首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hairpin ribozyme is a short endonucleolytic RNA motif isolated from a family of related plant virus satellite RNAs. It consists of two independently folding domains, each comprising two Watson-Crick helices flanking a conserved internal loop. The domains need to physically interact (dock) for catalysis of site-specific cleavage and ligation reactions. Using tapping-mode atomic force microscopy in aqueous buffer solution, we were able to produce high quality images of individual hairpin ribozyme molecules with extended terminal helices. Three RNA constructs with either the essential cleavage site guanosine or a detrimental adenosine substitution and with or without a 6-nt insertion to confer flexibility to the interdomain hinge show structural differences that correlate with their ability to form the active docked conformation. The observed contour lengths and shapes are consistent with previous bulk-solution measurements of the transient electric dichroism decays for the same RNA constructs. The active docked construct appears as an asymmetrically docked conformation that might be an indication of a more complicated docking event than a simple collapse around the interdomain hinge.  相似文献   

2.
The negative strand of the satellite RNA of tobacco ringspot virus (sTobRV(-)) contains a hairpin catalytic domain that shows self-cleavage and self-ligation activities in the presence of magnesium ions. We describe here that the minimal catalytic domain can catalyze a cross-ligation reaction between two kinds of substrates in trans. The cross-ligated product increased when the reaction temperature was decreased during the reaction from 37 degrees C to 4 degrees C. A two-stranded hairpin ribozyme, divided into two fragments between G45 and U46 in a hairpin loop, showed higher ligation activity than the nondivided ribozyme. The two stranded ribozyme also catalyzed an exchange reaction of the 3'-portion of the cleavage site.  相似文献   

3.
The electric dichroism of alpha-chymotrypsin has been measured in a buffer containing 0.1 M Na(+), 10 mM Mg(2+) and 25 mM Tris-cacodylate pH 7.2. The reduced dichroism as a function of the electric field strength can be represented by the orientation function for permanent dipoles and is not consistent with the orientation function for induced dipoles. After correction for the internal directing field, the dipole moment is 1.1 x 10(-27) Cm (+/- 10%), corresponding to 340 D, at 20 degrees C. The assignment of the permanent dipole moment is confirmed by the shape of the dichroism rise curves, which require two exponentials with amplitudes of opposite sign for fitting. The dichroism decay time constants measured in the range of temperatures between 2 and 30 degrees C indicate a temperature induced change of the structure, which is equivalent to an increase of the hydrodynamic radius from r = 26.6 A at 2 degrees C to 28.5 A at 30 degrees C. Our results demonstrate that electrooptical investigations of proteins with a high time resolution can be extended to physiological salt concentrations without serious problems by use of appropriate instruments.  相似文献   

4.
The hairpin ribozyme (HPR) is a naturally existing RNA that catalyzes site-specific RNA cleavage and ligation. At 37 degrees C and in the presence of divalent metal ions (M(2+)), the HPR efficiently cleaves RNA substrates in trans. Here, we show that the HPR can catalyze efficient M(2+)-independent ligation in trans in aqueous solutions containing any of several alcohols, including methanol, ethanol, and isopropanol, and millimolar concentrations of monovalent cations. Ligation proceeds most efficiently in 60% isopropanol at 37 degrees C, whereas the reverse (cleavage) reaction is negligible under these conditions. We suggest that dehydration of the RNA is the key factor promoting HPR activity in water- alcohol solutions. Alcohol-induced ribozyme ligation may have practical applications.  相似文献   

5.
Dichroism decay curves of DNA fragments with chain lengths in the range of 179-256 bp show an amplitude inversion suggesting the existence of a positive dichroism component, when these fragments are dissolved at monovalent salt concentrations above approx. 5 mM and are exposed to field pulses with amplitudes and/or lengths above critical values. At the critical values, the unusual dichroism is reflected by an apparent acceleration of the decay curves, which can be fitted by single exponentials with time constants much below the values expected from the DNA contour lengths. The critical pulse amplitudes and lengths decrease with increasing DNA chain length and increasing salt concentration. The experimental data are consistent with results obtained by hydrodynamic and electric model calculations on smoothly bent DNA double helices. The DNA is represented by a string of overlapping beads, which is used to calculate the rotational diffusion tensor and the center of diffusion. The distribution of phosphate charges is asymmetric with respect to this center and thus gives rise to a substantial permanent dipole moment. The magnitude of this dipole moment is calculated as a function of DNA curvature and is used together with experimental values of polarizabilities for simulations of dichroism decay curves. The curves simulated for bent DNA show the same phenomenon as observed experimentally. The ionic strength dependence of the unusual dichroism is explained by an independently observed strong decrease of the polarizability with increasing salt concentration. The field strength dependence is probably due to field-induced bending of double helices driven by the change of the dipole moment. Although our calculations are on rigid models of DNA and thus any flexibility of the double helix has not been considered, we conclude that the essential part of our experimental results can be explained by our model.  相似文献   

6.
The hairpin ribozyme is a small self-cleaving RNA that can be engineered for RNA cleavage in trans and has potential as a therapeutic agent. We have used a chemical synthesis approach to study the requirements of hairpin RNA cleavage for sugar and base moieties in residues of internal loop B, an essential region in one of the two ribozyme domains. Individual nucleosides were substituted by either a 2'-deoxy-nucleoside, an abasic residue, or a C3-spacer (propyl linker) and the abilities of the modified ribozymes to cleave an RNA substrate were studied in comparison with the wild-type ribozyme. From these results, together with previous studies, we propose a new model for the potential secondary structure of internal loop B of the hairpin ribozyme.  相似文献   

7.
The hairpin ribozyme is a small catalytic RNA comprised of two internal loops carried on two adjacent arms of a four-way helical junction (4WJ). To achieve catalytic activity, the ribozyme folds into a compact conformation that facilitates the formation of tertiary interactions between the two loops. We have investigated the folding kinetics of the natural 4WJ form of the hairpin ribozyme, as well as a minimal construct consisting of just the two loop-containing duplexes, by means of stopped-flow fluorescence resonance energy transfer between donor and acceptor probes attached to the ends of the loop-bearing arms. Folding was initiated by the addition of Mg(2+) ions or a pseudosubstrate strand to the ribozyme, and the ensuing changes in the emission of both donor and acceptor were monitored over time. Both ribozyme constructs exhibited slow, biphasic kinetic behavior, attributed to two parallel folding pathways leading to compact, docked structures. Two distinct folding rates were observed across a range of Mg(2+) concentrations, and increasing amounts of Mg(2+) accelerated both rates. Notably, both rates were essentially independent of temperature, indicating that the corresponding activation enthalpies were negligible, in contrast to the large activation enthalpies generally observed for RNA folding processes. Instead, the slow folding was due to unfavorable entropy changes in reaching the transition state, indicating that the ribozyme tertiary structure forms through a slow conformational search. These features were observed in both forms of the ribozyme, indicating that the conformational search is confined to the two loop regions and is largely independent of the overall ribozyme architecture. Conformational search may be a general mechanism of tertiary structure formation in RNA.  相似文献   

8.
The hairpin ribozyme reversibly cleaves phosphodiesters of RNA substrates to generate products with 5' hydroxyl and 2',3'-cyclic phosphate termini. We previously found that the rate constant for ligation is tenfold faster than the rate constant for cleavage under standard conditions. The hammerhead ribozyme catalyzes the same reactions but is reported to favor cleavage relative to ligation by more than 100-fold under the same conditions. To explore the basis for this difference, we examined the influence of temperature, ions and pH on the hairpin ribozyme internal equilibrium. Under the same conditions, the loss of entropy associated with ligation is less for the hairpin than for the hammerhead ribozyme, consistent with the notion that a more rigid hairpin structure undergoes a smaller decrease in dynamics upon ligation than the more flexible hammerhead structure. Increased salt and reduced temperature shift the equilibrium toward ligation while pH has little effect, suggesting that conditions that stabilize RNA structure tend to promote ligation. The hairpin ribozyme appears to take up at least one tri- or divalent cation or two monovalent cations upon ligation. The efficiency with which different cations promote ligation depends strongly on valence and, less strongly, on ionic radius or electronegativity. This pattern of cation selectivity suggests that cations promote ligation through delocalized electrostatic shielding, perhaps interacting with a region of especially high charge density in the ligated ribozyme. Changes in ionic conditions produce large but compensating changes in enthalpy and entropy for cleavage and ligation. Thus, in addition to any increase in ribozyme dynamics associated with cleavage, re-organization of associated cations contributes significantly to hairpin ribozyme thermodynamics.  相似文献   

9.
The hairpin ribozyme is an example of a small catalytic RNA that catalyses the endonucleolytic transesterification of RNA in a highly sequence-specific manner. We have utilised chemical synthesis of RNA to create mutants of the hairpin ribozyme in which a nucleoside analogue replaces one of the essential pyrimidines in the ribozyme. Individual pyrimidine nucleosides were substituted by 4-thiouridine, O4-methyluridine, O2-methyluridine or 2-pyrimidinone-1-beta-d-riboside. To facilitate the synthesis of oligoribonucleotides containing 4-thiouridine, we have devised a new synthetic route to the key intermediate 5'-O-(4, 4'-dimethoxytrityl)-2'-O-tert-butyldimethylsilyl-S-cyanoethyl-4-thiou ridine. The ability of the modified ribozymes to support catalysis was studied and the steady-state kinetic parameters were determined for each mutant. The range of analogues used in this study allows the important functional groups of the essential pyrimidines to be identified. The results demonstrate that each pyrimidine (U41, U42 and C25) plays an important role in hairpin ribozyme catalysis. The findings are discussed in terms of the various models that have been proposed for loop B of the hairpin ribozyme.  相似文献   

10.
Structure and function of the hairpin ribozyme   总被引:18,自引:0,他引:18  
The hairpin ribozyme belongs to the family of small catalytic RNAs that cleave RNA substrates in a reversible reaction that generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. The hairpin catalytic motif was discovered in the negative strand of the tobacco ringspot virus satellite RNA, where hairpin ribozyme-mediated self-cleavage and ligation reactions participate in processing RNA replication intermediates. The self-cleaving hairpin, hammerhead, hepatitis delta and Neurospora VS RNAs each adopt unique structures and exploit distinct kinetic and catalytic mechanisms despite catalyzing the same chemical reactions. Mechanistic studies of hairpin ribozyme reactions provided early evidence that, like protein enzymes, RNA enzymes are able to exploit a variety of catalytic strategies. In contrast to the hammerhead and Tetrahymena ribozyme reactions, hairpin-mediated cleavage and ligation proceed through a catalytic mechanism that does not require direct coordination of metal cations to phosphate or water oxygens. The hairpin ribozyme is a better ligase than it is a nuclease while the hammerhead reaction favors cleavage over ligation of bound products by nearly 200-fold. Recent structure-function studies have begun to yield insights into the molecular bases of these unique features of the hairpin ribozyme.  相似文献   

11.
The hairpin ribozyme   总被引:4,自引:0,他引:4  
The hairpin ribozyme is a member of a family of small RNA endonucleases, which includes hammer-head, human hepatitis delta virus, Neurospora VS, and the lead-dependent catalytic RNAs. All these catalytic RNAs reversibly cleave the phosphodiester bond of substrate RNA to generate 5'-hydroxyl and 2',3'-cyclic phosphate termini. Whereas the reaction products from family members are similar, large structural and mechanistic differences exist. Structurally the hairpin ribozyme has two principal domains that interact to facilitate catalysis. The hairpin ribozyme uses a catalytic mechanism that does not require metals for cleavage or ligation of substrate RNA. In this regard it is presently unique among RNA catalysts. Targeting rules for cleavage of substrate have been determined and required bases for catalysis have been identified. The hairpin ribozyme has been developed and used for gene therapy and was the first ribozyme to be approved for human clinical trials.  相似文献   

12.
13.
M J Fedor 《Biochemistry》1999,38(34):11040-11050
The hairpin ribozyme catalyzes a reversible RNA cleavage reaction that participates in processing intermediates of viral satellite RNA replication in plants. A minimal hairpin ribozyme consists of two helix-loop-helix segments. These segments associate noncoaxially in the active folded structure in a way that brings catalytically important loop nucleotides into close proximity. The hairpin ribozyme in the satellite RNA of Tobacco Ringspot Virus assembles in the context of a four-way helical junction. Recent physical characterization of hairpin ribozyme structures using fluorescence resonance energy transfer demonstrated enhanced stability of the folded structure in the context of a four-way helical junction compared to minimal hairpin ribozyme variants. Analysis of the functional consequences of this modification of the helical junction has revealed two changes in the hairpin ribozyme kinetic mechanism. First, ribozymes with a four-way helical junction bind 3' cleavage products with much higher affinity than minimal hairpin ribozymes, evidence that tertiary interactions within the folded structure contribute to product binding energy. Second, the balance between ligation and cleavage shifts in favor of ligation. The enhanced ligation activity of hairpin ribozymes that contain a four-way helical junction supports the notion that tertiary structure stability is a major determinant of the hairpin ribozyme proficiency as a ligase and illustrates the link between RNA structure and biological function.  相似文献   

14.
The hairpin ribozyme is a small catalytic RNA that has been reengineered resulting in a number of variants with extended or even new functions. Thus, manipulation of the hairpin ribozyme structure has allowed for activity control by external effectors, namely oligonucleotides, flavine mononucleotide, and adenine. Hairpin ribozyme-derived twin ribozymes that mediate RNA fragment exchange reactions as well as self-processing hairpin ribozymes were designed. Furthermore, several hairpin ribozyme variants have been engineered for knock down of specific RNA substrates by adapting the substrate-binding domain to the specific target sequence. This review will focus on hairpin ribozymes possessing structural extensions/variations and thus functionally differing from the parent hairpin ribozyme.  相似文献   

15.
Efficient ribozyme-mediated gene silencing requires the effective binding of a ribozyme to its specific target sequence. Stable stem-loop domains are key elements for efficiency of natural antisense RNAs. This work tests the possibility of using such naturally existing structural motifs for anchoring hairpin ribozymes when targeting long RNAs. Assays were performed with four catalytic antisense RNAs, based on the hairpin ribozyme (HP), that carried a stable stem-loop motif at their 3' end. Extensions consisted of one of the following motifs: the stem-loop II of the natural antisense RNA-CopA, its natural target in CopT, the TAR-RNA motif, or its complementary sequence alphaTAR. Interestingly, the presence of any of these antisense motifs resulted in an enhancement of catalytic performance against the ribozyme's 14-nucleotide-long target RNA (Swt). A series of artificial, long RNA substrates containing the Swt sequence and the natural TAR-RNA stem-loop were constructed and challenged with a catalytic antisense RNA carrying the TAR-complementary stem-loop. This cleaves each of these substrates significantly more efficiently than HP. The deletion of the TAR domain in the substrate, or its substitution by its complementary counterpart alphaTAR, abolishes the positive effect. These results suggest that the enhancement is owed to the interaction of both complementary stem-loop domains. Moreover, they demonstrate that the TAR domain can be used as an anchoring site to facilitate the access of hairpin ribozymes to their specific target sequences within TAR-containing RNAs.  相似文献   

16.
根据锤头型核酶的作用模式 ,设计、合成和克隆了特异切割苹果锈果类病毒ASSVd正链 (194-196位点 )或负链 (89- 91位点 )RNA的 2个短臂锤头型核酶基因 :42nt的RzASSVd(+)和 40nt的RzASSVd(- )。经转录获得核酶转录物和32P标记的ASSVd正、负链转录物。将核酶与ASSVd混合 ,50℃或 37℃保温 3~ 4h ,进行 8%PAGE(含8mol L尿素 )和放射自显影分析。体外切割检测表明 :2个核酶均具有特异切割活性 ,其中RzASSVd(- )对ASSVd负链的切割活性较高 ,对ASSVd正链不起作用。RzASSVd(+)对ASSVd正链的切割活性较弱 ,对ASSVd负链亦不起作用。在此基础上 ,构建得到双价核酶基因pGEMRzASSVd(± )。  相似文献   

17.
The hairpin ribozyme derived from the minus strand of the satellite RNA associated with the tobacco ringspot virus is one of the small catalytic RNAs that has been shown to catalyze trans-cleavage reactions. There is much interest in designing hairpin ribozymes with improved catalytic activity for the development of new therapeutic agents. Extensive mutagenesis studies as well as in vitro selection experiments have been performed to define the structure and optimize its catalytic activity. This communication describes a comparative kinetic analysis of four structural variants, introduced, either alone, or in combination, into the hairpin ribozyme. We have shown that extension of the helix 2 from 4 to 6 bp resulted in a significant decrease in K(M). Furthermore, the combination of this extension with the simultaneous stabilization of helix 4, led to a more than two-fold increase in the catalytic efficiency. This variant showed a 15-fold reduction in the K(M) value in respect to the wild-type ribozyme. This could be of great interest for the in vivo application of this catalytic motif. The 9-bp enlargement of helix 4 implied about a three-fold improvement in the catalytic activity. Similarly, the U39C substitution brought up the efficiency of the ribozyme slightly. However, introduction of nucleotides at the hinge region between A and B domains reduced the catalytic activity. This reduction was gradually increased with the number of nucleotides. Results obtained with variants carrying more than one modification always agreed with the ones obtained from each single variant.  相似文献   

18.
The hairpin ribozyme catalyses RNA cleavage by a mechanism utilizing its conformational flexibility during the docking of two independently folded internal loop domains A and B. Based on this mechanism, we designed hairpin ribozyme variants that can be induced or repressed by external effector oligonucleotides influencing the docking process. We incorporated a third domain C to assimilate alternate stable RNA motifs such as a pseudo-half-knot or an internal stem-loop structure. Small sequence changes in domain C allowed targeted switching of ribozyme activity: the same effector oligonucleotide can either serve as an inducer or repressor. The ribozymes were applied to trp leader mRNA, the RNA sequence tightly bound by l-tryptophan-activated trp-RNA-binding attenuation protein (TRAP). When domain C is complementary to this mRNA, ribozyme activity can be altered by annealing trp leader mRNA, then specifically reverted by its TRAP/tryptophan-mediated sequestration. This approach allows to precisely sense the activity status of a protein controlled by its metabolite molecule.  相似文献   

19.
Structure and dynamics of double helices in solution: modes of DNA bending   总被引:4,自引:0,他引:4  
The long range structure of DNA restriction fragments has been analysed by electro-optical measurements. The overall rotation time constants observed in a low salt buffer with monovalent ions is shown to decrease upon addition of Mg2+ or spermine. Since the circular dichroism and also the limiting value of the linear dichroism remain almost constant under these conditions, the effect is attributed to a change of the long range structure. According to a weakly bending rod model, the persistence length decreases from about 600 A in the absence of Mg2+ or spermine to about 350 A in the presence of these ions. The persistence length measured in the presence of Mg2+ is almost independent of temperature in the range of 10 to 40 degrees C. The nature of DNA bending is analysed by measurements of bending amplitudes and time constants from dichroism decay curves. The observed absence of changes in the bending amplitudes upon addition of Mg2+ or spermine, even though addition induces changes of the persistence length by a factor of 2, is hardly consistent with simple thermal bending. The combined results, including the remarkably small temperature dependence of persistence length and bending amplitude, can be explained by the existence of two bending effects: inherent curvature of DNA dominates at low temperature, whereas thermal bending prevails at high temperature. Analysis of bending amplitudes from dichroism decay curves according to an arc model provides an approximate measure for the degree of bending in restriction fragments. The model is consistent with the observed chain length dependence of bending amplitudes and provides an approximate curvature corresponding to a radius of about 400 A. Thus the curvature observed in restriction fragments is similar to that observed for high molecular DNA condensed into toroids by addition of ions like spermine. Particularly strong bending of DNA is induced by [Co(NH3)6]3+, indicated by an apparent persistence length of 200 A and an increased bending amplitude together with a reduced limit value of the linear dichroism. This effect is attributed to the high charge density of this ion and potential site binding.  相似文献   

20.
This work is an in vitro study of the efficiency of catalytic antisense RNAs whose catalytic domain is the wild-type sequence of the hairpin ribozyme, derived from the minus strand of the tobacco ringspot virus satellite RNA. The sequence in the target RNA recognized by the antisense molecule was the stem-loop structure of the human immunodeficiency virus-1 (HIV-1) TAR region. This region was able to form a complex with its antisense RNA with a binding rate of 2 x 10(4) M(-1)s(-1). Any deletion of the antisense RNA comprising nucleotides of the stem-loop resulted in a decrease in binding rate. Sequences 3' of the stem in the sense RNA also contributed to binding. This stem-loop TAR-antisense segment, covalently linked to a hairpin ribozyme, enhanced its catalytic activity. The highest cleavage rate was obtained when the stem-loop structure was present in both ribozyme and substrate RNAs and they were complementary. Similarly, an extension at the 5'-end of the hairpin ribozyme increased the cleavage rate when its complementary sequence was present in the substrate. Inclusion of the stem-loop at the 3'-end and the extension at the 5'-end of the hairpin ribozyme abolished the positive effect of both antisense units independently. These results may help in the design of hairpin ribozymes for gene silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号