首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fluorescence spectra from Photosystem I (PS I) are measured from 25 to –5 °C on a PS II-less mutant of the cyanobacterium Synechocystis sp. PCC 6803. Emission from antenna chlorophylls (Chls) with energy levels below that of the reaction center, or low-energy Chls (LE Chls), is resolved verifying their presence at physiological temperatures. The 25°C spectrum is characterized by peaks at 688 and 715 nm. As temperature decreases, fluorescence at 688 nm decreases while at 715 nm it increases. The total fluorescence yield does not change. The temperature dependent spectra are fit to a sum of two basis spectra. At 25°C, the first basis spectrum has a major peak at 686 nm and a minor peak at 740 nm. This is attributed to fluorescence from the majority or bulk antenna Chls. The second basis spectrum has a major peak at 712 nm, with shoulders at 722 and 770 nm. It characterizes fluorescence from a small number of LE Chls. A progressive shift to the red in the fluorescence spectra occurs as the temperature is decreased. The temperature dependence in the relative amount of fluorescence from the bulk and LE Chls is fit using a two-component energy transfer model at thermal equilibrium.  相似文献   

2.
We have measured fluorescence spectra from Photosystem I (PS I) on a PS II-less mutant of the cyanobacterium Synechocystis sp. PCC 6803 at room temperature as a function of excitation wavelength. Our data show a gradual enhancement of long-wavelength fluorescence at 710 nm as the excitation wavelength is increased from 695 to 720 nm. This verifies the presence of low-energy chlorophylls (LE Chls), antenna Chls with energy levels below that of the primary electron donor, P700. The change in fluorescence with excitation wavelength is attributed to the finite time it takes for equilibration of excitations between the bulk and LE Chls. The spectra were deconvoluted into the sum of two basis spectra, one an estimate for fluorescence from the majority or bulk Chls and the other, the LE Chls. The bulk Chl spectrum has a major peak at 688 nm and a lower amplitude vibrational band around 745 nm and is assumed independent of excitation wavelength. The LE Chl spectrum has a major peak at 710 nm, with shoulders at 725 and 760 nm. The relative amplitude of emission at the vibrational side bands increases slightly as the excitation wavelength increases. The ratio of the fluorescence yields from LE Chls to that from bulk Chls ranges from 0.3 to 1.3 for excitation wavelengths of 695 to 720 nm, respectively. These values are consistent with a model where the LE Chls are structurally close to P700 allowing for direct transfer of excitations from both the bulk and LE Chls to P700.  相似文献   

3.
To determine the fluorescence properties of cyanobacterial Photosystem I (PS I) in relatively intact systems, fluorescence emission from 20 to 295 K and polarization at 77 K have been measured from phycobilisomes-less thylakoids of Synechocystis sp. PCC 6803 and a mutant strain lacking Photosystem II (PS II). At 295 K, the fluorescence maxima are 686 nm in the wild type from PS I and PS II and at 688 nm from PS I in the mutant. This emission is characteristic of bulk antenna chlorophylls (Chls). The 690-nm fluorescence component of PS I is temperature independent. For wild-type and mutant, 725-nm fluorescence increases by a factor of at least 40 from 295 to 20 K. We model this temperature dependence assuming a small number of Chls within PS I, emitting at 725 nm, with an energy level below that of the reaction center, P700. Their excitation transfer rate to P700 decreases with decreasing temperature increasing the yield of 725-nm fluorescence.Fluorescence excitation spectra of polarized emission from low-energy Chls were measured at 77 and 295 K on the mutant lacking PS II. At excitation wavelengths longer than 715 nm, 760-nm emission is highly polarized indicating either direct excitation of the emitting Chls with no participation in excitation transfer or total alignment of the chromophores. Fluorescence at 760 nm is unpolarized for excitation wavelengths shorter than 690 nm, inferring excitation transfer between Chls before 760-nm fluorescence occurs.Our measurements illustrate that: 1) a single group of low-energy Chls (F725) of the core-like PS I complex in cyanobacteria shows a strongly temperature-dependent fluorescence and, when directly excited, nearly complete fluorescence polarization, 2) these properties are not the result of detergent-induced artifacts as we are examining intact PS I within the thylakoid membrane of S. 6803, and 3) the activation energy for excitation transfer from F725 Chls to P700 is less than that of F735 Chls in green plants; F725 Chls may act as a sink to locate excitations near P700 in PS I.Abbreviations Chl chlorophyll - BChl bacteriochlorophyll - PS Photosystem - S. 6803 Synechocystis sp. PCC 6803 - PGP potassium glycerol phosphate  相似文献   

4.
Picosecond time-resolved fluorescence measurements have been performed as a function of emission wavelengths in order to investigate the possible functional differences between monomeric and trimeric Photosystem I (PS I) particles from a cyanobacterium Synechocystis. Applying global analysis, four kinetic components were found necessary to describe the fluorescecne decay for both monomers and trimers of PS I. The lifetimes and spectra of the respective components are quite similar, indicating that they can be attributed to identical processes in both the monomers and trimers. It is concluded that both forms of PS I are capable of efficient energy transfer and charge separation, in agreement with a physiological role of both forms. Small differences in the fluorescence decays are discussed in terms of a slightly higher ratio of red emitting pigments per reaction centre in trimers of PS I. A comparison to Synechococcus PS I particles reveals the higher red chlorophyll content of the latter.Abbreviations -DM- -dodecyl-maltoside - Chl- chlorophyll - CMC- critical micellar concentration - DAS- decay-associated spectrum - DCM- 4-dicyano-methylene-2-methyl-6-(-dimethyl-aminostyryl)-4h-pyran - FWHM- full-width at half-maximum - P700- primary electron donor of Photosystem I - PS- photosystem - RC- reaction centre  相似文献   

5.
6.
Photosystem I-driven cyclic electron transport was measured in intact cells of Synechococcus sp PCC 7942 grown under different light intensities using photoacoustic and spectroscopic methods. The light-saturated capacity for PS I cyclic electron transport increased relative to chlorophyll concentration, PS I concentration, and linear electron transport capacity as growth light intensity was raised. In cells grown under moderate to high light intensity, PS I cyclic electron transport was nearly insensitive to methyl viologen, indicating that the cyclic electron supply to PS I derived almost exclusively from a thylakoid dehydrogenase. In cells grown under low light intensity, PS I cyclic electron transport was partially inhibited by methyl viologen, indicating that part of the cyclic electron supply to PS I derived directly from ferredoxin. It is proposed that the increased PSI cyclic electron transport observed in cells grown under high light intensity is a response to chronic photoinhibition.Abbreviations DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - ES energy storage - MV methyl viologen - PAm photoacoustic thermal signal with strong non-modulated background light added - PAs photoacoustic thermal signal without background light added CIW/DPB Publication No. 1205.  相似文献   

7.
Isolated trimeric Photosystem I complexes of the cyanobacterium Synechococcus elongatus have been studied with absorption spectroscopy and site-selective polarized fluorescence spectroscopy at cryogenic temperatures. The 4 K absorption spectrum exhibits a clear and distinct peak at 710 nm and shoulders near 720, 698 and 692 nm apart from the strong absorption profile located at 680 nm. Deconvoluting the 4 K absorption spectrum with Gaussian components revealed that Synechococcus elongatus contains two types of long-wavelength pigments peaking at 708 nm and 719 nm, which we denoted C-708 and C-719, respectively. An estimate of the oscillator strengths revealed that Synechococcus elongatus contains about 4–5 C-708 pigments and 5–6 C-719 pigments. At 4 K and for excitation wavelengths shorter than 712 nm, the emission maximum appeared at 731 nm. For excitation wavelengths longer than 712 nm, the emission maximum shifted to the red, and for excitation in the far red edge of the absorption spectrum the emission maximum was observed 10–11 nm to the red with respect to the excitation wavelength, which indicates that the Stokes shift of C-719 is 10–11 nm. The fluorescence anisotropy, as calculated in the emission maximum, reached a maximal anisotropy of r=0.35 for excitation in the far red edge of the absorption spectrum (at and above 730 nm), and showed a complicated behavior for excitation at shorter wavelengths. The results suggest efficient energy transfer routes between C-708 and C-719 pigments and also among the C-719 pigments.Abbreviations Chl chlorophyll - FWHM full width at half maximum - PS I Photosystem I  相似文献   

8.
Disruption of the ccmM gene in the cyanobacterium Synechocystis sp. PCC 6803 causes a deficiency of carboxysomes and impairs growth in ambient CO2. The effect of this gene defect on cellular metabolism was investigated using electron microscopy, biochemical and fluorescence analysis. Mutant cells were devoid of the characteristic dense polyhedral bodies called carboxysomes. The photosynthetic oxygen evolution was considerably lower in mutant cells compared to wild type, while Rubisco activity in cell extracts was similar. During photosynthetic CO2-dependent oxygen evolution, Rubisco Vmax dropped from 142 micromol mg-1 chlorophyll h-1 (WT) to 77 micromol mg-1 chlorophyll h-1 in the mutant cells, and the Km for Ci (inorganic carbon) increased from 0.5 mM (WT) to 40 mM. The fluorescent indicator, acridine yellow, was used for non-invasive measurements of cytoplasmic pH changes in whole cells induced by addition of Ci, making use of the decrease in fluorescence yield that accompanies cytoplasmic acidification. The experimental results indicate that control of the cytoplasmic pH is linked to the internal carbon pool (Ci). Both wild-type and ccmM-deficient cells showed a linear response of acridine yellow fluorescence quenching and, thus, of internal acidification, with respect to externally added inorganic carbon. However, the fluorescence analysis of mutant (carboxysome-free) cells indicated slower kinetics of Ci accumulation.  相似文献   

9.
Synechocystis sp. PCC 6803 when grown in the presence of sublethal (M) levels of cobalt chloride shows an enhancement of Photosystem II (PS II) catalyzed Hill reaction. This stimulation seems to be induced by cobalt ions as other metal ions inhibit para-benzoquinone catalyzed Hill reaction. At saturating white light intensity, this enhancement is two times over that of the control cells on unit chlorophyll basis. Analysis of the PS II electron transport rate at varying intensities of white, blue or yellow light suggests an increased maximal rates but no change in the quantum yield or effective antenna size of CoCl2-grown cells. There were no structural and functional changes in the phycobilisome as judged by the absence of changes in the phycocyanin/allophycocyanin ratio, fluorescence emission spectra, second derivative absorption spectra at 77 K and SDS-PAGE analysis of isolated phycobilisomes. The 77 K fluorescence emission spectra of the cells showed a decrease in the ratio of Photosystem I emission (F725) to Photosystem II emission (F685) in CoCl2-grown cells compared to the control cells. These observations indicate three possibilities: (1) there is an increase in the number of Photosystem II units; (2) a faster turnover of Photosystem II centers; or (3) an alteration in energy redistribution between PS II and PS I in CoCl2-grown cells which causes stimulation of Photosystem II electron transport rate.Abbreviations APC allophycocyanin - Chl a chlorophyll a - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - EDTA ethylene diamine tetraacetic acid - PBS phycobilisome - PC phycocyanin - PSI Photosystem I - PS II Photosystem II - pBQ p-benzoquinone - PMSF phenyl methyl sulfonyl fluoride  相似文献   

10.
The light-induced chlorophyll (Chl) fluorescence decline at 77 K was investigated in segments of leaves, isolated thylakoids or Photosystem (PS) II particles. The intensity of chlorophyll fluorescence declines by about 40% upon 16 min of irradiation with 1000 μmol m−2 s−1 of white light. The decline follows biphasic kinetics, which can be fitted by two exponentials with amplitudes of approximately 20 and 22% and decay times of 0.42 and 4.6 min, respectively. The decline is stable at 77 K, however, it is reversed by warming of samples up to 270 K. This proves that the decline is caused by quenching of fluorescence and not by pigment photodegradation. The quantum yield for the induction of the fluorescence decline is by four to five orders lower than the quantum yield of QA reduction. Fluorescence quenching is only slightly affected by addition of ferricyanide or dithionite which are known to prevent or stimulate the light-induced accumulation of reduced pheophytin (Pheo). The normalised spectrum of the fluorescence quenching has two maxima at 685 and 695 nm for PS II emission and a plateau for PS I emission showing that the major quenching occurs within PS II. ‘Light-minus-dark’ difference absorbance spectra in the blue spectral region show an electrochromic shift for all samples. No absorbance change indicating Chl oxidation or Pheo reduction is observed in the blue (410–600 nm) and near infrared (730–900 nm) spectral regions. Absorbance change in the red spectral region shows a broad-band decrease at approximately 680 nm for thylakoids or two narrow bands at 677 and 670–672 nm for PS II particles, likely resulting also from electrochromism. These absorbance changes follow the slow component of the fluorescence decline. No absorbance changes corresponding to the fast component are found between 410 and 900 nm. This proves that the two components of the fluorescence decline reflect the formation of two different quenchers. The slow component of the light-induced fluorescence decline at 77 K is related to charge accumulation on a non-pigment molecule of the PS II complex. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
In the cyanobacterium Synechocystis sp. PCC 6803 five open reading frames (scpAscpE) have been identified that code for single-helix proteins resembling helices I and III of chlorophyll a/b-binding (Cab) antenna proteins from higher plants. They have been named SCPs (small Cab-like proteins). Deletion of a single scp gene in a wild-type or in a photosystem I-less (PS I-less) strain has little effect. However, the effects of functional deletion of scpB or scpE were remarkable under conditions where chlorophyll availability was limited. When cells of a strain lacking PS I and chlL (coding for a polypeptide needed for light-independent protochlorophyllide reduction) were grown in darkness, the phycobilin and protochlorophyllide levels decreased upon deletion of scpB or scpE and the protoheme level was reduced in the strain lacking scpE. Addition of -aminolevulinic acid (ALA) in darkness drastically increased the level of Mg-protoporphyrin IX and Mg-protoporphyrin IX monomethyl ester in the PS I-less/chlL /scpE strain, whereas PChlide accumulated in the PS I-less/chlL /scpB strain. In the PS I-less/chlL control strain ALA supplementation did not lead to large changes in the levels of tetrapyrrole biosynthesis intermediates. We propose that ScpE and ScpB regulate tetrapyrrole biosynthesis as a function of pigment availability. This regulation occurs primarily at an early step of tetrapyrrole biosynthesis, prior to ALA. In view of the conserved nature of chlorophyll-binding sites in these proteins, it seems likely that regulation by SCPs occurs as a function of chlorophyll availability, with SCPs activating chlorophyll biosynthesis steps when they do not have pigments bound.  相似文献   

12.
Ultrafast transient absorption spectroscopy was used to probe excitation energy transfer and trapping at 77 K in the photosystem I (PSI) core antenna from the cyanobacterium Synechocystis sp. PCC 6803. Excitation of the bulk antenna at 670 and 680 nm induces a subpicosecond energy transfer process that populates the Chl a spectral form at 685--687 nm within few transfer steps (300--400 fs). On a picosecond time scale equilibration with the longest-wavelength absorbing pigments occurs within 4-6 ps, slightly slower than at room temperature. At low temperatures in the absence of uphill energy transfer the energy equilibration processes involve low-energy shifted chlorophyll spectral forms of the bulk antenna participating in a 30--50-ps process of photochemical trapping of the excitation by P(700). These spectral forms might originate from clustered pigments in the core antenna and coupled chlorophylls of the reaction center. Part of the excitation is trapped on a pool of the longest-wavelength absorbing pigments serving as deep traps at 77 K. Transient hole burning of the ground-state absorption of the PSI with excitation at 710 and 720 nm indicates heterogeneity of the red pigment absorption band with two broad homogeneous transitions at 708 nm and 714 nm (full-width at half-maximum (fwhm) approximately 200--300 cm(-1)). The origin of these two bands is attributed to the presence of two chlorophyll dimers, while the appearance of the early time bleaching bands at 683 nm and 678 nm under excitation into the red side of the absorption spectrum (>690 nm) can be explained by borrowing of the dipole strength by the ground-state absorption of the chlorophyll a monomers from the excited-state absorption of the dimeric red pigments.  相似文献   

13.
14.
The role played by the residues Leu12 and Lys33 – which are both located at the north hydrophobic patch of plastocyanin – in the interaction of the copper protein with Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803 has been investigated by site-directed mutagenesis. A thermodynamic analysis of PS I reduction by wild-type and mutant plastocyanins has been performed by laser-flash absorption spectroscopy. In all cases, the electron transfer is impaired by mutations, which induce drastic changes in the apparent activation entropy of the overall reaction. Substitution of Leu12 by alanine specifically affects the hydrophobic interactions with PS I, whereas replacement of Lys33 by glutamate not only induces local electrostatic changes, but also alters the hydrophobic interactions with the photosystem. The thermodynamic analysis of the reactivity of K33E mutant towards PS I reveals that the effect of the mutation can be reversed by addition of magnesium cations, which probably bind at a place close to Glu33. The electrostatic surface potential does thus modulate the hydrophobic interactions with PS I by altering the solvent accessibility of some surface residues. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The psbZ gene of Synechocystis sp. PCC 6803 encodes the ∼6.6 kDa photosystem II (PSII) subunit. We here report biophysical, biochemical and in vivo characterization of Synechocystis sp. PCC 6803 mutants lacking psbZ. We show that these mutants are able to perform wild-type levels of light-harvesting, energy transfer, PSII oxygen evolution, state transitions and non-photochemical quenching (NPQ) under standard growth conditions. The mutants grow photoautotrophically; however, their growth rate is clearly retarded under low-light conditions and they are not capable of photomixotrophic growth. Further differences exist in the electron transfer properties between the mutants and wild type. In the absence of PsbZ, electron flow potentially increased through photosystem I (PSI) without a change in the maximum electron transfer capacity of PSII. Further, rereduction of P700+ is much faster, suggesting faster cyclic electron flow around PSI. This implies a role for PsbZ in the regulation of electron transfer, with implication for photoprotection.  相似文献   

16.
An inquiry into the effect of temperature on carotenoid triggered quenching of phycobilisome (PBS) fluorescence in a photosystem II-deficient mutant of Synechocystis sp. results in identification of two temperature-dependent processes: one is responsible for the quenching rate, and one determines the yield of PBS fluorescence. Non-Arrhenius behavior of the light-on quenching rate suggests that carotenoid-absorbed light triggers a process that bears a strong resemblance to soluble protein folding, showing temperature-dependent enthalpy of activated complex formation. The response of PBS fluorescence yield to hydration changing additives and to passing of the membrane lipid phase transition point indicates that the pool size of PBSs subject to quenching depends on the state of some membrane component.  相似文献   

17.
A recent proteomic analysis of the thylakoid lumen of Arabidopsis thaliana revealed the presence of several PsbP-like proteins, and a homologue to this gene family was detected in the genome of the cyanobacterium Synechocystis sp. PCC 6803 (Schubert M, Petersson UA, Haas BJ, Funk C, Schröder WP, Kieselbach T (2002) J Biol Chem 277, 8354–8365). Using a peptide-directed antibody against this cyanobacterial PsbP-like protein (sll1418) we could show that it was localized in the thylakoid membrane and associated with Photosystem II. While salt washes did not remove the PsbP-like protein from the thylakoid membrane, it was partially lost during the detergent-based isolation of PSII membrane fractions. In total cell extracts this protein is present in the same amount as the extrinsic PsbO protein. We did not see any significant functional difference between the wild-type and a PsbP-like insertion mutant.  相似文献   

18.
Blue light induced quenching in a Synechocystis sp. PCC 6803 strain lacking both photosystems is only related to allophycocyanin fluorescence. A fivefold decrease in the fluorescence level in two bands near 660 and 680 nm is attributed to different allophycocyanin forms in the phycobilisome core. Some low-heat sensitive component inactivated at 53 °C is involved in the quenching process. Enormous allophycocyanin fluorescence in the absence of the photosystems reveals a dark stage in this quenching. Thus, we present evidence that light activation of the carotenoid-binding protein and formation of a quenching center within the phycobilisome core in vivo are discrete events in a multistep process.  相似文献   

19.
In the unicellular cyanobacterium Synechocystis sp. PCC 6803, the mrgA gene is part of the PerR regulon that is upregulated during peroxide stress. We determined that an Δ mrgA mutant was highly sensitive to low peroxide levels and that the mutant upregulated a gene cluster ( sll1722-26 ) that encoded enzymes involved with exopolymeric substance (EPS) production. We made mutants in this EPS cluster in both a wild type and Δ mrgA background and studied the responses to oxidative stress by measuring cell damage with LIVE/DEAD stain. We show that Synechocystis sp. PCC 6803 becomes highly sensitive to oxidative stress when either mrgA or the sll1722-26 EPS components are deleted. The results suggest that the deletion of the EPS cluster makes a cell highly susceptible to cell damage, under moderate oxidative stress conditions. Mutations in either mrgA or the EPS cluster also result in cells that are more light and peroxide sensitive, and produce significantly less EPS material than in wild type. In this study, we show that in the absence of MrgA, which is known to be involved in the storage or mobilization of iron, cells can be more easily damaged by exogenous oxidative and light stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号