共查询到20条相似文献,搜索用时 15 毫秒
1.
Separation of bacteriochlorophyll homologues from green photosynthetic sulfur bacteria by reversed-phase HPLC 总被引:2,自引:0,他引:2
A reversed-phase High Performance Liquid Cromatography (HPLC) method has been developed to accurately separate bacteriochlorophyllsc, d ande homologues in a reasonably short run time of 60 minutes. By using this method, two well-defined groups of bacteriochlorophyll homologue peaks can be discriminated. The first one consists of 4 peaks (min 24 to 30), which corresponds to the four main farnesyl homologues. The second peak subset is formed by a cluster of up to 10 minor peaks (min 33 to 40). These peaks can be related with series of several alcohol esters of the different chlorosome chlorophylls. The number of homologues was, however, quite variable depending on both, the bacteriochlorophyll and the bacterial species. The method hereby described, also provides a good separation of other photosynthetic pigments, either bacterial (Bacteriochlorophylla, chlorobactene, isorenieratene and okenone) or algal ones (Chlorophylla, Pheophytina and -carotene). A preliminary screening of the homologue composition of several green photosynthetic bacterial species and isolates, has revealed different relative quantitative patterns. These differences seem to be related to physiological aspects rather than to taxonomic ones. The application of the method to the study of natural populations avoids the typical drawbacks on the pigment identification of overlapping eukaryotic and prokaryotic phototrophic microorganisms, giving further information about their physiological status. 相似文献
2.
Detailed APCI LC-MS/MS analysis using an improved HPLC separation reveals the green sulphur bacterium Chlorobium phaeobacteroides strain UdG6053 to contain a wider range of distinct bacteriochlorophyll homologues than has been previously recognised in
Chlorobiaceae. The diversity in the homologue distribution is confirmed as arising from differences in the extent of alkylation
of the macrocycle and variation in the nature of the esterifying alcohol and a novel series of bacteriochlorophyll structures
has been recognised. Homologues containing esterifying alcohols other than farnesol, a number of which have not previously
been reported in Chlorobiaceae, are present in high relative abundance. Confirmation of the structures of the esterifying
alcohols has been obtained by hydrolysis and analysis by GC-MS.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
3.
Stephan C. M. Otte Jos C. van der Heiden Norbert Pfennig Jan Amesz 《Photosynthesis research》1991,28(2):77-87
Energy transfer and pigment arrangement in intact cells of the green sulfur bacteria Prosthecochloris aestuarii, Chlorobium vibrioforme and chlorobium phaeovibrioides, containing bacteriochlorophyll (BChl) c, d or e as main light harvesting pigment, respectively, were studied by means of absorption, fluorescence, circular dichroism and linear dichroism spectroscopy at low temperature. The results indicate a very similar composition of the antenna in the three species and a very similar structure of main light harvesting components, the chlorosome and the membrane-bound BChl a protein. In all three species the Qy transition dipoles of BChl c, d or e are oriented approximately parallel to the long axis of the chlorosome. Absorption and fluorescence excitation spectra demonstrate the presence of at least two BChl c-e pools in the chlorosomes of all three species, long-wavelength absorbing BChls being closest to the membrane. In C. phaeovibrioides, energy from BChl e is transferred with an efficiency of 25% to the chlorosomal BChl a at 6 K, whereas the efficiency of transfer from BChl e to the BChl a protein is 10%. These numbers are compatible with the hypothesis that the chlorosomal BChl a is an intermediary in the energy transfer from the chlorosome to the membrane.Abbreviations BChl
bacteriochlorophyll
- Chl
chlorophyll
- CD
circular dichroism
- LD
linear dichroism 相似文献
4.
The effect of light quality on the selection of natural populations of Green Sulfur Bacteria (Chlorobiaceae) is considered to be a classic factor in the determination of their ecological niches. From the comparison among phototrophic bacterial populations of lakes, it is shown that brown and green pigmented groups of Chlorobiaceae have a differential distribution depending on depth. Statistical analyses prove that green species, which dominate at shallow oxic/anoxic boundaries, are correlated to light spectra enriched in long wavelengths, while brown ones are found when light spectra are enriched in the central region of the spectrum, as in deeper lake layers. Physiological experiments have been made withChlorobium limicola andC. phaeobacteroides cultures placed under different light quality conditions, in order to verify these hypotheses made on a field data basis. Results show that red and white light has more positive effects on the green bacterium than on the brown. Blue and green light illuminations have opposite consequences. Therefore, the effect of shallow depths and Chromatiaceae shading—which also increases the proportion of long wavelengths in light spectra—benefits the bacteriochlorophyll-based strategies of green species. On the other hand, the carotenoid-based strategies of brown ones are favored by the light climates usually dominant at greater depths. Thus, brown species are considered to be singular adaptations of Chlorobiaceae to depth, where bacteriochlorophyll light-harvesting is strongly limited by light quality. 相似文献
5.
Based upon their photosynthetic nature and the presence of a unique light-harvesting antenna structure, the chlorosome, the photosynthetic green bacteria are defined as a distinctive group in the Bacteria. However, members of the two taxa that comprise this group, the green sulfur bacteria (Chlorobi) and the filamentous anoxygenic phototrophic bacteria (Chloroflexales), are otherwise quite different, both physiologically and phylogenetically. This review summarizes how genome sequence information facilitated studies of the biosynthesis and function of the photosynthetic apparatus and the oxidation of inorganic sulfur compounds in two model organisms that represent these taxa, Chlorobium tepidum and Chloroflexus aurantiacus. The genes involved in bacteriochlorophyll (BChl) c and carotenoid biosynthesis in these two organisms were identified by sequence homology with known BChl a and carotenoid biosynthesis enzymes, gene cluster analysis in Cfx. aurantiacus, and gene inactivation studies in Chl. tepidum. Based on these results, BChl a and BChl c biosynthesis is similar in the two organisms, whereas carotenoid biosynthesis differs significantly. In agreement with its facultative anaerobic nature, Cfx. aurantiacus in some cases apparently produces structurally different enzymes for heme and BChl biosynthesis, in which one enzyme functions under anoxic conditions and the other performs the same reaction under oxic conditions. The Chl. tepidum mutants produced with modified BChl c and carotenoid species also allow the functions of these pigments to be studied in vivo. 相似文献
6.
Hans van Gemerden 《Archives of microbiology》1986,146(1):52-56
The utilization of sulfide by phototrophic sulfur bacteria temporarily results in the accumulation of elemental sulfur. In the green sulfur bacteria (Chlorobiaceae), the sulfur is deposited outside the cells, whereas in the purple sulfur bacteria (Chromatiaceae) sulfur is found intracellularly. Consequently, in the latter case, sulfur is unattainable for other individuals. Attempts were made to analyze the impact of the formation of extracellular elemental sulfur compared to the deposition of intracellular sulfur.According to the theory of the continuous cultivation of microorganisms, the steady-state concentration of the limiting substrate is unaffected by the reservoir concentration (S
R).It was observed in sulfide-limited continuous cultures ofChlorobium limicola f.thiosulfatophilum that higherS
R values not only resulted in higher steady-state population densities, but also in increased steady-state concentrations of elemental sulfur. Similar phenomena were observed in sulfide-limited cultures ofChromatium vinosum.It was concluded that the elemental sulfur produced byChlorobium, althouth being deposited extracellularly, is not easily available for other individuals, and apparently remains (in part) attached to the cells. The ecological significance of the data is discussed.Non-standard abbreviations RP
reducing power
- BChl
bacteriochlorophyll
- Ncell
cell material
-
specific growth rate
- {ie52-1}
maximal specific growth rate
-
D
dilution rate
-
K
s
saturation constant
-
s
concentration of limiting substrate
-
S
R
same ass but in reservoir bottle
-
Y
yield factor
- iSo
intracellular elemental sulfur
- eSo
extracellular elemental sulfur
- PHB
poly-beta-hydroxybutyric acid 相似文献
7.
The reaction center (RC) of green sulfur bacteria has iron—sulfur clusters as terminal acceptors and is related to the Type I RC found in Heliobacter sp. and in Photosystem I (PS I) of green plants and cyanobacteria. Degenerate primers were used to retrieve the genes coding for one of the RC proteins, PscB, from 11 strains of green sulfur bacteria. PCR using the same primers gave no product with a second group of strains and the protein from these strains did not crossreact with antibodies raised against purified PscB from the first group, suggesting the presence of a high degree of variability. The sequences shared a high degree of similarity in the region coding for the binding motif for the 4Fe–4S centers. However, the N-terminal portion of the deduced protein sequences was highly variable and contained a highly positively charged, low-complexity region with repeated tetrapeptides with two alanines flanked by proline or lysine. The PscB sequences obtained fell into two major groups, and the results suggested a lack of correlation between the pigmentation of the chlorosome antenna system and the reaction center protein. There is also a lack of correlation between the grouping of the pscB sequences and the phylogeny deduced from 16S rRNA.This revised version was published online in October 2005 with corrections to the Cover Date. 相似文献
8.
The activity of a methyltransferase, BchU, which catalyzes methylation at the C-20 position of chlorin ring in the biosynthetic pathway of bacteriochlorophyll c, was investigated in vitro. The bchU gene derived from the photosynthetic green sulfur bacterium, Chlorobium tepidum, was overexpressed in Escherichia coli as a His-tagged protein (His(6)-BchU), and the enzyme was purified. In the presence of S-adenosylmethionine, His(6)-BchU methylated zinc bacteriopheophorbide d at the C-20 position to give zinc bacteriopheophorbide c. Metal-free bacteriopheophorbide d could not be methylated by the BchU, indicating that the central metal in the chlorin should be required for the recognition by the BchU. 相似文献
9.
Stephan C. M. Otte Erik Jan van de Meent Peter A. van Veelen Anne S. Pundsnes Jan Amesz 《Photosynthesis research》1993,35(2):159-169
The chlorosomal bacteriochlorophyll (BChl) composition of the green sulfur bacteria Chlorobium vibrioforme and Chlorobium phaeovibrioides was investigated by means of normal-phase high-performance liquid chromatography. From both species a number of homologues was isolated, which were identified by absorption and 252Cf-plasma desorption mass spectroscopy. Besides BChl d, C. vibrioforme contained a significant amount of BChl c, which may provide an explanation for the previous observation of at least two spectrally different pools of BChl in the chlorosomes of green sulfur bacteria (Otte et al. 1991). C. phaeovibrioides contained various homologues of BChl e only. Absorption spectra in acetone of BChl c, d and e, as well as bacteriopheophytin e are presented. No systematic differences were found for the various homologues of each pigment. In addition to farnesol, the mass spectra revealed the presence of various minor esterifying alcohols in both species, including phytol, oleol, cetol and 4-undecyl-2-furanmethanol, as well as an alcohol of low molecular mass, which is tentatively assumed to be decenol.Abbreviations BChl
bacteriochlorophyll
- BPh
bacteriopheophytin (used as a general name for the Mg-free compound, irrespective of the esterifying alcohol)
- HPLC
high-performance liquid chromatography 相似文献
10.
Hans van Gemerden 《Archives of microbiology》1980,125(1-2):115-121
The effect of low irradiation on the viability of Chromatium vinosum was investigated. Cultures were precultivated at 1,000 lux (=0.1/h). Then, before the substrate was depleted, illumination was changed to either complete darkness or about 30 lux. Previously, the latter light intensity had been found not to promote growth.The parameters assayed were viability, protein, bacteriochlorophyll, ATP, RNA, DNA, absorbance (E
260) of the supernatant, and total anthron-positive material.The data show that irradiation insufficiently high to promote growth, results in viability percentages as high as 90% after 8 days, whereas cultures incubated in complete darkness are virtually dead by then. Neither in the light nor in the dark a degradation of protein or cell wall hexoses was observed. The RNA content also remained constant. However, particularly in the dark cultures DNA was found to decrease concomitant with increased E
260 readings of the supernatant. It is considered unlikely that such essential macromolecules are degraded to serve the maintenance energy requirements. The ecological impact of the observations is discussed.Non-Standard Abbreviations PHB
poly--hydroxybutyric acid
- Bchl
Bacteriochlorophyll 相似文献
11.
Resonance Raman experiments were performed on different green bacteria. With blue excitation, i.e. under Soret resonance or preresonance conditions, resonance Raman contributions were essentially arising from the chlorosome pigments. By comparing these spectra and those of isolated chlorosomes, it is possible to evaluate how the latter retain their native structure during the isolation procedures. The structure of bacteriochlorophyll oligomers in chlorosomes was interspecifically compared, in bacteriochlorophyllc- and bacteriochlorophylle- synthesising bacteria. It appears that interactions assumed by the 9-keto carbonyl group are identical inChlorobium limicola, Chlorobium tepidum, andChlorobium phaeobacteroides. In the latter strain, the 3-formyl carbonyl group of bacteriochlorophylle is kept free from intermolecular interactions. By contrast, resonance Raman spectra unambiguously indicate that the structure of bacteriochlorophyll oligomers is slightly different in chlorosomes fromChloroflexus auranticus, either isolated or in the whole bacteria. 相似文献
12.
The effect of temperature on the aggregation of 3lR-8,12-diethyl farnesyl bacteriochlorophyll c in a mixture of n-pentane and methylcyclohexane (1/1, v/v) was studied by means of absorption, circular dichroism and fluorescence spectroscopy. At room temperature essentially only two aggregate species, absorbing at 702 nm (A-702) and 719 nm (A-719), were present. Upon cooling to 219 K, A-702 was quantitatively converted to A-719. Further lowering of the temperature led to the stepwise formation of larger aggregates by the conversion of A-719 to aggregate species absorbing at 743 nm (A-743) and 755 nm (A-755). All absorption changes were reversible. A-719 was highly fluorescent (maximum at 192 K: 744 nm), while A-743 and especially A-755 were weakly fluorescent. Below 130 K the mixture solidified, and no major changes in the absorption spectrum were observed upon further cooling. At 45 K, however, a relatively strong emission at 775 nm was observed. Below 200 K, the absorption, fluorescence and circular dichroism spectra resembled that of the chlorosome. These results open up the possibility to study higher aggregates of BChl c as models for the chlorosome by various methods at low temperature, thus avoiding interference by thermal processes.Abbreviations A-680, A-702, A-719, A-743 and A-755-
BChl c aggregates absorbing at the wavelengths indicated
- BChl-
bacteriochlorophyll
- R[E,E] BChl c
F-
the 31 R isomer of 8,12-diethyl BChl c esterified with farnesol (F), analogously
- M-
methyl
- Pr-
propyl
- S-
stearol (see Smith 1994)
- CD-
circular dichroism 相似文献
13.
Frigaard Niels-Ulrik Matsuura Katsumi Hirota Masamitsu Miller Mette Cox Raymond P. 《Photosynthesis research》1998,58(1):81-90
The chlorosome antenna of the green sulfur bacterium Chlorobium tepidum essentially consists of aggregated bacteriochlorophyll (BChl) c enveloped in a glycolipid monolayer. Small amounts of protein and the isoprenoid quinones chlorobiumquinone (CK) and menaquinone-7 (MK-7) are also present. Treatment of isolated chlorosomes from Cb. tepidum with sodium dodecyl sulfate (SDS) did not affect the quinones, demonstrating that these are located in a site which is inaccessible to SDS, probably in the interior of the chlorosomes. About half of the quinones were removed by Triton X-100. The non-ionic character of Triton probably allowed it to extract components from within the chlorosomes. MK-10 in chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus was likewise found to be located in the chlorosome interior. The excitation transfer in isolated chlorosomes from Cb. tepidum is redox-regulated. We found a ratio of BChl c fluorescenceintensity under reducing conditions (Fred) to that under oxidizing conditions (Fox) of approximately 40. The chlorosomal BChl a fluorescence was also redox-regulated. When the chlorosomal BChl c–BChl c interactions were disrupted by 1-hexanol, the BChl c Fred/Fox ratiodecreased to approximately 3. When CK and MK-7 were extracted from isolated chlorosomes with hexane, the BChl c Fred/Fox ratio also decreased to approximately 3. A BChl c Fred/Fox ratio of 3–5 was furthermore observed in aggregates of pure BChl c and in chlorosomes from Cfx. aurantiacus which do not contain CK. We therefore suggest that BChl c aggregates inherently exhibit a small redox-dependent fluorescence (Fred/Fox 3) and that the large redox-dependent fluorescence observed in chlorobial chlorosomes (Fred/Fox 40) is CK-dependent. 相似文献
14.
Christof Klughammer Christine Hager Etana Padan Michael Schütz Ulrich Schreiber Yosepha Shahak Günter Hauska 《Photosynthesis research》1995,43(1):27-34
Reduction of cytochromes in chlorosome-free membranes of Chlorobia was studied anaerobically, with an LED array spectrophotometer. For Chlorobium tepidum these membranes contained 0.2 moles cytochrome per mole of bacteriochlorophyll a. The observed change upon complete reduction of oxidized membranes with dithionite could be satisfactorily fitted with three cytochrome components having absorption peaks at 553 (cyt c), 558 and 563 nm (cyt b), in relative amounts of 5:1:2. About 20% of total cytochrome 553 were reducible by ascorbate. Menaquinol reduced all of the 553-component, and this reduction was sensitive to stigmatellin, NQNO and antimycin A. The reduction was insensitive to KCN. However, it was transient at low concentrations of menaquinol in the absence of KCN, but permanent in its presence, demonstrating that electron transport into an oxidation pool was blocked. The 563-component was only slightly reduced by menaquinol unless NQNO or antimycin were present. The stimulation of cytochrome 563-reduction by these inhibitors was more pronounced in the presence of ferricyanide. This phenomenon reflects oxidant-induced reduction of cytochrome b and demonstrates that a Q-cycle is operative in Chlorobia. Also, sulfide fully reduced cytochrome 553, but more slowly than menaquinol. KCN inhibited in this case, as did stigmatellin, NQNO and antimycin A. NQNO was a better inhibitor than antimycin A. Cytochrome 563 again was hardly reduced unless antimycin A was added. The effect was more difficult to observe with NQNO. This supports the conclusion that sulfide oxidation proceeds via the quinone pool and the cytochrome bc-complex in green sulfur bacteria.Abbreviations BChl
bacteriochlorophyll
- cyt
cytochrome
- NQNO
2-n-nonyl-4-hydroxyquinoline-N-oxide
- SQR
sulfide-quinone reductase
Dedicated to Prof. Dr. Aloys Wild on occasion of his 65th birthday. 相似文献
15.
为探究阴生植物三七(Panax notoginseng)对不同光照强度的生理生态响应特征,研究5种透光率(46.5% LT、21.8% LT、9.70% LT、5.10% LT、2.80% LT)下三七生理、形态和生长等各项指标的变化特征,并对其相关指标进行相关性、可塑性和主成分分析。结果表明:三七在高光(46.5% LT和21.8% LT)和低光(5.10% LT和2.80% LT)条件下各形态特征(株高、茎粗、单株叶面积)、生物量及相对生长速率(RGR)均有所降低;随着光照强度的降低,根生物量比(RMR)、最大净光合速率(Pn-max)、气孔导度(Gs)、光补偿点(LCP)和暗呼吸速率(Rd)都随之下降,而叶面积比(LAR)、比叶面积(SLA)、茎生物量比(SMR)和叶生物量比(LMR)却呈现升高的趋势。这些变化能够减少三七在高光下的光能捕获及消耗,而低光下的光能捕获和消耗则会得到加强。此外,阴生植物三七的形态特征表型可塑性指数均小于0.5,而光合生理(Pn-max、Gs、LCP、Rd)、LAR和根部生物量的表型可塑性指数则大于0.5,其可塑性较强,且Pn-max、Gs、LCP与RGR的相关系数分别高达0.581、0.558、0.574,这些结果表明光照强度驱动三七的响应特征主要为光合生理特性、LAR和根部生物量的变化。研究还发现三七在10%左右的透光率下生长发育较好。而在低光条件下,三七主要采取保守策略进行缓慢的碳获取和碳消耗,高光条件下则主要采取快速碳获取和碳消耗的冒险策略。研究阐明了三七对不同光照环境的响应策略,为三七的优质高效种植提供理论依据。 相似文献
16.
1. Dry weight yields from mixed cultures ofProsthecochloris aestuarii orChlorobium limicola with the sulfur reducingDesulfuromonas acetoxidans were determined on different growth limiting amounts of acetate, ethanol or propanol. The obtained yields agreed well with values predicted from stoichiometric calculations. 2. From mixed cultures of twoChlorobium limicola strains withDesulfovibrio desulfuricans orD. gigas on ethanol as the growth limiting substrate, dry weight yields were obtained as calculated for the complete utilization of the ethanol by the mixed cultures. 3. Dry weight yield determinations for two pure cultures ofChlorobium limicola with different growth limiting amounts of sulfide in the absence and presence of excess acetate confirmed that acetate is incorporated byChlorobium in a fixed proportion to sulfide; compared to the yield in the absence of acetate the yield is increased two to threefold in the presence of acetate. 4. The lowest possible sulfide concentrations necessary for optimal growth of mixed cultures of eitherProsthecochloris orChlorobium withDesulfuromonas on acetate were 7–8 mg H2S per liter of medium. 5. Doubling times at the growth rate limiting light intensities of 5, 10, 20, 50, 100 and 200 lux were determined under optimal growth conditions for the following phototrophic bacteria:Prosthecochloris aestuarii, Chlorobium phaeovibriodes, Chromatium vinosum andRhodopseudomonas capsulata. Reasonably good growth was still obtained withProsthecochloris at 10 and 5 lux light intensity at which no growth of the purple bacteria could be observed. 相似文献
17.
Control of bacteriochlorophyll formation was studied with continuous cultures of Rhodospirillum rubrum, Rhodopseudomonas sphaeroides, and Rhodopseudomonas capsulata. Oxygen controlled specific bacteriochlorophyll contents of the three species in a hyperbolical fashion irrespective of the presence of light. In Rps. sphaeroides, this applied to oxygen concentrations above 16% air saturation of the medium while at lower oxygen concentrations control followed a kinetics with negative cooperativity. Cell protein formation of R. rubrum and Rsp. sphaeroides was independent of oxygen concentrations while protein formation of Rps. capsulata increased at lower concentrations. Light controlled bacteriochlorphyll contents of R. rubrum and Rps. sphaeroides in a sigmoidal fashion. When growing at a constant low oxygen concentration cell protein formation increased with light energy flux in Rps. sphaeroides but remained unaffected in R. rubrum. Protein formation of R. rubrum increased with light energy flux only under anaerobic conditions. Two factor analyses were performed with R. rubrum and Rps. sphaeroides to study the combined effects of light and oxygen on bacteriochlorophyll formation. The results showed that both factors act independent of each other.Abbreviations ALA
5-aminolevulinic acid
- R
Rhodospirillum
- Rsp.
Rhodopseudomonas 相似文献
18.
A new and rapid procedure has been developed for the isolation of the bacteriochlorophyll a-containing Fenna—Matthews—Olson (FMO)-protein from green sulfur bacteria. Polyclonal antibodies raised against the FMO-protein of Chlorobium (Chl.) tepidum were employed in the preparation of an antibody column utilizing immobilized protein A as the matrix. The antibody column afforded essentially a one-step purification process, resulting in preparations that were free from contaminating pigments and proteins. This was evidenced by absorption spectroscopy, SDS—PAGE, and fluorescence emission.This revised version was published online in October 2005 with corrections to the Cover Date. 相似文献
19.
A chlorophyll a, c-fucoxanthin pigment-protein complex8 functions as the major light harvesting antenna in the Chrysophyte Ochromonas danica. The regulated distribution of excitation energy between the two photosystems was investigated in these organisms and was shown to be strongly wavelength dependent. A light state transition was induced by pre-illumination of cells using light 2 (640 nm) and light 1 (700 nm) of equal absorbed intensity, and detected by reversible changes in the 77 K chlorophyll fluorescence emission spectra. Peaks at 690 nm and 720 nm in the low temperature spectra are most likely associated with PS2 and PS1 respectively. A room temperature fluorescence emission at 680 nm induced by modulated light 2 (500 nm) was strongly quenched in the presence of background light 1 (720 nm). Removal of light 1 led to an increase in fluorescence followed by a slow quenching. The room temperature fluorescence changes were directly correlated with changes in the 77 K emission spectra that indicated a change in the distribution of excitation energy between the two photosystems. It was established that DCMU (1 mol) prevented the state 2. The conversion to state 1 followed a simple photochemical dose dependence and had a half-time of 20 s-1.5 min at 6 W m-2. In contrast, the conversion to state 2 was independent of light intensity. These data indicate that O. danica undergoes a light state transition in response to the preferential excitation of PS2 or PS1.Abbreviations PS2
photosystem 2
- PS1
photosystem 1
- LHC
light harvesting chlorophyll a/b protein
- fx
fucoxanthin
- PQ
plastoquinone
- DCMU
3-(3,4-dichlorophenyl)-1,1-dimethyl urea 相似文献
20.
The impact of illumination on specific growth rate, biomass formation, and synthesis of photopigment was studied in Erythromicrobium hydrolyticum, an obligately aerobic heterotrophic bacterium having the ability to synthesize bacteriochlorophyll a. In dark-grown continuous cultures the concentration of protein increased with increasing dilution rate, the concentration of bacteriochlorophyll a showed the opposite effect. At a dilution rate of 0.08 h-1 (68% of max in the dark) and SR-acetate of 11.8 mM, the concentration of BChla of illuminated cultures in steady-state was 11–22 nM, compared to 230–241 nM in cultures incubated in darkness. No significant differences were observed in the concentration of protein. A shift from darkness to light conditions resulted in increased specific growth rates resulting in increased biomass formation, thus showing that light enhances growth by serving as an additional energy source. This phenomenon, however, was temporary because bacteriochlorophyll synthesis is inhibited by light. In contrast to incubation in continuous light or dark, incubation under light/dark regimen resulted in permanently enhanced biomass formation. In the dark periods, bacteriochlorophyll was synthesized at elevated rates (compared to constant darkness), thus compensating the inhibitory effect of light in the preceding period. It thus appears that the organism is well-adpated to life in environments with alternating light/dark conditions. The ecological relevance of the observations is discussed.Non-standard abbreviations BChla
bacteriochlorophyll a
- D
dilution rate
-
spceific growth rate
- Ks
saturation constant
- SR
concentration of limiting in inflowing medium of chemostat 相似文献