首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies have shown that the larval epidermis of the tobacco hornworm, Manduca sexta, contains a 29 kDa nuclear protein (JP29) that binds pothoaffinity analogs of juvenile hormone (JH), but does not bind JH I with high affinity. We now find that JP29 is also associated with the insecticyanin granules, and we show that JP29 mRNA is regulated in a complex fashion by both 20-hydroxyecdysone (20E) and JH. Studies with day 2 fourth instar larval epidermis in vitro showed that a molting concentration 12 μg/ml) of 20E caused the disappearance of JP29 mRNA, irrespective of the presence or absence of JH; this effect was dependent on the concentration of 20E (ED50=200 ng/ml). The reappearance of JP29 mRNA around the time of ecdysis required the presence of JH at head capsule slippage (HCS), since little appeared in larvae allatectomized about 6 h before HCS unless JH I was applied at the time of HCS. Maintenance of JP29 mRNA in fifth instar epidermis also required the continued presence of JH in both isolated abdomens and in vitro. Culture of either day 1 or day 2 fifth instar epidermis without hormones for 24 h caused decline of JP29 mRNA, which was accelerated by 20E in a concentration-dependent manner (ED50 = 30 and 10 ng/ml 20E respectively). When day 2 epidermis was exposed to 500 ng/ml 20E for 24 h to cause pupal commitment, JP29 mRNA disappeared. Neither methoprene nor JH I (in either the presence or the absence of the esterase inhibitor O-ethyl, S-phenyl phosphamidethiolate [EPPAT]) was able to prevent this loss, although both slowed its rate. The mRNA for the larval cuticle protein LCP14 was found to be regulated similarly to that for JP29 by 20E, but differently by JH. The JP29 protein was relatively long-live, persisting after the disappearance of its mRNA for at least 19 h during the larval molt and for more than 24 h in vitro. Although trace amounts of JP29 are found for the first 12 h after pupal ecdysis, injection of 5 μg JH II into pupae during the critical period to cause the synthesis of a second pupal cuticle had no effect on the amount of JP29 present. Thus, although the presence of JP29 in larval epidermis is associated with and dependent on JH, high amounts are not associated with the “status quo” action of JH on the pupa. The role of this protein consequently remains obscure. Arch. Insect Biochem. Physiol. 34:409–428, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
The abdominal prolegs of Manduca sexta larvae are eliminated at the onset of metamorphosis. Previous work showed that the prepupal peak of ecdysteroids in the hemolymph causes the dendritic arbors of proleg motoneurons to regress and a stereotyped subset of the motoneurons to die. In the present study we investigated the parameters of ecdysteroid exposure that are important for eliciting these responses by directly infusing 20-hydroxyecdysone (20-HE) into the hemolymph of insects deprived of their own endocrine glands. Doses of 20-HE that were near threshold for evoking regression or death were consistently more effective when infused over a longer duration. Theoretical calculations of hemolymph hormone profiles produced by the infusions support a model of ecdysteroid action in which the hormone concentration must remain above a threshold level for a critical duration of time to be physiologically effective. We further found that segmental location can influence both the metamorphic fate and the hormonal sensitivity of Manduca motoneurons.  相似文献   

3.
The rate of metamorphosis in Manduca appears to be under continuous regulation by the circulating titer of the ecdysteroids. Ecdysteroids promote development during the first third of adult differentiation. We present here several lines of evidence indicating that the role of the ecdysteroids then changes to being inhibitory during the later stages of adult differentiation. Abdomen ligation, which precipitously reduces the levels of ecdysteroids in the abdomen, accelerates the rates of tissue development in this region. This acceleration can be counteracted by ecdysteroid injection or by implantation of prothoracic glands. Infusion of ecdysteroids into insects late in development results in a dose-dependent depression in the rate of subsequent development. The effectiveness of a given dosage of steroid is dependent on the developmental stage, with older animals being more affected. Last, the normal ecdysteroid titer declines in a stepwise fashion over the last 3 days of development and these steps are paralleled by a drop-off in the effectiveness of abdomen ligation over this same period. It is concluded that this effect of the ecdysteroids late in development provides a mechanism to ensure that the various tissues of the insect complete metamorphosis in a coordinated fashion.  相似文献   

4.
The sequential synthesis and deposition of larval cuticular proteins was followed during the final larval molt and the final larval instar of the tobacco hornworm Manduca sexta and correlated with changes in cuticular structure. On the final day of feeding (Day 3) before the onset of metamorphosis many endocuticular proteins were no longer synthesized and new isoelectric variants of 27,000-Da polypeptides were deposited into the cuticle coincident with the formation of lamellae 5- to 10-fold thinner than those previously deposited. Application of a juvenile hormone analog methoprene on Day 1 prevented this change in protein synthesis and in lamellar structure by preventing the observed rise in the intermolt ecdysteroid titer on Day 2. These changes could be induced in vitro by 25-100 ng/ml 20-hydroxyecdysone in the absence of juvenile hormone. Thus, the intermolt change in the lamellar assembly process appears to result from hormone-induced changes in cuticular protein synthesis.  相似文献   

5.
《Insect Biochemistry》1990,20(5):467-477
Manduca sexta pharate pupal molting fluid contains more than 10 proteolytic enzymes that differ in relative mobility during electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate and gelatin. The major gelatin digesting enzyme was an endoprotease with an apparent molecular weight of 100 kDa. Gel filtration on a Sephacryl S-300 column resolved another endoprotease of similar size that digests azocoll and [3H]casein. In addition we found an aminopeptidase-like enzyme (MWapp 500 kDa) and at least three carboxypeptidase-like enzymes (MWapp 10–60 kDa). Use of pseudosubstrates and inhibitors suggested the presence of both trypsin-like and chymotrypsin-like enzymes with the former activity approx. 10-fold greater than the latter. However, none of the proteolytic enzymes were substantially inhibited by diisopropylphosphorofluoridate or phenylmethylsulfonyl fluoride which are poteint inhibitors of trypsin and chymotrypsin. No carboxyl or sulfhydryl proteases were detected. The enzymes were most active in the neutral to alkaline pH range, but they were relatively unstable during storage which precluded their purification to homogeneity. Proteolysis of Manduca cuticular protein appears to involve a rather complex and unique mixture of endo- and exo-cleaving proteolytic enzymes.  相似文献   

6.
In the tobacco hornworm moth, Manduca sexta, vitellogenin (Vg) is a very high-density (1.29 g/ml) phosphoglycolipoprotein containing 13% lipids, 3% carbohydrates, and 0.6% protein-bound phosphorus. Vitellogenin (Mr~500,000) has two apoproteins designated apoVg-l (Mr 177,000 ± 3,600) and apoVg-ll (Mr45,000 ± 5,000). ApoVg-l and apoVg-II can be dissociated with 6 M guanidine HCI and separated from each other by gel permeation chromatography. Immunoblotting experiments using antibodies against the apoproteins showed that apoVg-l and apoVg-II antigens were immunologically distinct polypeptides. Antibodies against Vg reacted only with apoVg-l. Antibodies against Vg and apoVg-l reacted with Vg in double immunodiffusion experiments, whereas antibodies against apoVg-II did not. These results suggest that in the native Vg molecule, apoVg-II is positioned inside the molecule away from the aqueous environment. Only apoVg-I contained covalently bound carbohydrate as shown by fluorescein isothiocyanateconjugated concanavalin A, periodate-Schiff reagent, and in vivo labeling with 3H-Man. In vivo labeling with 32P-inorganic phosphate and chemical determination showed that apoproteins of both Vg and vitellin contain covalently bound phosphate groups.  相似文献   

7.
8.
The microstructure of the feeding activity of tobacco hornworm caterpillars (Manduca sexta Johansson) on tomato leaf was examined by means of an automated cafeteria. In this device each activity of the caterpillar generates a characteristic slow electrical change which can be recorded. The apparatus is therefore both accurate and sensitive. Examination of the activity records indicated that larger animals ate more than smaller ones by increasing both bite frequency and the lengths of meals. Meal frequency did not increase. Correlations amongst a variety of measures indicated that there was regulation of feeding both between and within meals.  相似文献   

9.
10.
11.
Lipoprotein biosynthesis in larvae of the tobacco hornworm (Manduca sexta) was investigated. By immunoblotting, it was shown that the apoproteins are present in the fat body, but not in the midgut. Fat body incubated in vitro with [35S]methionine secreted labeled apoproteins. However, when the density of the secreted particle was determined, it was found at 1.24-1.28 g/ml instead of 1.15 g/ml, which is the density of the circulating lipoprotein. Lipid analysis of immunoprecipitated lipoprotein secreted by the fat body showed a phospholipid/diacylglycerol ratio of 8.3 rather than 0.9, the ratio found in the circulating lipoprotein. When labeled oleic acid or triolein was fed to larvae, it was found that greater than 98% of the label in the circulating lipoprotein was in diacylglycerol. In studies using animals raised on a fat-free diet, it was shown that the circulating lipoprotein has properties comparable to those of the material secreted in vitro by the fat body and that this diacylglycerol-poor particle can be converted to the normal lipoprotein by feeding a bolus of triolein. These data support the hypothesis that the fat body makes and secretes a "nascent" lipoprotein which contains apoproteins and phospholipid, but is devoid of diacylglycerol. The diacylglycerol is then picked up from the midgut to complete assembly of the mature circulating lipoprotein.  相似文献   

12.
On the hypothesis that prostaglandins and other eicosanoids mediate nodulation responses to bacterial infections in insects, we describe an intracellular phospholipase A2 (PLA2) in homogenates prepared from hemocytes collected from the tobacco hornworm, Manduca sexta. PLA2 hydrolyzes fatty acids from the sn-2 position of phospholipids. Some PLA2s are thought to be the first and rate-limiting step in biosynthesis of prostaglandins and other eicosanoids. The hemocyte PLA2 activity was sensitive to hemocyte homogenate protein concentration (up to 250 μg protein/reaction), pH (optimal activity at pH 8.0), and the presence of a Ca2+ chelator. Like PLA2s from mammalian sources, the hemocyte PLA2 was inhibited by the phospholipid analog oleyoxyethyl phosphorylcholine. Whereas most intracellular PLA2s require Ca2+ for catalytic activity, some PLA2s, including the hemocyte enzyme, are Ca2+-independent. The hemocyte PLA2 exhibited a preference for arachidonyl-associated substrate over palmitoyl-associated substrate. These findings show that M. sexta hemocytes express a PLA2 that shows a marked preference for hydrolyzing arachidonic acid from phospholipids. The biological significance of this enzyme relates to cellular immune responses to bacterial infections. The hemocyte PLA2 may be the first biochemical step in synthesis of the eicosanoids that mediate cellular immunity in insects. © 1996 Wiley-Liss, Inc.  相似文献   

13.
During the transition from feeding to molting, larval insects undergo profound changes in behavior and patterns of gene expression regulated by the neuroendocrine system. For some species, a distinctive characteristic of molting larvae is presence of a quiescent state sometimes referred to as “molt-sleep”. Here, observations of 4th instar Manduca sexta larvae indicate the molting period involves a predominantly quiescent state that shares behavioral properties of adult insect sleep in that it is rapidly reversible and accompanied by a reduced responsiveness to both mildly arousing and noxious stimuli. When subjected to noxious stimuli, molting larvae exhibit locomotory and avoidance behaviors similar to those of inter-molt larvae. Although less consolidated, inter-molt quiescence shares many of the same behavioral traits with molting quiescence. However, when subjected to deprivation of quiescence, inter-molt larvae display a compensatory rebound behavior that is not detected in molting larvae. This suggests that molting quiescence is a specialized form of inactivity that affords survival advantages to molting larvae. RNA-seq analysis of molting larvae shows general reduction in expression of genes encoding GPCRs and down regulation of genes connected with cyclic nucleotide signaling. On the other hand, certain ion channel genes are up-regulated, including transient receptor potential (TRP) channels, chloride channels and a voltage-dependent calcium channel. These findings suggest patterns of gene expression consistent with elevation of quiescent state characteristic of the molt in a model holometabolous insect.  相似文献   

14.
15.
16.
The prothoracicotropic hormone (PTTH), which stimulates ecdysteroid synthesis in the prothoracic glands, is produced, in the dorso-lateral protocerebrum of Manduca sexta, by paired peptidergic neurons, the lateral neurosecretory cell group III (L-NSC III). Our study revealed ultrastructural features of L-NSC III, identified by immunogold labeling, and compared developing and diapause states. In developing and early-diapause pupae, L-NSC III soma ultrastructure is similar and is characterized by numerous clusters of neurosecretory granules (NSG) and an extensive trophospongium formed by satellite-glial cells. However, as diapause progresses, the ultrastructure changes, with the NSG becoming concentrated into large clusters separated by highly organized rough endoplasmic reticulum. Most conspicuous is a substantial reduction in the number of Golgi complexes and the glial trophospongium, and the presence of stacked plasma membrane separating the glia and neuron somata. The deep-diapause soma also has abundant glycogen deposits and autophagic vacuoles. With diapause termination, this morphology reverts to the nondiapause ultrastructure within three days, i.e. just before PTTH release that evokes development to the adult. During PTTH release the abundance of NSG in the soma does not change, suggesting that NSG depletion in the perikarya is not a marker for neurosecretion by the L-NSC III.  相似文献   

17.
Manduca sexta females that were decapitated produced no pheromone during the scotophase following decapitation, indicating that they were free of pheromone biosynthesis activating neuropeptide (PBAN). When deuterated hexadecanoic or (Z)-11-hexadecenoic acid was applied to the sex pheromone glands of decapitated or intact females of the same age, and allowed to incubate in vivo for 24 h, deuterium labeled Δ-11- and Δ-10, 12-unsaturated 16-carbon fatty acids were produced in both types of females. Injection of PBAN into intact or decapitated females 23 h after application of labeled acids had no effect on the production of unsaturated labeled fatty acids. However, deuterium labeled aldehydes were produced only in females that were injected with PBAN. Therefore, in this species, PBAN activates the process by which fatty acyl precursors in the pheromone gland are converted into the pheromonal aldehydes. © 1995 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    18.
    While the larval midgut of Manduca sexta has been intensively studied as a model for ion transport, the developmental origins of this organ are poorly understood. In our study we have used light and electron microscopy to investigate the process of midgut epithelial cell differentiation in the embryo. Our studies were confined to the period between 56 and 95 hr of embryonic development (hatching is at 101 hr at 25 degrees C), since preliminary studies indicated that all morphologically visible differentiation of the midgut epithelium occurs during this time. At 56 hr the midgut epithelium is organized into a ragged pseudostratified epithelium. Over the next 10 hr, the embryo molts and the midgut epithelium takes on a distinctive character in which the future goblet and columnar cells can be identified. With further differentiation, closed vesicles in the goblet cells expand and subsequently communicate to the outside by way of a valve. The columnar cells form numerous microvilli on their apical surfaces that extend over the goblet cells. Both cell types form basal folds from a series of plasmalemmal invaginations. Differentiation occurs concurrent with a six-fold elongation of these cells.  相似文献   

    19.
    20.
    The prothoracicotropic hormone (PTTH) is a principal neuropeptide regulator of insect postembryonic molting and metamorphosis. In the tobacco hornworm, Manduca sexta, PTTH is produced by two neurosecretory cells (NSC) located in each protocerebral lobe of the brain. The development of these neurons, the L-NSC III, has been investigated immunocytologically to establish the time course of their morphological differentiation. PTTH may be one of the earliest neuropeptides expressed in insect embryos. PTTH-immunoreactivity was initially detected in the somata at 24 to 30% of embryonic development. Neurites sprouted shortly thereafter and began to grow medially through the brain anlage. By 42% embryonic development, the neurites had decussated to the contralateral brain lobe. As development progressed, the L-NSC III neurites grew along specific tracts through the contralateral brain lobe reaching the ventrolateral regions of the brain by approximately 60% development. The axons exited the brain through a retrocerebral nerve, the nervi corporis cardiaci I + II. At approximately 63% development, the axons innervated the corpus allatum and began branching to form neurohemal terminals for PTTH release. At 60% development, short collaterals began extending in the protocerebral neuropil. During the remainder of embryogenesis, both the dendritic collaterals and the terminal neurohemal varicosities continued to elongate and arborize. By 85% embryonic development, the basic architecture of the L-NSC III was established.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号