首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The steps involved in the biosynthesis of the ADP-L-glycero-beta-D-manno-heptose (ADP-L-beta-D-heptose) precursor of the inner core lipopolysaccharide (LPS) have not been completely elucidated. In this work, we have purified the enzymes involved in catalyzing the intermediate steps leading to the synthesis of ADP-D-beta-D-heptose and have biochemically characterized the reaction products by high-performance anion-exchange chromatography. We have also constructed a deletion in a novel gene, gmhB (formerly yaeD), which results in the formation of an altered LPS core. This mutation confirms that the GmhB protein is required for the formation of ADP-D-beta-D-heptose. Our results demonstrate that the synthesis of ADP-D-beta-D-heptose in Escherichia coli requires three proteins, GmhA (sedoheptulose 7-phosphate isomerase), HldE (bifunctional D-beta-D-heptose 7-phosphate kinase/D-beta-D-heptose 1-phosphate adenylyltransferase), and GmhB (D,D-heptose 1,7-bisphosphate phosphatase), as well as ATP and the ketose phosphate precursor sedoheptulose 7-phosphate. A previously characterized epimerase, formerly named WaaD (RfaD) and now renamed HldD, completes the pathway to form the ADP-L-beta-D-heptose precursor utilized in the assembly of inner core LPS.  相似文献   

2.
The barrier imposed by lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria presents a significant challenge in treatment of these organisms with otherwise effective hydrophobic antibiotics. The absence of L-glycero-D-manno-heptose in the LPS molecule is associated with a dramatically increased bacterial susceptibility to hydrophobic antibiotics and thus enzymes in the ADP-heptose biosynthesis pathway are of significant interest. GmhA catalyzes the isomerization of D-sedoheptulose 7-phosphate into D-glycero-D-manno-heptose 7-phosphate, the first committed step in the formation of ADP-heptose. Here we report structures of GmhA from Escherichia coli and Pseudomonas aeruginosa in apo, substrate, and product-bound forms, which together suggest that GmhA adopts two distinct conformations during isomerization through reorganization of quaternary structure. Biochemical characterization of GmhA mutants, combined with in vivo analysis of LPS biosynthesis and novobiocin susceptibility, identifies key catalytic residues. We postulate GmhA acts through an enediol-intermediate isomerase mechanism.  相似文献   

3.
Heptoses are found in the surface polysaccharides of most bacteria, contributing to structures that are essential for virulence and antibiotic resistance. Consequently, the biosynthetic enzymes for these sugars are attractive targets for novel antibiotics. The best characterized biosynthetic enzyme is GmhA, which catalyzes the conversion of sedoheptulose-7-phosphate into d-glycero-d-manno-heptopyranose-7-phosphate, the first step in the biosynthesis of heptose. Here, the structure of GmhA from Burkholderia pseudomallei is reported. This enzyme contains a zinc ion at the heart of its active site: this ion stabilizes the active, closed form of the enzyme and presents coordinating side chains as a potential acid and base to drive catalysis. A complex with the product demonstrates that the enzyme retains activity in the crystal and thus suggests that the closed conformation is catalytically relevant and is an excellent target for the development of therapeutics. A revised mechanism for the action of GmhA is postulated on the basis of this structure and the activity of B. pseudomallei GmhA mutants.  相似文献   

4.
D-glycero-D-manno-Heptopyranose 7-phosphate-an intermediate in the biosynthesis of nucleotide-activated heptoses-has been prepared in good overall yield from benzyl 5,6-dideoxy-2,3-O-isopropylidene-alpha-D-lyxo-(Z)-hept-5-enofuranoside by a short-step synthesis. Phosphitylation using the phosphoramidite procedure followed by in situ oxidation afforded the corresponding 7-O-phosphotriester derivative in high yield. Subsequent osmylation proceeded in good diastereoselectivity (4:1) to furnish the D-glycero-D-manno-configured derivative, which was separated from the L-glycero-L-gulo-isomer by chromatography. Hydrogenolysis led to simultaneous removal of the benzyl and isopropylidene groups and afforded the target compound in high yield, which serves as a substrate of bacterial heptose 7-phosphate kinases.  相似文献   

5.
The conservation of fold and chemistry of the enzymes associated with histidine biosynthesis suggests that this pathway evolved prior to the diversification of Bacteria, Archaea, and Eukaryotes. The only exception is the histidinol phosphate phosphatase (HolPase). So far, non-homologous HolPases that possess distinct folds and belong to three different protein superfamilies have been identified in various phylogenetic clades. However, their evolution has remained unknown to date. Here, we analyzed the evolutionary history of the HolPase from γ-Proteobacteria (HisB-N). It has been argued that HisB-N and its closest homologue d -glycero-d -manno-heptose-1,7-bisphosphate 7-phosphatase (GmhB) have emerged from the same promiscuous ancestral phosphatase. GmhB variants catalyze the hydrolysis of the anomeric d -glycero-d -manno-heptose-1,7-bisphosphate (αHBP or βHBP) with a strong preference for one anomer (αGmhB or βGmhB). We found that HisB-N from Escherichia coli shows promiscuous activity for βHBP but not αHBP, while βGmhB from Crassaminicella sp. shows promiscuous activity for HolP. Accordingly, a combined phylogenetic tree of αGmhBs, βGmhBs, and HisB-N sequences revealed that HisB-Ns form a compact subcluster derived from βGmhBs. Ancestral sequence reconstruction and in vitro analysis revealed a promiscuous HolPase activity in the resurrected enzymes prior to functional divergence of the successors. The following increase in catalytic efficiency of the HolP turnover is reflected in the shape and electrostatics of the active site predicted by AlphaFold. An analysis of the phylogenetic tree led to a revised evolutionary model that proposes the horizontal gene transfer of a promiscuous βGmhB from δ- to γ-Proteobacteria where it evolved to the modern HisB-N.  相似文献   

6.
Archaeoglobus fulgidus accumulates di-myo-inositol phosphate (DIP) and diglycerol phosphate (DGP) in response to heat and osmotic stresses, respectively, and the level of glycero-phospho-myo-inositol (GPI) increases primarily when the two stresses are combined. In this work, the pathways for the biosynthesis of these three compatible solutes were established based on the detection of the relevant enzymatic activities and characterization of the intermediate metabolites by nuclear magnetic resonance analysis. The synthesis of DIP proceeds from glucose-6-phosphate via four steps: (i) glucose-6-phosphate was converted into l-myo-inositol 1-phosphate by l-myo-inositol 1-phosphate synthase; (ii) l-myo-inositol 1-phosphate was activated to CDP-inositol at the expense of CTP; this is the first demonstration of CDP-inositol synthesis in a biological system; (iii) CDP-inositol was coupled with l-myo-inositol 1-phosphate to yield a phosphorylated intermediate, 1,1'-di-myo-inosityl phosphate 3-phosphate (DIPP); (iv) finally, DIPP was dephosphorylated into DIP by the action of a phosphatase. The synthesis of the two other polyol-phosphodiesters, DGP and GPI, proceeds via the condensation of CDP-glycerol with the respective phosphorylated polyol, glycerol 3-phosphate for DGP and l-myo-inositol 1-phosphate for GPI, yielding the respective phosphorylated intermediates, 1X,1'X-diglyceryl phosphate 3-phosphate (DGPP) and 1-(1X-glyceryl) myo-inosityl phosphate 3-phosphate (GPIP), which are subsequently dephosphorylated to form the final products. The results disclosed here represent an important step toward the elucidation of the regulatory mechanisms underlying the differential accumulation of these compounds in response to heat and osmotic stresses.  相似文献   

7.
The psychrophilic organism Colwellia psychrerythraea strain 34H produces extracellular polysaccharide substances to tolerate cold environments. Sedoheptulose 7-phosphate isomerase (GmhA) is essential for producing d-glycero-d-mannoheptose 7-phosphate, a key mediator in the lipopolysaccharide biosynthetic pathway. We determined the crystal structure of GmhA from C. psychrerythraea strain 34H (CpsGmhA, UniProtKB code: Q47VU0) at a resolution of 2.8 Å. The tetrameric structure is similar to that of homologous GmhA structures. Interestingly, one of the catalytic residues, glutamate, which has been reported to be critical for the activity of other homologous GmhA enzymes, is replaced by a glutamine residue in the CpsGmhA protein. We also found differences in the conformations of several other catalytic residues. Extensive structural and sequence analyses reveal that CpsGmhA shows high similarity to Escherichia coli DnaA initiator-associating protein A (DiaA). Therefore, the CpsGmhA structure reported here may provide insight into the structural and functional correlations between GmhA and DiaA among specific microorganisms.  相似文献   

8.
An efficient one-pot three enzymes strategy for chemoenzymatic synthesis of ADP-d-glycero-β-d-manno-heptose (ADP-d, d-heptose) was reported using chemically synthesized d, d-heptose-7-phosphate and the ADP-d, d-heptose biosynthetic enzymes HldE and GmhB. Moreover, the result of investigating substrate specificity of the kinase action of HldE revealed that HldE had highly restricted substrate specificity towards structurally modified heptose-7-phosphate analogs.  相似文献   

9.
3-Deoxy-d-manno-octulosonate 8-phosphate (KDO8P) synthase catalyses the first committed step in the biosynthesis of 3-deoxy-d-manno-octulosonate (KDO), an important component of the lipopolysaccharide of Gram-negative bacteria. The pathway for KDO biosynthesis has been identified as a potential target of antibacterial drug design. The reaction catalysed by KDO8P synthase is an aldol-like condensation between phosphoenolpyruvate (PEP) and d-arabinose 5-phosphate (A5P) and proceeds through a bisphosphorylated tetrahedral intermediate. In this study a bisphosphate analogue of the tetrahedral intermediate was synthesised and was found to inhibit the metal-dependent KDO8P synthase from Neisseriameningitidis and the metal-dependent KDO8P synthase from Acidithiobacillus ferrooxidans with inhibition constants in the low micromolar range. Additionally, monophosphorylated inhibitors were synthesised to determine the relative importance of the two phosphate groups of this bisphosphate analogue for enzyme inhibition. The removal of either of these two phosphate groups gave less potent inhibitors for both enzymes.  相似文献   

10.
The glycan chain of the S-layer protein of Geobacillus tepidamans GS5-97(T) consists of disaccharide repeating units composed of L-rhamnose and D-fucose, the latter being a rare constituent of prokaryotic glycoconjugates. Although biosynthesis of nucleotide-activated L-rhamnose is well established, D-fucose biosynthesis is less investigated. The conversion of alpha-D-glucose-1-phosphate into thymidine diphosphate (dTDP)-4-dehydro-6-deoxyglucose by the sequential action of RmlA (glucose-1-phosphate thymidylyltransferase) and RmlB (dTDP-glucose-4,6-dehydratase) is shared between the dTDP-D-fucose and the dTDP-L-rhamnose biosynthesis pathway. This key intermediate is processed by the dTDP-4-dehydro-6-deoxyglucose reductase Fcd to form dTDP-alpha-D-fucose. We identified the fcd gene in G. tepidamans GS5-97(T) by chromosome walking and performed functional characterization of the recombinant 308-amino acid enzyme. The in vitro activity of the enzymatic cascade (RmlB and Fcd) was monitored by high-performance liquid chromatography and the reaction product was confirmed by (1)H and (13)C nuclear magnetic resonance spectroscopy. This is the first characterization of the dTDP-alpha-D-fucopyranose biosynthesis pathway in a Gram-positive organism. fcd was identified as 1 of 20 open reading frames contained in a 17471-bp S-layer glycosylation (slg) gene cluster on the chromosome of G. tepidamans GS5-97(T). The sgtA structural gene is located immediately upstream of the slg gene cluster with an intergenic region of 247 nucleotides. By comparison of the SgtA amino acid sequence with the known glycosylation pattern of the S-layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a, two out of the proposed three glycosylation sites on SgtA could be identified by electrospray ionization quadrupole-time-of-flight mass spectrometry to be at positions Ser-792 and Thr-583.  相似文献   

11.
d-glycero-d-manno-Heptopyranose 7-phosphate—an intermediate in the biosynthesis of nucleotide-activated heptoses—has been prepared in good overall yield from benzyl 5,6-dideoxy-2,3-O-isopropylidene-α-d-lyxo-(Z)-hept-5-enofuranoside by a short-step synthesis. Phosphitylation using the phosphoramidite procedure followed by in situ oxidation afforded the corresponding 7-O-phosphotriester derivative in high yield. Subsequent osmylation proceeded in good diastereoselectivity (4:1) to furnish the d-glycero-d-manno-configured derivative, which was separated from the l-glycero-l-gulo-isomer by chromatography. Hydrogenolysis led to simultaneous removal of the benzyl and isopropylidene groups and afforded the target compound in high yield, which serves as a substrate of bacterial heptose 7-phosphate kinases.  相似文献   

12.
The hfe-threatening infections caused by Leptospira serovars demand the need for designing anti-leptospirosis drugs.The present study encompasses exploring inhibitors against phosphoheptose isomerase(GmhA)of Leptospira,which is vital for lipopolysaccharide(LPS)biosynthesis and is identified as a common drug target through the subtractive genomic approach.GmhA model was built in Modeller 9v7.Structural refinement and energy minimization of the predicted model was carried out using Maestro 9.0.The refined model reliability was assessed through Procheck,ProSA,ProQ and Profile 3D.The substrate-based virtual high-throughput screening(VHTS)in Ligand.Info Meta-Database tool generated an in-house library of 354 substrate structural analogs.Furthermore,structure-based VHTS from the in-house library with different conformations of each ligand provided 14 novel competitive inhibitors.The model together with insight gained from the VHTS would be a promising starting point for developing anti-leptospirosis competitive inhibitors targeting LPS biosynthesis pathway.  相似文献   

13.
Two genes encoding the enzymes 1-deoxy-D-xylulose-5-phosphate synthase and 1-deoxy-D-xylulose-5-phosphate reductoisomerase have been recently identified, suggesting that isoprenoid biosynthesis in Plasmodium falciparum depends on the methylerythritol phosphate (MEP) pathway, and that fosmidomycin could inhibit the activity of 1-deoxy-D-xylulose-5-phosphate reductoisomerase. The metabolite 1-deoxy-D-xylulose-5-phosphate is not only an intermediate of the MEP pathway for the biosynthesis of isopentenyl diphosphate but is also involved in the biosynthesis of thiamin (vitamin B1) and pyridoxal (vitamin B6) in plants and many microorganisms. Herein we report the first isolation and characterization of most downstream intermediates of the MEP pathway in the three intraerythrocytic stages of P. falciparum. These include, 1-deoxy-D-xylulose-5-phosphate, 2-C-methyl-D-erythritol-4-phosphate, 4-(cytidine-5-diphospho)-2-C-methyl-D-erythritol, 4-(cytidine-5-diphospho)-2-C-methyl-D-erythritol-2-phosphate, and 2-C-methyl-D-erythritol-2,4-cyclodiphosphate. These intermediates were purified by HPLC and structurally characterized via biochemical and electrospray mass spectrometric analyses. We have also investigated the effect of fosmidomycin on the biosynthesis of each intermediate of this pathway and isoprenoid biosynthesis (dolichols and ubiquinones). For the first time, therefore, it is demonstrated that the MEP pathway is functionally active in all intraerythrocytic forms of P. falciparum, and de novo biosynthesis of pyridoxal in a protozoan is reported. Its absence in the human host makes both pathways very attractive as potential new targets for antimalarial drug development.  相似文献   

14.
The shikimate pathway, including seven enzymatic steps for production of chorismate via shikimate from phosphoenolpyruvate and erythrose-4-phosphate, is common in various organisms for the biosynthesis of not only aromatic amino acids but also most biogenic benzene derivatives. 3-Amino-4-hydroxybenzoic acid (3,4-AHBA) is a benzene derivative serving as a precursor for several secondary metabolites produced by Streptomyces, including grixazone produced by Streptomyces griseus. Our study on the biosynthesis pathway of grixazone led to identification of the biosynthesis pathway of 3,4-AHBA from two primary metabolites. Two genes, griI and griH, within the grixazone biosynthesis gene cluster were found to be responsible for the biosynthesis of 3,4-AHBA; the two genes conferred the in vivo production of 3,4-AHBA even on Escherichia coli. In vitro analysis showed that GriI catalyzed aldol condensation between two primary metabolites, l-aspartate-4-semialdehyde and dihydroxyacetone phosphate, to form a 7-carbon product, 2-amino-4,5-dihydroxy-6-one-heptanoic acid-7-phosphate, which was subsequently converted to 3,4-AHBA by GriH. The latter reaction required Mn(2+) ion but not any cofactors involved in reduction or oxidation. This pathway is independent of the shikimate pathway, representing a novel, simple enzyme system responsible for the synthesis of a benzene ring from the C(3) and C(4) primary metabolites.  相似文献   

15.
3-Deoxy-d-arabino-2-heptulosonic acid 7-phosphate (5), the first committed intermediate in aromatic amino acid biosynthesis, has been synthesized in good yield by treatment of methyl (methyl 3-deoxy-d-arabino-2-heptulopyranosid)onate with diphenylphosphoric chloride under mild conditions to give the 7-diphenyl phosphate. Catalytic removal of the phenyl residues, followed by base-catalyzed hydrolysis resulted in formation of (methyl 3-deoxy-d-arabino-2-heptulopyranosid)onic acid dihydrogen 7-phosphate (4), which yielded a crystalline tris-(cyclohexylammonium) salt. Acid-catalyzed hydrolysis of 4 afforded 5, which was used to purify 3-dehydroquinate synthase.  相似文献   

16.
Derivatives of 3-amino-3,6-dideoxyhexoses are widespread in Nature. They are part of the repeating units of lipopolysaccharide O-antigens, of the glycan moiety of S-layer (bacterial cell surface layer) glycoproteins and also of many antibiotics. In the present study, we focused on the elucidation of the biosynthesis pathway of dTDP-alpha-D-Quip3NAc (dTDP-3-acetamido-3,6-dideoxy-alpha-D-glucose) from the Gram-positive, anaerobic, thermophilic organism Thermoanaerobacterium thermosaccharolyticum E207-71, which carries Quip3NAc in its S-layer glycan. The biosynthesis of dTDP-alpha-D-Quip3NAc involves five enzymes, namely a transferase, a dehydratase, an isomerase, a transaminase and a transacetylase, and follows a pathway similar to that of dTDP-alpha-D-Fucp3NAc (dTDP-3-acetamido-3,6-dideoxy-alpha-D-galactose) biosynthesis in Aneurinibacillus thermoaerophilus L420-91(T). The ORFs (open reading frames) of interest were cloned, overexpressed in Escherichia coli and purified. To elucidate the enzymatic cascade, the different products were purified by HPLC and characterized by NMR spectroscopy. The initiating reactions catalysed by the glucose-1-phosphate thymidylyltransferase RmlA and the dTDP-D-glucose-4,6-dehydratase RmlB are well established. The subsequent isomerase was shown to be capable of forming a dTDP-3-oxo-6-deoxy-D-glucose intermediate from the RmlB product dTDP-4-oxo-6-deoxy-D-glucose, whereas the isomerase involved in the dTDP-alpha-D-Fucp3NAc pathway synthesizes dTDP-3-oxo-6-deoxy-D-galactose. The subsequent reaction steps of either pathway involve a transaminase and a transacetylase, leading to the specific production of nucleotide-activated 3-acetamido-3,6-dideoxy-alpha-D-glucose and 3-acetamido-3,6-dideoxy-alpha-D-galactose respectively. Sequence comparison of the ORFs responsible for the biosynthesis of dTDP-alpha-D-Quip3NAc revealed homologues in Gram-negative as well as in antibiotic-producing Gram-positive bacteria. There is strong evidence that the elucidated biosynthesis pathway may also be valid for LPS (lipopolysaccharide) O-antigen structures and antibiotic precursors.  相似文献   

17.
The WecA transferase is an integral membrane protein and a member of the polyprenyl phosphate N-acetylhexosamine-1-phosphate transferase superfamily. It initiates the biosynthesis of various bacterial cell envelope components such as the lipopolysaccharide O-antigen. We report on the first large-scale enzymatic synthesis, purification, and characterization of the undecaprenyl-pyrophosphoryl-N-acetylglucosamine product of the WecA transferase. This is an essential lipid intermediate for the biosynthesis of various bacterial cell envelope components. Its availability in a pure form will allow the biochemical and structural characterization of the various enzymes requiring it as a substrate for the synthesis of cell wall polymers.  相似文献   

18.
3-deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase catalyzes the condensation of phosphoenolpyruvate (PEP) with arabinose 5-phosphate (A5P) to form KDO8P and inorganic phosphate. KDO8P is the phosphorylated precursor of 3-deoxy-D-manno-octulosonate, an essential sugar of the lipopolysaccharide of Gram-negative bacteria. The crystal structure of the Escherichia coli KDO8P synthase has been determined by multiple wavelength anomalous diffraction and the model has been refined to 2.4 A (R-factor, 19.9%; R-free, 23.9%). KDO8P synthase is a homotetramer in which each monomer has the fold of a (beta/alpha)(8) barrel. On the basis of the features of the active site, PEP and A5P are predicted to bind with their phosphate moieties 13 A apart such that KDO8P synthesis would proceed via a linear intermediate. A reaction similar to KDO8P synthesis, the condensation of phosphoenolpyruvate, and erythrose 4-phosphate to form 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7P), is catalyzed by DAH7P synthase. In the active site of DAH7P synthase the two substrates PEP and erythrose 4-phosphate appear to bind in a configuration similar to that proposed for PEP and A5P in the active site of KDO8P synthase. This observation suggests that KDO8P synthase and DAH7P synthase evolved from a common ancestor and that they adopt the same catalytic strategy.  相似文献   

19.
We have analyzed the crystal structure of the dimeric form of d-glycero-d-manno-heptose-1,7-bisphosphate phosphatase from Burkholderia thailandensis (BtGmhB), catalyzing the removal of the phosphate at the 7 position of d-glycero-d-manno-heptose-1,7-bisphosphate. The crystal structure of BtGmhB revealed a dimeric form caused by a disruption of a short zinc-binding loop. The dimeric BtGmhB structure was induced by triggering the loss of Zn2 + via the protonation of cysteine residues at pH 4.8 of the crystallization condition. Similarly, the addition of EDTA also causes the dimerization of BtGmhB. It appears there are two dimeric forms in solution with and without the disulfide bridge mediated by Cys95. The disulfide-free dimer produced by the loss of Zn2 + in the short zinc-binding loop is further converted to a stable disulfide-bonded dimer in vitro. Though the two dimeric forms are reversible, both of them are inactive due to a deformation of the active site. Single and triple mutant experiments confirmed the presence of two dimeric forms in vitro. Phosphatase assay results showed that only a zinc-bound monomeric form contains catalytic activity in contrast to the inactive zinc-free dimeric forms. The monomer-to-dimer transition caused by the loss of Zn2 + observed in this study is an example of reversal phenomenon caused by artificial proteins containing protein engineered zinc-finger motifs where the monomer-to-dimer transitions occurred in the presence of Zn2 +. Therefore, this unusual dimerization process may be applicable to designing proteins possessing a short zinc-binding loop with a novel regulatory role.  相似文献   

20.
Evidence for a pentose phosphate pathway in Helicobacter pylori   总被引:1,自引:0,他引:1  
Abstract Evidence for the presence of enzymes of the pentose phosphate pathway in Helicobacter pylori was obtained using 31P nuclear magnetic resonance spectroscopy. Activities of enzymes which are part of the oxidative and non-oxidative phases of the pathway were observed directly in incubations of bacterial lysates with pathway intermediates. Generation of NADPH and 6-phosphogluconate from NADP+ and glucose 6-phosphate indicated the presence of glucose 6-phosphate dehydrogenase and 6-phosphogluconolactonase. Reduction of NADP+ with production of ribulose 5-phosphate from 6-phosphogluconate revealed 6-phosphogluconate dehydrogenase activity. Phosphopentose isomerase and transketolase activities were observed in incubations containing ribulose 5-phosphate and xylulose 5-phosphate, respectively. The formation of erythrose 4-phosphate from xylulose 5-phosphate and ribose 5-phosphate suggested the presence of transaldolase. The activities of this enzyme and triosephosphate isomerase were observed directly in incubations of bacterial lysates with dihydroxyacetone phosphate and sedoheptulose 7-phosphate. Glucose-6-phosphate isomerase activity was measured in incubations with fructos 6-phosphate. The presence of these enzymes in H. pylori suggested the existence of a pentose phosphate pathway in the bacterium, possibly as a mechanism to provide NADPH for reductive biosynthesis and ribose 5-phosphate for synthesis of nucleic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号