首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
T-cell receptor (TCR) stimulation results in the recruitment and activation of the proteins ZAP70 and Lck. These two proteins have been implicated in signalling derived from interferon receptors, although their precise role in this independent pathway has not been determined fully. These observations raise a fundamental question of how a given protein in a cell can be involved in more than one signalling pathway, yet each pathway is able to produce a highly specific downstream response to its own stimulant. To maintain exclusivity of response, each pathway must isolate its component molecules chemically, spatially or dynamically from other prevailing pathways. To address this question, the proteins ZAP70 and Lck were investigated following stimulation of the interferon-alpha receptor and the TCR in T cells by two different extracellular stimulants: interferon-alpha and the anti-CD3 antibody, OKT3, respectively. We first demonstrate that ZAP70 plays a pivotal role in interferon-stimulated MAPK activation, and that the tyrosine residue at position 319 of ZAP70 is important for interferon-stimulated ERK activation. Translocation of both ZAP70 and Lck to the nucleus following interferon receptor stimulation is demonstrated for the first time. Fluorescence resonance energy transfer microscopy revealed a high degree of spatial localization of the ZAP70/Lck complex within the cell following IFNalpha stimulation, in contrast to a diffuse presence following the application of OKT3. The difference in the spatio-temporal localization of these proteins following stimulation may eliminate signal crosstalk, and could explain the differentiation of the specific downstream responses of these pathways.  相似文献   

3.

Background

To understand complex biological signalling mechanisms, mathematical modelling of signal transduction pathways has been applied successfully in last few years. However, precise quantitative measurements of signal transduction events such as activation-dependent phosphorylation of proteins, remains one bottleneck to this success.

Methodology/Principal Findings

We use multi-colour immunoprecipitation measured by flow cytometry (IP-FCM) for studying signal transduction events to unrivalled precision. In this method, antibody-coupled latex beads capture the protein of interest from cellular lysates and are then stained with differently fluorescent-labelled antibodies to quantify the amount of the immunoprecipitated protein, of an interaction partner and of phosphorylation sites. The fluorescence signals are measured by FCM. Combining this procedure with beads containing defined amounts of a fluorophore allows retrieving absolute numbers of stained proteins, and not only relative values. Using IP-FCM we derived multidimensional data on the membrane-proximal T-cell antigen receptor (TCR-CD3) signalling network, including the recruitment of the kinase ZAP70 to the TCR-CD3 and subsequent ZAP70 activation by phosphorylation in the murine T-cell hybridoma and primary murine T cells. Counter-intuitively, these data showed that cell stimulation by pervanadate led to a transient decrease of the phospho-ZAP70/ZAP70 ratio at the TCR. A mechanistic mathematical model of the underlying processes demonstrated that an initial massive recruitment of non-phosphorylated ZAP70 was responsible for this behaviour. Further, the model predicted a temporal order of multisite phosphorylation of ZAP70 (with Y319 phosphorylation preceding phosphorylation at Y493) that we subsequently verified experimentally.

Conclusions/Significance

The quantitative data sets generated by IP-FCM are one order of magnitude more precise than Western blot data. This accuracy allowed us to gain unequalled insight into the dynamics of the TCR-CD3-ZAP70 signalling network.  相似文献   

4.
The steroidal lactone withaferin A (WFA) is a dietary phytochemical, derived from Withania somnifera. It exhibits a wide range of biological properties, including immunomodulatory, anti-inflammatory, antistress, and anticancer activities. Here we investigated the effect of WFA on T-cell motility, which is crucial for adaptive immune responses as well as autoimmune reactions. We found that WFA dose-dependently (within the concentration range of 0.3–1.25 μM) inhibited the ability of human T-cells to migrate via cross-linking of the lymphocyte function-associated antigen-1 (LFA-1) integrin with its ligand, intercellular adhesion molecule 1 (ICAM-1). Coimmunoprecipitation of WFA interacting proteins and subsequent tandem mass spectrometry identified a WFA-interactome consisting of 273 proteins in motile T-cells. In particular, our data revealed significant enrichment of the zeta-chain-associated protein kinase 70 (ZAP70) and cytoskeletal actin protein interaction networks upon stimulation. Phospho-peptide mapping and kinome analysis substantiated kinase signaling downstream of ZAP70 as a key WFA target, which was further confirmed by bait-pulldown and Western immunoblotting assays. The WFA-ZAP70 interaction was disrupted by a disulfide reducing agent dithiothreitol, suggesting an involvement of cysteine covalent binding interface. In silico docking predicted WFA binding to ZAP70 at cystine 560 and 564 residues. These findings provide a mechanistic insight whereby WFA binds to and inhibits the ZAP70 kinase and impedes T-cell motility. We therefore conclude that WFA may be exploited to pharmacologically control host immune responses and potentially prevent autoimmune-mediated pathologies.  相似文献   

5.
Engagement of the immunoinhibitory receptor, programmed death-1 (PD-1) attenuates T-cell receptor (TCR)-mediated activation of IL-2 production and T-cell proliferation. Here, we demonstrate that PD-1 modulation of T-cell function involves inhibition of TCR-mediated phosphorylation of ZAP70 and association with CD3zeta. In addition, PD-1 signaling attenuates PKCtheta activation loop phosphorylation in a cognate TCR signal. PKCtheta has been shown to be required for T-cell IL-2 production. A phosphorylated PD-1 peptide, corresponding to the C-terminal immunoreceptor tyrosine-switch motif (ITSM), acts as a docking site in vitro for both SHP-2 and SHP-1, while the phosphorylated peptide containing the N-terminal PD-1 immunoreceptor tyrosine based inhibitory motif (ITIM) associates only with SHP-2.  相似文献   

6.
Wang X  Hao J  Metzger DL  Ao Z  Chen L  Ou D  Verchere CB  Mui A  Warnock GL 《PloS one》2012,7(1):e28232
B7-H4 is a newly identified B7 homolog that plays an important role in maintaining T-cell homeostasis by inhibiting T-cell proliferation and lymphokine-secretion. In this study, we investigated the signal transduction pathways inhibited by B7-H4 engagement in mouse T cells. We found that treatment of CD3(+) T cells with a B7-H4.Ig fusion protein inhibits anti-CD3 elicited T-cell receptor (TCR)/CD28 signaling events, including phosphorylation of the MAP kinases, ERK, p38, and JNK. B7-H4.Ig treatment also inhibited the phosphorylation of AKT kinase and impaired its kinase activity as assessed by the phosphorylation of its endogenous substrate GSK-3. Expression of IL-2 is also reduced by B7-H4. In contrast, the phosphorylation state of the TCR proximal tyrosine kinases ZAP70 and lymphocyte-specific protein tyrosine kinase (LCK) are not affected by B7-H4 ligation. These results indicate that B7-H4 inhibits T-cell proliferation and IL-2 production through interfering with activation of ERK, JNK, and AKT, but not of ZAP70 or LCK.  相似文献   

7.
The ZAP70/Syk family of protein tyrosine kinases plays an important role in Ag receptor signaling. Structural similarity of Syk and ZAP70 suggests their functional overlap. Previously, it was observed that expression of either ZAP70 or Syk reconstitutes Ag receptor signaling in Syk-negative B cells. However, in CD45-deficient T cells, Syk, but not ZAP70, restores T cell receptor-signaling pathway. To study the function of Syk, ZAP70, and CD45 in mast cells, a Syk/CD45 double-deficient variant of RBL-2H3 cells was characterized. After transfection, stable cell lines were isolated that expressed ZAP70, Syk, CD45, ZAP70 plus CD45, and Syk plus CD45. IgE stimulation did not induce degranulation in parental double-deficient cells, nor in the cells expressing only CD45. ZAP70 expression did not restore Fc epsilon RI signaling unless CD45 was coexpressed in the cells. However, Syk alone restored the IgE signal transduction pathway. The coexpression of CD45 with Syk had no significant effects on the responses to FcepsilonRI-aggregation. There was much better binding of Syk than ZAP70 to the phosphorylated Fc epsilon RI gamma-ITAM. Furthermore, unlike Syk, ZAP70 required CD45 to display receptor-induced increase in kinase activity. Therefore, in mast cells, ZAP70, but not Syk, requires CD45 for Ag receptor-induced signaling.  相似文献   

8.
Signaling by the antigen receptor of T lymphocytes initiates different developmental transitions, each of which require the tyrosine kinase ZAP70. Previous studies with agonist and antagonist peptides have indicated that ZAP70 might respond differently to different structures of the TCR-CD3 complex induced by bound peptides. The roles of membrane proximity and orientation in activation of ZAP70 signaling were explored using synthetic ligands and their binding proteins designed to produce different architectures of membrane-bound complexes composed of ZAP70 fusion proteins. Transient membrane recruitment of physiological levels of ZAP70 with the membrane-permeable synthetic ligand FK1012A leads to rapid phosphorylation of ZAP70 and activation of the ras/MAPK and Ca2+/calcineurin signaling pathways. ZAP70 SH2 domains are not required for signaling when the kinase is artifically recruited to the membrane, indicating that the SH2 domains function solely in recruitment and not in kinase activation. Using additional synthetic ligands and their binding proteins that recruit ZAP70 equally well but orient it at the cell membrane in different ways, we define a requirement for a specific presentation of ZAP70 to its downstream targets. These results provide a mechanism by which ZAP70, bound to the phosphorylated receptor, could discriminate between conformational changes induced by the binding of different MHC-peptide complexes to the antigen receptor and introduce an approach to exploring the role of spatial orientation of signaling complexes in living cells.  相似文献   

9.
Very few selective inhibitors of the zeta-chain associated protein kinase 70 kDa (ZAP70) have been reported despite its importance in autoimmune diseases. Here, to induce a fit of the so-called gatekeeper residue (Met414) and hydrophobic pocket next to it, a potent Janus kinase 2 (JAK2) inhibitor was first docked into the ATP binding site of ZAP70 by structural alignment of the kinase domains. The resulting model of the complex between ZAP70 and the JAK2 inhibitor was then relaxed by an explicit solvent molecular dynamics simulation with restraints on the backbone atoms. High-throughput docking into the induced-fit conformation of ZAP70 generated by molecular dynamics has revealed 10 low-micromolar inhibitors which correspond to six distinct chemotypes. One of these ZAP70 inhibitors has an IC50 of 110 nM for JAK2.  相似文献   

10.
11.
Activated chemokine receptor initiates inside-out signaling to transiently trigger activation of integrins, a process involving multiple components that have not been fully characterized. Here we report that GM-CSF/IL-3/IL-5 receptor common beta-chain-associated protein (CBAP) is required to optimize this inside-out signaling and activation of integrins. First, knockdown of CBAP expression in human Jurkat T cells caused attenuated CXC chemokine ligand-12 (CXCL12)-induced cell migration and integrin α4β1- and αLβ2-mediated cell adhesion in vitro, which could be rescued sufficiently upon expression of murine CBAP proteins. Freshly isolated CBAP-deficient primary T cells also exhibited diminution of chemotaxis toward CC chemokine ligand-21 (CCL21) and CXCL12, and these chemokines-induced T-cell adhesions in vitro. Adoptive transfer of isolated naive T cells demonstrated that CBAP deficiency significantly reduced lymph node homing ability in vivo. Finally, migration of T cell-receptor–activated T cells induced by inflammatory chemokines was also attenuated in CBAP-deficient cells. Further analyses revealed that CBAP constitutively associated with both integrin β1 and ZAP70 and that CBAP is required for chemokine-induced initial binding of the talin-Vav1 complex to integrin β1 and to facilitate subsequent ZAP70-mediated dissociation of the talin-Vav1 complex and Vav1 phosphorylation. Within such an integrin signaling complex, CBAP likely functions as an adaptor and ultimately leads to activation of both integrin α4β1 and Rac1. Taken together, our data suggest that CBAP indeed can function as a novel signaling component within the ZAP70/Vav1/talin complex and plays an important role in regulating chemokine-promoted T-cell trafficking.  相似文献   

12.
13.
The protein tyrosine kinase zeta-chain associated protein kinase (ZAP70), normally expressed in T cells and a subset of B cells, is solely expressed in poor prognosis chronic lymphocytic leukaemia and implicated in enhanced B cell receptor signalling. As a result, the expression of this protein provides an ideal prognostic marker for the disease. A previous study has shown differential CpG methylation of a 5' region of ZAP70 in leukaemic lymphoid cells, although no further epigenetic studies have been reported. Further investigation into the expression of ZAP70 may therefore provide targets for therapies.  相似文献   

14.
The protein Daxx promotes Fas-mediated cell death through activation of apoptosis signal-regulating kinase 1, leading to the activation of the MAPKs JNK and p38. Owing to the in utero lethality of daxx-deficient mice, the in vivo role of Daxx has been so far difficult to analyze. We have generated transgenic mice expressing a dominant-negative form of Daxx (Daxx-DN) in the T-cell lineage. We show that Daxx is recruited to the Fas receptor upon FasL engagement and that Daxx-DN expression protects activated T cells from Fas-induced cell death, by preventing the death-inducing signal complex to be properly formed. Normal lymphocyte development and homeostasis are nevertheless observed. Interestingly, we report that both in vitro and in vivo stimulation of Daxx-DN T-lymphocytes leads to increased proliferative T-cell responses. This increased proliferation is associated with a marked increase in tyrosine phosphorylation of LAT and ZAP70 as Daxx-DN favor their recruitment to the T-cell receptor (TCR) complex. These findings identify Daxx as a critical regulator of T-lymphocyte homeostasis by decreasing TCR-induced cell proliferation and by promoting Fas-mediated cell death.  相似文献   

15.
16.
The non-receptor tyrosine kinase Syk (spleen tyrosine kinase) is a pharmaceutical relevant target because its over-activation is observed in several autoimmune diseases, allergy, and asthma. Here we report the identification of two novel inhibitors of Syk by high-throughput docking into a rare C-helix-out conformation published recently. Interestingly, both compounds are slightly more active on ZAP70 (Zeta-chain-associated protein kinase 70), which is the kinase closest to Syk in the phylogenetic tree of human kinases. Taken together, the docking pose and experimental results suggest that the higher affinity of the inhibitors for ZAP70 than Syk originates from a more populated C-helix-out conformation in ZAP70. The latter observation is congruent with the 100-fold lower intrinsic activity of ZAP70 than Syk, as the C-helix-out conformation is inactive. The pharmacophore features of DFG-in, C-helix-out compounds are analyzed in relation to DFG-out inhibitors.  相似文献   

17.
We identified a novel cDNA encoding truncated ZAP-70, which lacked the SH2 domain and a part of interdomain B, and named it truncated ZAP kinase (TZK). TZK was expressed in the thymus, spleen, and lymph nodes with ZAP-70. TZK was expressed in CD44+CD25 thymocytes up to mature T cells, but ZAP-70 was not expressed in CD44+CD25 or CD44+CD25+ thymocytes. ZAP-70 or TZK was transfected into P116 cells derived from a Jurkat T-cell line deficient in ZAP-70. The P116 cells with ZAP-70 induced the T-cell receptor-mediated signal transduction, but the cells expressing TZK did not. While ZAP-70 was accumulated at the immune synapse, TZK was not. Meanwhile, impaired phosphorylation of SLP-76, one of the substrates of ZAP-70, in P116 cells upon pervanadate stimulation was rescued in the cells expressing TZK. These findings show that TZK is a novel isoform of ZAP-70, which is expressed in pre-T-cell receptor-minus thymocytes and functions as a kinase not associated with T-cell receptor.  相似文献   

18.
The linker region of Syk and ZAP70 tyrosine kinases plays an important role in regulating their function. There are three conserved tyrosines in this linker region; Tyr317 of Syk and its equivalent residue in ZAP70 were previously shown to negatively regulate the function of Syk and ZAP70. Here we studied the roles of the other two tyrosines, Tyr342 and Tyr346 of Syk, in Fc epsilon RI-mediated signaling. Antigen stimulation resulted in Tyr342 phosphorylation in mast cells. Syk with Y342F mutation failed to reconstitute Fc epsilon RI-initiated histamine release. In the Syk Y342F-expressing cells there was dramatically impaired receptor-induced phosphorylation of multiple signaling molecules, including LAT, SLP-76, phospholipase C-gamma2, but not Vav. Compared to wild-type Syk, Y342F Syk had decreased binding to phosphorylated immunoreceptor tyrosine-based activation motifs and reduced kinase activity. Surprisingly, mutation of Tyr346 had much less effect on Fc epsilon RI-dependent mast cell degranulation. An anti-Syk-phospho-346 tyrosine antibody indicated that antigen stimulation induced only a very minor increase in the phosphorylation of this tyrosine. Therefore, Tyr342, but not Tyr346, is critical for regulating Syk in mast cells and the function of these tyrosines in immune receptor signaling appears to be different from what has been previously reported for the equivalent residues of ZAP70.  相似文献   

19.
Chromosomal abnormalities and ZAP70 expression profile are two major independent prognostic markers in B-cell chronic lymphocytic leukemia. We investigated a possible correlation between these two markers. ZAP70 expression using real-time RT-PCR was examined in 20 B-cell chronic lymphocytic leukemia patients with del13q14, 13 patients with del11q22, 15 patients with trisomy 12, and 16 patients with no detected chromosomal abnormalities. Molecular analysis revealed that ZAP70 expression in the del13q subgroup was the same as in the control group, while it increased 2.78-fold in the del11q subgroup and 2.95-fold in the trisomy 12 subgroup, compared to the 15 cases in the control group. Comparison of the mean and standard deviation of the ZAP70 expression profile within the subgroups showed it to be highly variable among the individuals of the del11q and trisomy 12 subgroups, versus tight clustering for the del13q subgroup. Therefore, there is a correlation between del13q aberration, which has good prognosis with normal levels of ZAP70 expression. Due to a high degree of variation, no conformity is seen for del11q and trisomy 12 subgroups, making this grouping poor for prognostic discrimination. As a result, neither of these markers can serve as sole discriminators to determine the course of the disease; the use of both markers improves prognostic assessment.  相似文献   

20.
In addition to engagement of the T cell receptor-CD3 complex, T lymphocytes can be activated by a variety of cell surface molecules including the approximately 50-kDa surface receptor CD2. While the majority of biochemical signaling elements are triggered by either CD2 or TcR-CD3 receptors, a small number of proteins are engaged by only one receptor. Recently, p62(dok) (Dok1), a member of the Dok family of adapter molecules, has been reported to be activated by CD2 and not by CD3 engagement. Here we have examined the role of p62(dok) in CD2-dependent signaling in Jurkat T cells. As previously reported, we find that ligation of the CD2 molecule by mitogenic pairs of anti-CD2 mAbs led to phosphorylation of p62(dok). While CD2-induced p62(dok) tyrosine phosphorylation was independent of both the p36/38 membrane adapter protein linker of activated T cells (LAT) and the ZAP70/Syk family of kinases, it was dependent upon the Src family of kinases including Lck and Fyn. We find further that CD2 engagement induced the association of tyrosine-phosphorylated p62(dok) to Crk-L. The CD2-dependent association of p62(dok) to Crk-L was independent of expression of the ZAP70/Syk family of kinases. Of note, while T cell receptor-CD3 engagement did not induce either p62(dok) phosphorylation or Crk-L association in Jurkat T cells, it did inhibit CD2-dependent p62(dok)-Crk-L complexes; this TcR-CD3-mediated regulation was dependent upon ZAP70 kinase activity. Our data suggest that phosphorylation of p62(dok) and its interaction with other signaling proteins may depend upon integrated signals emanating from the CD2 receptor, utilizing a ZAP70/LAT-independent pathway, and the TcR-CD3 receptor, which is ZAP70/Syk-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号