at the other, more mesic Arcalís site, where tree mortality episodes were more recent. This indicates that dead trees’ hydraulic conductivity was severely affected and that carbon investment in xylem formation and resin duct production was constrained prior to tree death. Our findings show that both hydraulic deterioration and low carbon allocation to xylem formation were associated to drought-induced mortality in Scots pine. Nevertheless, the temporal dynamics of these processes differed between populations as a function of site climatic conditions.  相似文献   

3.
J. Irvine  J. Grace 《Planta》1997,202(4):455-461
According to the cohesion theory for the ascent of water in vascular plants, significant tensions should develop in the water columns of transpiring trees. These tensions cause small but detectable changes in the diameter of the xylem as a consequence of adhesive forces between water molecules and the inner xylem walls. The diurnal time course of tension in the water columns in the xylem of the trunk of mature Scots pine (Pinus sylvestris L.) was measured during the summer of 1995 by means of a displacement transducer mounted on a rigid steel frame. The apparent elastic modulus of Scots pine wood in the radial direction (E  r ) was determined in the laboratory and then used to estimate tensions from the measured displacement. Laboratory measurements on logs indicated that only the sapwood contributed to dimensional changes of the xylem. Corrections for thermal expansion of the system were included. Water tensions fell by 0.19 MPa over the course of the day, when needle water potentials fell by 0.50 MPa. Such data are consistent with the cohesion theory, and with the view that the hydraulic resistances to flow in above- and below-ground plant parts are of similar magnitude. Received: 23 November 1996 / Accepted: 11 February 1997  相似文献   

4.
Temperature is the most important factor affecting growth at high altitudes. As trees use much of the allocated carbon gained from photosynthesis to produce branches and stems, information on the timing and dynamics of secondary wood growth is crucial to assessing temperature thresholds for xylogenesis. We have carried out histological analyses to determine cambial activity and xylem cell differentiation in conifers growing at the treeline on the eastern Alps in two sites during 2002–2004 with the aim of linking the growth process with temperature and, consequently, of defining thresholds for xylogenesis. Cambial activity occurred from May to July–August and cell differentiation from May–June to September–October. The earliest start of radial enlargement was observed in stone pine in mid-May, while Norway spruce was the last species to begin tracheid differentiation. The duration of wood formation varied from 90 to 137 days, depending on year and site, with no difference between species. Longer durations were observed in trees on the south-facing site because of the earlier onset and later ending of cell production and differentiation. The threshold temperatures at which xylogenesis had a 0.5 probability of being active were calculated by logistic regressions. Xylogenesis was active when the mean daily air temperature was 5.6–8.5°C and mean stem temperature was 7.2–9°C. The similar thresholds among all trees suggested the existence of thermal limits in wood formation that correspond with temperatures of 6–8°C that are supposed to limit growth at the treeline. Different soil temperature thresholds between sites indicated that soil temperature may not be the main factor limiting xylogenesis. This study represents the first attempt to define a threshold through comparative assessment of xylem growth and tissue temperatures in stem meristems at high altitudes.  相似文献   

5.
In pine wilt disease (PWD), embolized tracheids arise after virulent pine wood nematodes (PWN), Bursaphelenchus xylophilus, invade the resin canal of pine tree; infected pine trees finally die from significant loss of xylem water conduction. We used a compact magnetic resonance imaging system with a U-shaped radio frequency (rf) probe coil to reveal the developmental process of the xylem dysfunction in PWD. Multiple cross-sectional slices along the stem axis were acquired to periodically monitor the total water distribution in each 1-year-old main stem of two 3-year-old Japanese black pines (Pinus thunbergii) after inoculation of PWN. During the development of PWD, a mass of embolized tracheids around the inoculation site rapidly enlarged in all directions. This phenomenon occurred before the significant decrease of water potential. Some patch-like embolisms were observed at all monitoring positions during the experimental period. Patchy embolisms in a cross-section did not expand, but the number of patches increased as time passed. When the significant decrease of water potential occurred, the xylem dysfunctional rate near the inoculation point exceeded 70%. Finally, almost the whole area of xylem was abruptly embolized in all cross-sections along the stem. This phenomenon occurred just after water conduction was mostly blocked in one of the cross-sections. Thus, it appears that the simultaneous expansion of embolized conduit clusters may be required to induce a large-scale embolism across the functional xylem. Consequently, xylem dysfunction in infected trees may be closely related to both the distribution and the number of PWN in the pine stem.  相似文献   

6.
Changes in the levels of ascorbic acid (AA), its oxidized form, dehydroascorbic acid (DHA), and uronic acids as initial precursors for the AA synthesis were studied as related to the degree of xylem and phloem cell development in the course of early and late wood formation in the trunks of Scots pine (Pinus sylvestris L.). The cells of mature and conducting phloem, cambial zone, differently developed cells in the zones of cell enlargement and maturation were obtained by successive scraping tissue layers from trunk segments of 20–25-year-old trees; tissue identification was checked anatomically and histochemically. The contents of compounds tested were calculated per dry weight and per cell basis. We found great differences in the contents of AA and DHA and also in their ratio in dependence of the wood type developing in the pine trunks during growth period and on the stage of differentiation of xylem and phloem cells. Changes in the AA content during xylem cell differentiation were accompanied by changes in the content of uronic acids. The amounts of AA, DHA, and uronic acids were the highest at the stage of early lignification and reduced with tracheid maturation. The AA to DHA ratio changed differently in the course of early and late xylem lignification. It reduced from the start of lignification to the formation of early mature xylem and, in contrast, increased in mature late wood; this indicates a difference in the level of redox processes in these tissues.  相似文献   

7.
Preconditions of phloem transport in conifers are relatively unknown. We studied the variation of needle and inner bark axial osmotic gradients and xylem water potential in Scots pine and Norway spruce by measuring needle and inner bark osmolality in saplings and mature trees over several periods within a growing season. The needle and inner bark osmolality was strongly related to xylem water potential in all studied trees. Sugar concentrations were measured in Scots pine, and they had similar dynamics to inner bark osmolality. The sucrose quantity remained fairly constant over time and position, whereas the other sugars exhibited a larger change with time and position. A small osmotic gradient existed from branch to stem base under pre‐dawn conditions, and the osmotic gradient between upper stem and stem base was close to zero. The turgor in branches was significantly driven by xylem water potential, and the turgor loss point in branches was relatively close to daily minimum needle water potentials typically reported for Scots pine. Our results imply that xylem water potential considerably impacts the turgor pressure gradient driving phloem transport and that gravitation has a relatively large role in phloem transport in the stems of mature Scots pine trees.  相似文献   

8.
Ascorbic acid and xylem development in trunks of the Siberian larch trees   总被引:1,自引:0,他引:1  
The contents of ascorbic acid (AA) and its oxidized form, dehydroascorbic acid (DHA), were assessed as related to the tracheid differentiation in the course of early and late wood development in the Siberian larch (Larix sibirica Ldb.) trees. The samples of the cambium, cell enlargement zone and mature cells were collected at the successive developmental stages by scraping tissues off layer by layer from trunk segments of the 20-year-old trees according to anatomical and histochemical criteria. While cambium initials were rapidly dividing, the AA contents per dry weight and per cell considerably exceeded the corresponding values characteristic of the late xylem development; such difference corresponded to the higher number of early tracheids per annual ring, as compared to the late tracheids. The AA content decreased as cells enlarged. The radial growth of the early wood tracheids, as compared to the late wood tracheids, was accompanied with a threefold increase in the AA and a decline in the DHA contents. The AA/DHA ratio was in line with the early tracheid enlargement. The maximum AA content was observed at the early stage of the secondary cell wall thickening in the tracheids of early and late xylem preceding lignification. During this stage of early wood development, the DHA content exceeded sixfold the corresponding value in the late xylem; as a result, the initial rates of lignification were different in two tissues. The rate of lignification in a newly developing layer of the early xylem increased gradually and was the highest in the completely differentiated tracheids. In the late xylem, the lignification rate was at its highest at the very beginning and then declined in the course of tracheid maturation. The dissimilar patterns of lignification in the early and late xylem were primarily associated with the DHA content, which increased in the early xylem and decreased in the maturing late xylem. Thus, the AA content and its accessibility to oxidation in the growing and mature xylem cells exhibited the diverse developmental patterns in the early and late xylem: two tissues differed in the tracheid number and radial diameter as well as in the rate of lignification.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 97–107.Original Russian Text Copyright © 2005 by Antonova, Chaplygina, Varaksina, Stasova.  相似文献   

9.
 Effects of temperature and precipitation on xylem cell production by the cambium, radial cell expansion and secondary wall thickening in larch stems have been studied. The observations were carried out over two seasons on ten 50- to 60-year-old trees, growing in central Siberia and chosen according to growth rate (the number of cells in radial rows of each of two of the preceding seasons was equal). The data on the number of cells in differentiation zones and mature xylem along radial rows of tracheids, radial and tangential sizes of tracheids and their lumina were used for calculating cambial activity, the rates and durations of cell development in the zones, and both the thickness and cross-sectional areas of tracheid walls. The mean day air temperature, mean maximum diurnal and mean minimum nocturnal temperatures as well as precipitation have been shown by correlation and regression analyses to affect differentially separate stages of tracheid differentiation. Throughout all the seasons it was temperature that had the main influence on the initial divisions in the xylem, radial cell expansion and biomass accumulation. However, the levels of such an effect on separate stages of cytogenesis were different, especially the influence of nocturnal temperature on xylem cell production by cambium and primary wall growth. The optimum values of temperature and precipitation for cell production by cambium, for radial cell expansion and secondary wall thickening have been calculated. These optimum values of the first and second processes proved to be practically equal, while the last differs considerably in response to temperature. The data are discussed in connection with formation of early and late tracheids. Received: 3 July 1996 / Accepted: 7 February 1997  相似文献   

10.
Hydraulic impairment due to xylem embolism and carbon starvation are the two proposed mechanisms explaining drought‐induced forest dieback and tree death. Here, we evaluate the relative role played by these two mechanisms in the long‐term by quantifying wood‐anatomical traits (tracheid size and area of parenchyma rays) and estimating the intrinsic water‐use efficiency (iWUE) from carbon isotopic discrimination. We selected silver fir and Scots pine stands in NE Spain with ongoing dieback processes and compared trees showing contrasting vigour (declining vs nondeclining trees). In both species earlywood tracheids in declining trees showed smaller lumen area with thicker cell wall, inducing a lower theoretical hydraulic conductivity. Parenchyma ray area was similar between the two vigour classes. Wet spring and summer conditions promoted the formation of larger lumen areas, particularly in the case of nondeclining trees. Declining silver firs presented a lower iWUE than conspecific nondeclining trees, but the reverse pattern was observed in Scots pine. The described patterns in wood anatomical traits and iWUE are coherent with a long‐lasting deterioration of the hydraulic system in declining trees prior to their dieback. Retrospective quantifications of lumen area permit to forecast dieback in declining trees 2–5 decades before growth decline started. Wood anatomical traits provide a robust tool to reconstruct the long‐term capacity of trees to withstand drought‐induced dieback.  相似文献   

11.
The contents and composition of alcohol soluble phenolic acids were studied during cell xylem growth in the course of wood annual increment formation in the stems of Scots pine. The cells of cambium zone, of two stages of expansion growth and the outset of secondary thickening zone (before lignification) were successively gathered from the stem segments of 25-old pine trees in the period of earlywood xylem formation with constant anatomical and histochemical control. The contents of free and bound forms of phenolic acids, isolated by 80% ethanol from tissues, as well as of their ethers and esters were calculated both per dry weight and per cell. The content and relation of the fractions and the composition of phenolic acid have been found to change significantly from cambium zone to the outset of tracheid secondary thickening. The character of the variations depends on a calculation method. According to the calculation per cell the amount of free and bound phenolic acids and in their composition of esters and especially ethers increased at the first step of expansion growth zone, decreased at the second one and rose again in the outset of secondary wall deposition. In dependence on the stage of cell development the pool of bound phenolic acids exceeded of free acid pool in 2-5 times. Sinapic and ferulic acids dominated in the composition of free hydroxycinnamic acids. The content and composition of hydroxycinnamic acids in ethers and esters depended on cell development phase. In cambium p-coumaric and sinapic acids were principal aglycons in ethers, at other stages these were sinapic and caffeic acids. The esters in cambium zone included essentially p-coumaric acid and at the other stages - sinapic and ferulic acids. At the first phase of growth benzoic acid was connected principally by ester bonds. The pool of these esters decreased from the first phase of growth to the outset of cell wall thickening and in proportion to this the level of free benzoic acid rose.  相似文献   

12.
Seasonal development of phloem in scots pine stems   总被引:2,自引:0,他引:2  
The formation of phloem was studied for two years in stems of 50 to 60 year old trees of Scots pine (Pinus sylvestris L.) growing in nature. The development of phloem of the current year begins 10 to 20 days before the xylem formation and is completed with the termination of shoot growth in the end of June. Observations over the seasonal activity of cambium producing sieve cells of phloem and duration of their differentiation as compared to the xylem derivatives of cambium have shown that the maxima of formation of phloem and xylem cells could coincide or not coincide by season, while the activities of their differentiation were always in antiphase. The sieve cells of early phloem were separated from those of late phloem by a layer of tannin-containing cells, which are formed simultaneously with the formation of late xylem cells by the cambium. Seasonal dynamics of accumulation of starch grain in structural elements of the phloem is related to the xylem development. The content of metabolites in differentiating and mature phloem elements, in the cambium zone, and in the xylem cells growing in the radial direction depended on cell specificity, stage of their development, and type of forming wood, early or late, which differ in the cell wall parameters and, hence, requirement of assimilates. Significant differences were described between the content of low molecular weigh carbohydrates, amino acids, organic acids, and phenol compounds using two methods of calculation: per dry weight and per cell.  相似文献   

13.
Antonova GF  Stasova VV 《Ontogenez》2006,37(5):368-383
The formation of phloem was studied for two years in stems of 50 to 60 year old trees of Scots pine (Pinus sylvestris L.) growing in nature. The development of phloem of the current year begins 10 to 20 days before the xylem formation and is completed with the termination of shoot growth in the end of June. Observations over the seasonal activity of cambium producing sieve-like cells of phloem and duration of their differentiation as compared to the xylem derivatives of cambium have shown that the maxima of formation of phloem and xylem cells could coincide or not coincide by season, while the activities of their differentiation were always at antiphase. The sieve-like cells of early phloem were separated from those of late phloem by a layer of tannin-containing cells, which are formed simultaneously with the formation of late xylem cells by the cambium. Seasonal dynamics of accumulation of starch grain in structural elements of the phloem is related to the xylem development. The content of metabolites in differentiating and mature phloem elements, in the cambium zone, and in the xylem cells growing in the radial direction depended on cell specificity, stage of their development, and type of forming wood, early or late, which differ in the cell wall parameters and, hence, requirement of assimilates. Significant differences were described between the content of low molecular weigh carbohydrates, amino acids, organic acids, and phenol compounds using two methods of calculation: per dry weight and per cell.  相似文献   

14.
This paper presents an empirical model for the distribution of diameter growth along the stem in Scots pine (Pinus sylvestris L.) and for the consequent stem form over time. First, the distribution of annual mass growth in the stem is determined as a function of the total annual growth in stem mass, current stem mass and the distribution of the latter along the stem. Second, the distribution of diameter growth is obtained by converting the fraction of annual growth in the stem mass at a given height in the stem into the thickness of the annual ring at the same height. Application of the model to Scots pine data sets including both young and mature trees not used in parameter estimation showed that the model was capable of reconstructing the distribution of diameter growth from the stem butt to the apex and from the pith to the stem surface at any height in the stem in both young and mature trees. The resulting empirical model was also linked to a physiological, process-based model in order to study its performance in a simulated stand. Simulations representing trees grown in unthinned and thinned Scots pine stands with trees of different status (from dominant to suppressed) showed that the response in tree growth to thinning in terms of the distribution of diameter growth along the stem was quite realistic relative to measured data.  相似文献   

15.
The main stems of three young Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirbel) Franco) trees were dissected to obtain samples of secondary xylem from internodes axially along the trunk and radially within each internode. From these samples, measurements were obtained of tracheid diameter, length, the number of inter-tracheid pits per tracheid, and the diameter of the pit membranes. In addition, samples were obtained along the trunks of three old growth trees and also a small sample of roots for measurement of tracheid diameter. A gradient was apparent in all measured anatomical characters vertically along a sequence among the outer growth rings. These gradients arose not because of a gradient vertically along the internodes, but because of the strong gradients present at each internode among growth rings out from the pith. Tracheid characteristics were correlated: wider and longer tracheids had more numerous pits and wider pits, such that total pit area was about 6% of tracheid wall area independent of tracheid size. A stem model combining growth rings in parallel and internodes in series allowed for estimates of whole trunk conductance as a function of tree age. Conductance of the stem (xylem area specific conductivity) declined during the early growth of the trees, but appeared to approach a stable value as the trees aged.  相似文献   

16.
Substantial uncertainty surrounds our knowledge of tree stem growth, with some of the most basic questions, such as when stem radial growth occurs through the daily cycle, still unanswered. We employed high‐resolution point dendrometers, sap flow sensors, and developed theory and statistical approaches, to devise a novel method separating irreversible radial growth from elastic tension‐driven and elastic osmotically driven changes in bark water content. We tested this method using data from five case study species. Experimental manipulations, namely a field irrigation experiment on Scots pine and a stem girdling experiment on red forest gum trees, were used to validate the theory. Time courses of stem radial growth following irrigation and stem girdling were consistent with a‐priori predictions. Patterns of stem radial growth varied across case studies, with growth occurring during the day and/or night, consistent with the available literature. Importantly, our approach provides a valuable alternative to existing methods, as it can be approximated by a simple empirical interpolation routine that derives irreversible radial growth using standard regression techniques. Our novel method provides an improved understanding of the relative source–sink carbon dynamics of tree stems at a sub‐daily time scale.  相似文献   

17.
We determined the temporal dynamic of cambial activity and xylem development of stone pine (Pinus cembra L.) throughout the treeline ecotone. Repeated micro-sampling of the developing tree ring was carried out during the growing seasons 2006 and 2007 at the timberline (1,950 m a.s.l.), treeline (2,110 m a.s.l.) and within the krummholz belt (2,180 m a.s.l.) and the influence of climate variables on intra-annual wood formation was determined. At the beginning of both growing seasons, highest numbers of cambial and enlarging cells were observed at the treeline. Soil temperatures at time of initiation of cambial activity were c. 1.5°C higher at treeline (open canopy) compared to timberline (closed canopy), suggesting that a threshold root-zone temperature is involved in triggering onset of above ground stem growth. The rate of xylem cell production determined in two weekly intervals during June through August 2006–2007 was significantly correlated with air temperature (temperature sums expressed as degree-days and mean daily maximum temperature) at the timberline only. Lack of significant relationships between tracheid production and temperature variables at the treeline and within the krummholz belt support past dendroclimatological studies that more extreme environmental conditions (e.g., wind exposure, frost desiccation, late frost) increasingly control tree growth above timberline. Results of this study revealed that spatial and temporal (i.e., year-to-year) variability in timing and dynamic of wood formation of P. cembra is strongly influenced by local site factors within the treeline ecotone and the dynamics of seasonal temperature variation, respectively.  相似文献   

18.
Summary Starch, soluble sugars, triacylglycerols, diacylglycerols and free fatty acids were measured in 30-year-old Scots pine (Pinus sylvestris L.) trees during an annual cycle in the sapwood (youngest ten xylem rings). The radial distribution of carbohydrates and lipids was studied in the trunkwood of 90 -to 150-year-old Scots pine trees collected at the end of the growing season. Determination of the compounds was performed using specific enzymatic assays, capillary gas chromatography and thin layer chromatography. The amounts of glucose, fructose, sucrose, and galactose/arabinose in the sapwood were slightly higher in winter than in summer. Raffinose/stachyose increased up to 5-fold during the cold period. At the beginning of the growing season starch amounts rose, and then decreased in summer and autumn. No concentration changes were observed in the total amounts of diacylglycerols and fatty acids throughout the year. Triacylglycerol levels were slightly higher in February than in summer and autumn. Relative frequencies of individual fatty acids were similar in all lipid fractions. Glucose, fructose, sucrose, starch and triacylglycerols disappeared almost entirely at the transition zone from sapwood to heartwood. In contrast, free fatty acids and galactose/arabinose rose in centripetal direction, and diacylglycerols remained constant across trunk cross-sections. The relative amounts of individual fatty acids changed markedly in the free fatty acid fraction and in the triacylglycerols when crossing the sapwood-heartwood boundary. Concentration changes of reserve materials are discussed in relation to season, mobilization and translocation processes, dormancy, frost resistance, and heartwood formation. The results are compared to those found in needles.  相似文献   

19.
Summary Different concentrations of indole-3-acetic acid (IAA) in lanolin were applied to the cambial region of approximately 10- and 34-year-old internodes in the main stem of Pinus sylvestris (L.) trees during the tracheid production period. After 5 weeks of treatment, the radial width of xylem produced in both ages of internode was positively related to exogenous IAA concentration measured at 0, 1 and 3 cm directly below the application site. Tracheid production in response to exogenous IAA in the 34-year-old internode was approximately one-half of that in the 10-year-old internode. The endogenous IAA level in the 7-, 17- and approximately 34-year-old internodes of similar trees was measured by radioimmunoassay, using gas chromatography-selected ion monitoring-mass spectrometry for validation. No consistent relationship was found between xylem radial width and IAA concentration. The data indicate that the cambium's ability to respond to exogenous IAA is qualitatively the same in 1-year-old shoots and older internodes. However, as the internode ages, there is a decrease in the extent of the response and in the optimal IAA level for inducing tracheid production.  相似文献   

20.
Three-year-old cloned trees of Cryptomeria japonica D. Don growing in a growth cabinet, in which the temperature, relative humidity and light conditions could be controlled automatically, were irrigated every day or every 3 days. The xylem pressure potential of the leaves was measured using a pressure chamber. The tangential strain of each stem was monitored with a strain gauge. After about 1 month the trees were cut, and the anatomical features of tracheids and cambial cells were observed. In trees irrigated every day, the tangential strain of the stems increased gradually with a regular diurnal pattern. On the other hand, in trees irrigated every 3 days, both the maximum and the minimum tangential strains within a stem increased every 3 days. In both irrigation conditions, the tangential strain showed a minimum value immediately before irrigation, and a maximum value around the onset of light within a day. The fluctuation of xylem pressure potential was similar to that of the tangential strain in both irrigation conditions. Stems of trees irrigated every 3 days shrank and swelled more than those irrigated every day with the same water potential change. The diameter of tracheids produced during the experimental period was larger in trees irrigated every day and smaller in trees irrigated every 3 days than that before the experiment. The number of cell layers of cells in the cell expanding zone and the cambial zone, and the tracheid diameter in the cell expanding zone were smaller in trees irrigated every 3 days than in trees irrigated every day. Received: 1 February 1999 / Accepted: 17 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号