首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The critical weed-free period in organically-grown winter wheat   总被引:1,自引:0,他引:1  
Two experiments were conducted in central southern England between September 1994 and August 1996 to identify the critical weed-free period in organically grown winter wheat (Triticum aestivum, cv. Mercia). In competition with a mixed weed infestation of predominately Alopecurus myosuroides and Tripleurospermum inodorum it was found that wheat yield decreased as the duration of the weed-infested period increased and that the crop needed to be kept free of weeds from sowing in order to completely avoid any yield loss. Also, weeds emerging in the wheat crop (predominately T. inodorum) during the growing season had a significant and detrimental effect on yield. The existence of the critical period, therefore, depends on the imposition of an acceptable yield loss. If a 5% yield loss gives a marginal benefit compared with the cost of weed control, the critical period will begin at 506°C days after sowing (November) and end at 1023°C days after sowing (February). This information could be used by farmers to target mechanical weeding operations to control weeds at a time that will have maximum benefit to the crop.  相似文献   

2.
Vegetational diversity within agricultural fields is often suggested as a means to reduce insect herbivore populations and to increase their natural enemies. In this paper we compare population densities of herbivores, predators, and parasitoids on collards in monocultures and on collards interplanted with two different groups of weeds, one with weed species from the same plant family as the collards (Brassicaceae) and one with weed species from unrelated plant families (non-Brassicaceae). The collards in the Brassicaceae weed polyculture had higher densities (number of herbivores/mean leaf area (cm2) per plant) of specialist herbivores than collards in the non-Brassicaceae weed polyculture and in collard monoculture. The “resource concentration” hypothesis is supported by the observation of higher populations of Phyllotreta spp., acting as facultative polyphages, in the Brassicaceae weed polyculture than in the non-Brassicaceae weed polyculture where Phyllotreta spp. are facultative monophages. Population densities of natural enemies (mostly coccinellids, carabids, and staphylinids) were higher in the polycultures than in the monoculture: carabid and staphylinid predators may be responsible for larval mortality in the imported cabbage worm, Pieris␣rapae, and in the diamondback larvae, Plutella xylostella. In spite of differences in densities of specialist herbivores across treatments, crop yield, leaf area (cm2), the proportion of leaf area damaged, and the number of leaves undamaged did not differ. These findings suggest that plant competition may interfere with attempts to reduce herbivore damage. We conclude that the use of weedy cultures can provide effective means of reducing herbivores if the crop and weed species are not related and plant competition is prevented. Received: 25 December 1995 / Accepted: 24 February 1997  相似文献   

3.
Storkey J 《Annals of botany》2004,93(6):681-689
BACKGROUND AND AIMS: The early growth rate of seedlings in the exponential phase is an important eco- physiological trait in crop/weed competition models based on assessments of relative weed green area. An understanding of the role of various plant traits in determining early growth rate may also be useful for identifying contrasting weed strategies for establishment before canopy closure. METHODS: The response of seedling relative growth rate (RGR) to the environment was measured in outdoor sand beds in the autumn and the spring for 18 temperate annual weed species and two crops. Seedling growth was modelled using thermal time and effective day-degrees (combining the effect of temperature and radiation). The contribution of various plant traits in determining variability in RGR was investigated using regression analysis. KEY RESULTS: The effective day-degree model was more effective for describing early weed growth than thermal time. Variability in RGR measured in the autumn was largely determined by differences between the species in net assimilation rate (NAR), whereas in the spring leaf area ratio (LAR) played a larger part. There were differences between the broadleaf and grass species in the relative contribution of NAR and LAR to RGR in both seasons. RGR in the spring was negatively correlated with initial seedling size. CONCLUSIONS: The parameters derived in this study can be used to calibrate empirical models of crop yield loss based on relative weed green area to different growing seasons and assessment dates. The grass weeds, which tended to have large seeds, had a higher investment in roots in the seedling stage, potentially making them more competitive later in the season when resources become limiting.  相似文献   

4.
Suppression of weed growth in a crop canopy can be enhanced by improving crop competitiveness. One way to achieve this is by modifying the crop planting pattern. In this study, we addressed the question to what extent a uniform planting pattern increases the ability of a crop to compete with weed plants for light compared to a random and a row planting pattern, and how this ability relates to crop and weed plant density as well as the relative time of emergence of the weed. To this end, we adopted the functional-structural plant modelling approach which allowed us to explicitly include the 3D spatial configuration of the crop-weed canopy and to simulate intra- and interspecific competition between individual plants for light. Based on results of simulated leaf area development, canopy photosynthesis and biomass growth of the crop, we conclude that differences between planting pattern were small, particularly if compared to the effects of relative time of emergence of the weed, weed density and crop density. Nevertheless, analysis of simulated weed biomass demonstrated that a uniform planting of the crop improved the weed-suppression ability of the crop canopy. Differences in weed suppressiveness between planting patterns were largest with weed emergence before crop emergence, when the suppressive effect of the crop was only marginal. With simultaneous emergence a uniform planting pattern was 8 and 15 % more competitive than a row and a random planting pattern, respectively. When weed emergence occurred after crop emergence, differences between crop planting patterns further decreased as crop canopy closure was reached early on regardless of planting pattern. We furthermore conclude that our modelling approach provides promising avenues to further explore crop-weed interactions and aid in the design of crop management strategies that aim at improving crop competitiveness with weeds.  相似文献   

5.
A field experiment was done in 1974 to determine the effect of the presence of weeds for different periods on the yield of field beans (Vicia faba cv. Maris Bead). A critical period of weed competition of 2 wk duration occurred from 3 to 5 wk after 50% crop emergence. When weeds were not controlled, seed yield was reduced by 46%, from 4–6 to 2–5 t/ha. In another experiment, in 1975, there was no evidence of a critical period. Seed yield was reduced by 48%, from 2–9 to 1–5 t/ha, when weeds were not controlled. Pre-emergence applications of simazine and of dimefuron, a new soil-residual herbicide, effectively controlled weeds and bean seed yields were similar to those of the regularly hand-weeded control. Dinoseb-acetate and early, but not late, post-emergence applications of dimefuron controlled weeds satisfactorily. Dimefuron is potentially useful in spring-sown field beans because it can be applied pre- or early post-emergence without damaging the crop.  相似文献   

6.
Hand-weeding experiments were conducted over a three-year period in field-grown crops of swedes in north-east Scotland. When weeds were left to grow all season they reduced the dry matter yield of swede roots by 62% in 1980 and 79% in 1981 but by only 42% in the dry year 1982, in comparison with a weed-free crop. In all three years there was at least one time when a single removal of all weeds was sufficient to prevent yield loss by weed competition. In 1980 this was 6 wk after crop sowing, but the intervals between weed removal times were too great to reveal how critical this timing was. With shorter intervals in 1981 the timing of a single removal of weeds to achieve maximum crop yield was found to be highly critical at 6 wk after sowing, but in 1982 when weed biomass was much lower a single weeding any time from 4–7 wk after sowing gave as high a yield as a crop kept weed-free all season. Earlier weeding allowed subsequently emerging weeds to become competitive and reduce crop yield, while delaying weeding until after the optimum time allowed early competition from weeds emerging with the crop to depress final yield. In all years if weed removal was delayed until 12 wk after sowing, the crop yield was only slightly or no higher than if weeds were left to grow all season. It is concluded that swedes, unlike red beet or sugar beet, are incapable of recovery from the severe restriction to growth caused by weeds competing with the crop from 6–12 wk after sowing.  相似文献   

7.
《Bio Systems》2008,91(3):818-829
Many weeds interfere with the productivity of wheat and other winter annual crops; however, one common weed Medicago denticulata, appears to have a beneficial effect. An experiment was conducted at Agricultural Experimental Farm of the Indian Statistical Institute, Giridih, Jharkhand to observe the effect of M. denticulata (a legume) on different crops yield of barley (Hordeum vulgare Sensu lato), linseed (Linum usitatissimum L.), Indian mustard [Brassica juncea (L.) Czernj. & Cosson] and wheat (Triticum aestivum L.). The commensalisms interaction was studied, in which one species benefits, while the other is unaffected, between the crops, M. denticulata and other weeds, to observe the role of medicago as biological control agent of other weeds for enhancement of crop productivity. Further, a statistical test was performed to establish the effect of M. denticulata and weed infestations based on one-step Markov structure of the covariance matrix of the biomass. This permitted development of a mathematical model of a crop–M. denticulata–other weeds system and their interactions through direct and indirect competition for resources. Crops yield decreased considerably due to the presence of other weeds, while it increased due to introduction of medicago and hence medicago acted as a controlling agent in a crop–M. denticulata–other weeds system. Our mathematical analysis supported the experimental findings. The model parameters are estimated through a nonlinear least square and stochastic differential equations. Moreover, some thresholds for the growth of medicago population came out from our analysis that may be used as a biological control threshold for the enhancement of crop productivity.  相似文献   

8.
To evaluate the effects of weed competition and nitrogen fertilization on the early growth performance of willow, cuttings of the clone Tora (Salix schwerinii x S. viminalis) were planted in buckets together with model weeds (spring barley or white mustard) sown 15, 26, and 30 days after willow planting. The buckets were fertilized with 30 or 90 kg N ha?1. Willow with weeds sown after 15 days produced less biomass and smaller leaf area and had a lower maximum shoot height compared to willow planted without weeds and willow with weeds sown after 26 or 30 days. Fertilization with 90 kg N ha?1 gave higher willow biomass production in willow with weeds sown after 26 or 30 days. Type of model weed had no effect on willow performance. Weed biomass and maximum shoot height were higher in weeds planted without willows compared to the willow-weed mixtures. A high nitrogen level gave more weed biomass when planted without willows and in the willow-weed mixture with weeds sown after 15 days. We conclude that for the given high density of willow, competition from weeds emerging soon after willow planting had strong effect on early production. Furthermore, if there is a risk of weed infestation, fertilization should be delayed.  相似文献   

9.
The impact of a biocontrol agent spreading from a point source on crop–weed interactions was modeled. The model encompassed: (i) severity of crop–weed competition as affected by a rust pathogen, (ii) velocity of spread of the rust pathogen, and (iii) density of infected plants introduced in the weed population as starting points (inoculum sources) for an epidemic. The model was parameterized for a study system encompassing the crop Daucus carota (carrot), the weed Senecio vulgaris (common groundsel), and its antagonist Puccinia lagenophorae. The parameters of (i) were estimated in a greenhouse study using a response-surface design. Estimates of the parameter of (ii) were obtained from the literature. The density of infected plants (iii) was varied to simulate crop loss as function of density. Simulations were run for various densities of the weed and various velocities of rust pathogen spread. The results of the simulations indicated a crop-loss ranging from 5 to 10% at levels of relatively weak D. carotaS. vulgaris competition. Density of inoculum sources and velocity of P. lagenophorae spread had only minor effects on crop loss. In contrast, density of inoculum sources and velocity of spread had major effects on crop loss at levels of intermediate (range of 10–35% loss) and severe competition (range of 30–70% loss). The results are discussed both with respect to biological control of S. vulgaris using P. lagenophorae as biocontrol agent and as a general model describing the impact of the spatial dynamics of a pathogen (natural enemy) on plant competition.  相似文献   

10.
No‐till cropping systems that include cover crops could lead to important changes in weed communities by decreasing some annual weed populations. In this study, we predicted that seed burial depth and the presence of cover crop would affect the emergence and initial growth success of annual weed species. We tested two factors on 14 weed species in a greenhouse: the seed burial depth of weeds (buried versus soil surface) and the presence/absence of a cover crop (ryegrass). We counted the emerged seedlings and measured the height of weeds and cover crops (Hweed, Hcover), the dry matter content of weeds and cover crops (DMCweed, DMCcover) and the number of leaves of weeds (NLweed) on 1433 weed and 390 ryegrass individuals. Emergence of five weed species (AMBEL, ANGAR, BROST, CENCY and EPHHE) was affected by the seed location (?10.3% on average for unburied seeds), five other weed species (ALOMY, CAPBP, SONAS, VERPE and VLPMY) were affected by cover (on average ?9.5% for seeds emerged in the presence of cover crop), and four weed species (GERDI, LAMPU, POAAN and VIOAR) were not affected by either. Weed growth of all weed species also decreased with the presence of a cover crop (on average Hweed: ?49.9%, DMCweed: ?87.2% and NLweed: ?55.4%) and for unburied seeds (on average Hweed: ?33.7%, DMCweed: ?70.6% and NLweed: ?43.3%), with various responses according to species. This study indicates that annual weeds could be disadvantaged by no‐till systems using cover crops.  相似文献   

11.
Theoretical considerations behind the system management approach of biological weed control are presented. These include, a part describing and explaining the effects of parasitic fungi on crop – weed competition, a part describing and explaining the epidemic spread of parasitic fungi on weeds, and a part relating crop – weed competition at the population level to epidemics. The theoretical framework developed may also provide a basis for the use of other natural enemies, like insects, for biological weed control following the system management approach. Aspects of application are discussed using data of the interaction between the annual weed Senecio vulgaris and the rust fungusPuccinia lagenophorae.  相似文献   

12.
Due to increased emphasis on long-term management of weed populationsin cropping systems with a reduced reliance on herbicides, theproduction of seeds by weeds that emerge after the criticalperiod for weed control is increasingly important. It was hypothesizedthat increased soil cover and light interception by a crop canopywould shorten the critical period for weed control and reducegrowth and fecundity of late-emerging weeds. This hypothesiswas tested in a series of field and glasshouse experiments inwhich competition for light was manipulated. Senecio vulgaris,an important weed in vegetable production systems, was chosenas the target plant, and canopies of pure and mixed stands ofleek and celery were used to provide shade. The time courseof light interception differed among the crop canopies. Increasingcompetition for light caused morphological changes to S. vulgaris,including a vertical shift in leaf area distribution. Increasedshading reduced biomass, capitula:shoot ratio and seed productionof S. vulgaris. However, the viability of seeds produced bythe shaded weed plants was not affected. Results indicate thatintercropping can increase light interception in a weakly competitivecrop such as leek and can contribute to weed suppression ina long-term strategy for weed management. Copyright 2001 Annalsof Botany Company Competition for light, late-emerging weeds, critical period, Apium graveolens L., celery, Allium porrum L., leek, Senecio vulgaris L., common groundsel, seed production, weed management, intercropping  相似文献   

13.
TwoChenopodium species (C. album L.,C. suecicum J. Murr) were grown under field conditions with sugar beet to assess the weed-caused crop loss, and with spring wheat in a replacement series experiment. The weeds strongly reduced the growth of sugar beet. Dew's competition indexes for the regressions of sugar beet yield on weed density were 6.81 and 3.78 forC. suecicum andC. album respectively. On the other hand, the yield of spring wheat was not affected by the twoChenopodium species owing to early shading of the weeds by the faster growing crop stand.  相似文献   

14.
杂草科学管理——理论基础与实施途径   总被引:4,自引:0,他引:4  
涂修亮  陈英明 《生态学杂志》2002,21(1):62-64,79
Scientific management of weeds is theoretically based on ecology.The implementation methods incladeIntensifying the weed biology and ecology research, especially those of the heavy weeds;Intensifying the research of developing competition between the crop and the weed;Utilizing a allelopathy the gene engineering and breeding against the weeds;Utilizing allelopathy between the crop and the weed, and utilizing biological and agricultural measurements to control the weeds.  相似文献   

15.
Soybean (Glycine max) was grown at ambient and enhanced carbon dioxide (CO2, + 250 μL L?1 above ambient) with and without the presence of a C3 weed (lambsquarters, Chenopodium album L.) and a C4 weed (redroot pigweed, Amaranthus retroflexus L.), in order to evaluate the impact of rising atmospheric carbon dioxide concentration [CO2] on crop production losses due to weeds. Weeds of a given species were sown at a density of two per metre of row. A significant reduction in soybean seed yield was observed with either weed species relative to the weed‐free control at either [CO2]. However, for lambsquarters the reduction in soybean seed yield relative to the weed‐free condition increased from 28 to 39% as CO2 increased, with a 65% increase in the average dry weight of lambsquarters at enhanced [CO2]. Conversely, for pigweed, soybean seed yield losses diminished with increasing [CO2] from 45 to 30%, with no change in the average dry weight of pigweed. In a weed‐free environment, elevated [CO2] resulted in a significant increase in vegetative dry weight and seed yield at maturity for soybean (33 and 24%, respectively) compared to the ambient CO2 condition. Interestingly, the presence of either weed negated the ability of soybean to respond either vegetatively or reproductively to enhanced [CO2]. Results from this experiment suggest: (i) that rising [CO2] could alter current yield losses associated with competition from weeds; and (ii) that weed control will be crucial in realizing any potential increase in economic yield of agronomic crops such as soybean as atmospheric [CO2] increases.  相似文献   

16.
To assess comparative losses of Trianthema portulacastrum (HP) relative to other weeds, the experiment was set during consecutive summer seasons 2018 and 2019 at the Research Farm MNS-University of Agriculture, Multan, Pakistan. Experiment consisted three replications which were laid out under randomized complete block design. Experiment consisted of ten treatments viz: weeds free (whole season), HP free till 20 Days after emergence (DAE), HP free till 40 DAE, HP free till 60 DAE, all weeds free 20 DAE, all weeds free 40 DAE, all weeds free 60 DAE, weedy check (all weeds), weedy check except HP and weedy check containing only HP. During 2018 in all weeds weedy check, maximum HP relative density (33.33%) was observed while in 2019, plot where weeds were controlled from growing till 20 DAE showed (80%) relative density at 30 DAE. HP maximum frequency (66.67%, 77.78%) and relative frequency (66%, 100%) was recorded at 45 DAE in plots where HP was kept controlled till 20 DAE and all weeds kept controlled till 20 DAE, respectively. Maximum number of grains per cob (738, 700.68), 1000 grain weight (306.66, 271.51 g) and grain yield (6150, 8015 kg hec-1) were recorded in plots which were kept all weed free till 60 DAE. As the competition period of weeds increased over 40 DAE, it substantially reduced yield of maize. Keeping the plots HP free till 40 DAE in the maize fields with HP as the major dominating weed, likely increase in maize grain yield is up to 30% compared to the fields where HP left un attended throughout the growing season. However, if maize field is infested with a mix of weeds with more than one dominating weeds including HP, compared to weedy situation the whole season, 30% higher grain yield can be obtained if all weeds are kept controlled till 40 DAE. Hence it can be concluded that whether the farmers face heavy HP infestation only or the mix of weeds as dominating weeds, in either case farmer should control weeds within first 40 days in maize field for better grain yield.  相似文献   

17.
Smallholder farmers in southern African countries rely primarily on cultural control and hoe weeding to combat weeds, but often times, they are unable to keep up with the weeding requirements of the crop because of its laboriousness, causing them to incur major yield losses. Optimisation of crop planting pattern could help to increase yield and suppress weeds and to reduce the critical period of weed control and the weeding requirements to attain maximum yield. Experiments were carried out in Zimbabwe during two growing seasons to assess the effect of maize density and spatial arrangement on crop yield, growth and seed production of weeds and to determine the critical period for weeding. Planting maize at 60 cm row distance achieved higher yields and better weed suppression than planting at 75 or 90 cm row distance. Increasing crop densities beyond the customary three to four plants m−2 gave modest reductions in weed biomass but also diminished crop yields, probably because of increased competition for water and nutrient resources. Maize planted in narrow rows (60 cm) intercepted more radiation and suffered less yield reduction from delaying hoe weeding than those planted in wider rows (75 or 90 cm), and the duration of the weed-free period required to attain maximum grain yield was 3 weeks shorter in the narrow spacing than that in the 75- and 90-cm row spacings. Weeding was more effective in curtailing weed seed production in the narrow row spatial arrangements than in the wide row planting. The results of these studies show that narrow row spacings may reduce weeding requirements and increase yields.  相似文献   

18.
Weeds can be suppressed in the field by cover crop residues, extracts of which have been demonstrated to exert chemical inhibition of crop and weed germination and early growth in bioassays. In this study, two complementary bioassays were developed with soil and mulch material originating from a long‐term maize–cover crop experiment to determine the relative physical and chemical effect of rye cover crop residues on weed and maize germination and early growth. This was compared with the effect exerted by residue material from the natural vegetation that developed in the crop stubble during the winter before maize sowing. Germination percentage and early growth of maize and two maize weeds, Amaranthus retroflexus and Echinochloa crus‐galli, were assessed in a seed incubator in tilled (green manured) and nontilled (surface mulched) soil, with and without N fertilisation, at various dates after cover crop destruction. Responses were compared to those of the same species in a standard soil without mulch or with an inert poplar mulch. A second bioassay was set up in a glasshouse to determine the effect of different quantities of fresh residue material and additional N fertilisation on emergence speed and percentage and on plant vigour during the first 22 days after cover crop destruction. These results were compared with no‐mulch controls and poplar mulch controls. Results of these trials were compared with weed density and biomass that developed in the maize crop sown after cover crop destruction. Soil and mulch chemical and biological properties were determined for material collected in the field at different times after cover crop destruction. Chemical properties of the mulch differed only occasionally between the treatments, but variation in cover crop biomass production led to significantly different soil chemical properties. Although soil total phenolic acid content did not always correlate to weed and maize germination and early growth inhibition, soil microbial activity did. In suboptimal conditions, as is often the case in the field, plant residue material exerted both a physical and a chemical effect on maize and weed emergence and early growth. Nitrogen fertilisation and application timing can give the maize crop a competitive advantage with respect to the weeds, but the final response and the practical consequences depended largely on the weed species involved.  相似文献   

19.
Many weeds interfere with the productivity of wheat and other winter annual crops; however, one common weed Medicago denticulata, appears to have a beneficial effect. An experiment was conducted at Agricultural Experimental Farm of the Indian Statistical Institute, Giridih, Jharkhand to observe the effect of M. denticulata (a legume) on different crops yield of barley (Hordeum vulgare Sensu lato), linseed (Linum usitatissimum L.), Indian mustard [Brassica juncea (L.) Czernj. & Cosson] and wheat (Triticum aestivum L.). The commensalisms interaction was studied, in which one species benefits, while the other is unaffected, between the crops, M. denticulata and other weeds, to observe the role of medicago as biological control agent of other weeds for enhancement of crop productivity. Further, a statistical test was performed to establish the effect of M. denticulata and weed infestations based on one-step Markov structure of the covariance matrix of the biomass. This permitted development of a mathematical model of a crop–M. denticulata–other weeds system and their interactions through direct and indirect competition for resources. Crops yield decreased considerably due to the presence of other weeds, while it increased due to introduction of medicago and hence medicago acted as a controlling agent in a crop–M. denticulata–other weeds system. Our mathematical analysis supported the experimental findings. The model parameters are estimated through a nonlinear least square and stochastic differential equations. Moreover, some thresholds for the growth of medicago population came out from our analysis that may be used as a biological control threshold for the enhancement of crop productivity.  相似文献   

20.
《Trends in plant science》2023,28(5):567-582
Direct competition for resources is generally considered the primary mechanism for weed-induced yield loss. A re-evaluation of physiological evidence suggests weeds initially impact crop growth and development through resource-independent interference. We suggest weed perception by crops induce a shift in crop development, before resources become limited, which ultimately reduce crop yield, even if weeds are subsequently removed. We present the mechanisms by which crops perceive and respond to weeds and discuss the technologies used to identify these mechanisms. These data lead to a fundamental paradigm shift in our understanding of how weeds reduce crop yield and suggest new research directions and opportunities to manipulate or engineer crops and cropping systems to reduce weed-induced yield losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号