首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphofructokinase-1 plays a key role in the regulation of carbohydrate metabolism. Its activity can be used as an indicator of the glycolytic flux in a tissue sample. The method most commonly employed to determine phosphofructokinase-1 activity is based on oxidation of NADH by the use of aldolase, triosephosphate isomerase, and alpha-glycerophosphate dehydrogenase. This method suffers from several disadvantages, including interactions of the auxiliary enzymes with phosphofructokinase-1. Other methods that have been used also require auxiliary enzymes or are less sensitive than a coupled assay. Here, we propose a direct method to determine phosphofructokinase-1 activity, without the use of auxiliary enzymes. This method employs fructose-6-phosphate and ATP labeled with 32P in the gamma position ([gamma-32P]ATP), and leads to the formation of ADP and fructose-1,6-bisphosphate labeled with 32P ([1-32P]fructose-1,6-bisphosphate). Activated charcoal is used to adsorb unreacted [gamma-32P]ATP, and the radioactive product in the supernatant, [1-32P]fructose-1,6-bisphosphate, is analyzed on a liquid scintillation counter. The proposed method is precise and relatively inexpensive, and can be applied to determine phosphofructokinase-1 activity in cellular extracts as well as in the purified enzyme.  相似文献   

2.
1. When pig heart pyruvate dehydrogenase complex was phosphorylated to completion with [gamma-32P]ATP by its intrinsic kinase, three phosphorylation sites were observed. The amino acid sequences around these sites were: sequence 1, Tyr-Gly-Met-Gly-Thr-Ser(P)-Val-Glu-Arg; and sequence 2, Tyr-His-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Val-Ser(P)-Tyr-Arg. 2. When phosphorylated to inactivation by repetitive additions of limiting quantities of [gamma-32P]ATP, phosphate was incorporated mainly (more than 90%) into Ser-5 of sequence 2. Phosphorylation of this site thus results in activation of pyruvate dehydrogenase. 3. If Ser-5 is phosphorylated with ATP and the enzyme then incubated with [gamma-32P]ATP, phosphorylation of the remaining sites occurred. Ser-12 of sequence 2 is phosphorylated about twice as rapidly as Ser-6 of sequence 1. 4. Incubation of pyruvate dehydrogenase with excess [gamma-32P]ATP with termination of phosphorylation at about 50% complete inactivation showed that Ser-5 of sequence 2 was phosphorylated most rapidly, but also that Ser-12 of sequence 2 was significantly (15% of total) phosphorylated. Ser-6 sequence 1 contained about 1% total P. 5. These results suggest that addition of limiting amounts of ATP produces primarily phosphorylation of Ser-5 of sequence 2 (inactivating site). This also occurs during incubation with excess ATP before complete inactivation occurs, but a greater occupancy of other sites also occurs during this treatment.  相似文献   

3.
Dark-adapted pure bovine rod outer segments (ROS) (A280/A500--2.1) can be phosphorylated in the presence of [gamma-32P]ATP and [gamma-32P]GTP. The constant levels of phosphorylation, reached within 10--15 min, are 100 +/- 30 pmol 32P/nmol of rhodopsin for [gamma-32P]ATP and 2--4 pmol 32P/nmol of rhodopsin for [gamma-32P]GTP. These processes are not controlled by 10(-4)--10(-8) cAMP, cGMP or Ca2+, but are inhibited at higher concentrations of these agents. In the presence of histone the constant level of phosphorylation is increased up to 200 +/- 30 pmol 32P/nmol of rhodopsin for [gamma-32P]ATP, but is not changed when [gamma-32P]GTP is used. 10(-5) M cAMP is found to activate the phosphorylation in the presence of histone and [gamma-32P]ATP by 5--6 times. All this evidences that ROS contains cAMP-dependent protein kinase, which utilizes ATP, but not GTP. Moreover, ROS contains cyclic nucleotides- and Ca2+-independent protein kinase. These protein kinases are the ROS endogenous enzymes. This is shown in experiments on separation of pure ROS in a sucrose density gradient.  相似文献   

4.
Incubation of [gamma-32P]ATP with a molar excess of the membrane-bound form of mitochondrial ATPase (F1) results in binding of the bulk of the radioactive nucleotide in high affinity catalytic sites (Ka = 10(12) M-1). Subsequent initiation of respiration by addition of succinate or NADH is accompanied by a profound decrease in the affinity for ATP. About one-third of the bound radioactive ATP appears to dissociate, that is, the [gamma-32P]ATP becomes accessible to hexokinase. The NADH-stimulated dissociation of [gamma-32P]ATP is energy-dependent since the stimulation is inhibited by uncouplers of oxidative phosphorylation and is prevented by respiratory chain inhibitors. The rate of the energy-dependent dissociation of ATP that occurs in the presence of NADH, ADP, and Pi is commensurate with the measured initial rate of ATP synthesis in NADH-supported oxidative phosphorylation catalyzed by the same submitochondrial particles. Thus, the rate of dissociation of ATP from the high affinity catalytic site of submitochondrial particles meets the criterion of kinetic competency under the conditions of oxidative phosphorylation. These experiments provide evidence in support of the argument that energy conserved during the oxidation of substrates by the respiratory chain can be utilized to reduce the very tight binding of product ATP in high affinity catalytic sites and to promote dissociation of the nucleotide.  相似文献   

5.
1. Conditions for binding of [gamma-32P]ATP to bovine brain Na+,K+-stimulated ATPase were investigated by the indirect technique of measuring the initial rate of 32P-labelling of the active site of the enzyme. 2. At 100 muM [gamma-32P]ATP in the presence of 3 mM MgCl2, approximately the same very high rate of formation of [32P]phosphoenzyme was obtained irrespective of whether [gamma-32P]ATP was added to the enzyme simultaneously with, or 70 ms in advance of the addition of NaCl. A comparatively slow rate of phosphorylation was obtained at 5 muM[gamma-32P]ATP without preincubation. However, on preincubation of the enzyme with 5 muM[gamma-32P]ATP a rate of formation of [32P]phosphoenzyme almost as rapid as at 100 muM[gamma-32P]ATP was observed. 3. A transient [32P]phosphoenzyme was discovered. It appeared in the presence of K+, under conditions which allowed extensive binding of [gamma-32P]-ATP. The amount of [gamma-32P]ATP that could be bound to the enzyme seemed to equal the amount of [32P] phosphorylatable sites. 4. The formation of the transient [32P] phosphoenzyme was inhibited by ADP. The transient [32P] phosphoenzyme was concluded mainly to represent the K+-insensitive and ADP-sensitive E1-32P. 5. When KCl was present in the enzyme solution before the addition of NaCl only a comparatively slow rate of phosphorylation was observed. On preincubation of the enzyme with [gamma-32]ATP an increase in the rate of formation of [32P] phosphoenzyme was obtained, but there was no transient [32P]-phosphoenzyme. The transient [32P]phosphoenzyme was, however, detected when the enzyme solution contained NaCl in addition to KCl and the phosphorylation was started by the addition of [gamma-32P]ATP.  相似文献   

6.
A method has been developed for the enzymatic preparation of alpha-(32)P-labeled ribo- and deoxyribonucleoside triphosphates, cyclic [(32)P]AMP, and cyclic [(32)P]GMP of high specific radioactivity and in high yield from (32)Pi. The method also enables the preparation of [gamma-(32)P]ATP, [gamma-(32)P]GTP, [gamma-(32)P]ITP, and [gamma-(32)P]-dATP of very high specific activity and in high yield. The preparation of the various [alpha-(32)P]nucleoside triphosphates relies on the phosphorylation of the respective 3'-nucleoside monophosphates with [gamma-(32)P]ATP by polynucleotide kinase and a subsequent nuclease reaction to form [5'-(32)P]nucleoside monophosphates. The [5'-(32)P]nucleoside monophosphates are then converted enzymatically to the respective triphosphates. All of the reactions leading to the formation of [alpha-(32)P]nucleoside triphosphates are carried out in the same reaction vessel, without intermediate purification steps, by the use of sequential reactions with the respective enzymes. Cyclic [(32)P]AMP and cyclic [(32)P]GMP are also prepared enzymatically from [alpha-(32)P]ATP or [alpha-(32)P]GTP by partially purified preparations of adenylate or guanylate cyclases. With the exception of the cyclases, all enzymes used are commerically available. The specific activity of (32)P-labeled ATP made by this method ranged from 200 to 1000 Ci/mmol for [alpha-(32)P]ATP and from 5800 to 6500 Ci/mmol for [gamma-(32)P]ATP. Minor modifications of the method should permit higher specific activities, especially for the [alpha-(32)P]nucleoside triphosphates. Methods for the use of the [alpha-(32)P]nucleoside phosphates are described for the study of adenylate and guanylate cyclases, cyclic AMP- and cyclic GMP phosphodiesterase, cyclic nucleotide binding proteins, and as precursors for the synthesis of other (32)P-labeled compounds of biological interest. Moreover, the [alpha-(32)P]nucleoside triphosphates prepared by this method should be very useful in studies on nucleic acid structure and metabolism and the [gamma-(32)P]nucleoside triphosphates should be useful in the study of phosphate transfer systems.  相似文献   

7.
We have used the photoaffinity analogs 8-azidoadenosine 5'-triphosphate (8-N3ATP) and 8-azidoguanosine 5'-triphosphate (8-N3GTP) to investigate the relationship between a viral induced protein (Mr = 120,000) in tobacco mosaic virus (TMV)-infected tobacco and the TMV-induced RNA-dependent RNA polymerase activity. When the radioactive analogs [gamma-32P]8-N3ATP and [gamma-32P]8-N3GTP were incubated with the tobacco tissue homogenate from TMV-infected plants, incorporation of label occurred into the viral induced protein in the presence of UV light. The incorporation was found to be totally dependent on UV-illumination and greatly enhanced by Mg2+. Saturation of photoincorporated label indicates an apparent Kd of 16 microM (+/- 3 microM) and 12 microM (+/- 3 microM) for 8-N3ATP and 8-N3GTP, respectively. Protection against photolabeling by [gamma-32P]8-N3ATP and [gamma-32P]8-N3GTP with various nonradioactive nucleotides and nucleosides suggests that the photolabeled site is protected best by nucleoside triphosphates. At 200 microM both deoxyribonucleoside triphosphates and ribonucleoside triphosphates were very effective at protecting the site from photolabeling. These data suggest that the photolabeled protein may be part of an RNA-dependent RNA polymerase. The utility of nucleotide photoaffinity analogs as a method to study viral induced nucleotide-binding proteins is discussed.  相似文献   

8.
Spinach-leaf ribulose-5-phosphate kinase catalyzes the reaction of (Rp)-[beta, gamma-18O, gamma-18O]adenosine 5'-(3-thiotriphosphate) with ribulose 5-phosphate to form ribulose 1-[18O]phosphorothioate 5-phosphate. This product is incubated with CO2, Mg2+, and ribulose-bisphosphate carboxylase to form the [18O]phosphorothioate of D-glycerate. Reduction of this material using phosphoglycerate kinase/ATP, glyceraldehyde-3-phosphate dehydrogenase/NADH, triose-phosphate isomerase, and glycerol-phosphate dehydrogenase/NADH produces glycerol 3-[18O]phosphorothioate, which is subjected to ring closure using diethylphosphorochloridate. This in-line reaction produces a diastereoisomeric mixture of glycerol 2,3-cyclic phosphorothioates. 31P NMR spectroscopy was used to analyze the 18O content of the products. The anti-diastereoisomer, which is the major isomer formed and corresponds to the downfield 31P NMR signal (Pliura, D.H., Schomburg, D., Richard, J.P., Frey, P.A., and Knowles, J.R. (1980) Biochemistry 19, 325-329), retains the 18O label. This observation indicates that the ribulose-5-phosphate kinase reaction proceeds with inversion of configuration at phosphorus. The reaction is, therefore, unlikely to involve the participation of a covalent phosphoryl-enzyme intermediate.  相似文献   

9.
1. The rat-liver cell-sap material from which 3-[32P]phosphohistidine was previously isolated after incubation with [gamma-32P]ATP and alkaline hydrolysis, was shown to increase about 6-fold on a high-carbohydrate diet. This increase in 32P labelling corresponded to the increase in ATP citrate lyase activity of livers of rats fed on a high-carbohydrate diet, as reported by others. 2. ATP citrate lyase [ATP:citrate oxaloacetate-lyase (CoA-acetylating and ATP-dephopshorylating), EC 4.1.3.8] was purified from rat liver essentially according to the method of Plowman and Cleland (J. Biol. Chem., 242 (1967) 4239). The purified enzyme was incubated for a short time at 0 degree with [gamma-32P]ATP in the presence of 20 mM magnesium acetate. The phosphorylated protein was hydrolysed in alkali and the main part of the radioactivity was identified as 3-[32P]phosphohistidine. The identity of the phosphorylated amino acid was established by Dowex-1 chromatography, paper electrophoresis, paper chromatography and by analysis of the stability to acid. 3. It is concluded from these and previous results from this laboratory that ATP citrate lyase and nucleoside diphosphate kinase (ATP:nucleoside diphosphate phosphotransferase, EC 2.7.4.6) account for most of the normal rat-liver cell-sap protein which is rapidly phosphorylated by ATP.  相似文献   

10.
Evidence is presented indicating that phosphorylation of porcine muscle lactate dehydrogenase by [gamma-32P] ATP occurs at carboxyl residues of the protein. The phosphoenzyme complex was moderately stable at pH 6.8 and 25 degrees C, with a half-life of 3.5 h. In the presence of NADH rapid dephosphorylation occurred. Formation of an abortive complex with NAD-pyruvate also caused hydrolysis of the phosphoenzyme. The phosphorylated lactate dehydrogenase was shown to serve as a phosphate donor for phosphorylation of ADP.  相似文献   

11.
Nucleotides are important extracellular signaling molecules. At least five mammalian P2Y receptors exist that are specifically activated by ATP, UTP, ADP, or UDP. Although the existence of ectoenzymes that metabolize extracellular nucleotides is well established, the relative flux of ATP and UTP through their extracellular metabolic products remains undefined. Therefore, we have studied the kinetics of accumulation and metabolism of endogenous ATP in the extracellular medium of four different cell lines. ATP concentrations reached a maximum immediately after change of medium and decreased thereafter with a single exponential decay (t(1/2);1 approximately;230-40 min). ATP levels did not fall to zero but attained a base-line concentration that was independent of the medium volume and of the initial ATP concentration. Although the base-line concentration of ATP remained stable for up to 12 h, [gamma-(32)P]ATP added to resting cells as a radiotracer was completely degraded within 120 min, indicating that steady state reflected a basal rate of ATP release balanced by ATP hydrolysis (20-200 fmol x min(-)(1) x cell(-)(6)). High performance liquid chromatography analysis revealed that the gamma-phosphate of ATP was rapidly, although transiently, transferred during steady state to species subsequently identified as UTP and GTP, indicating the existence of both ecto-nucleoside diphosphokinase activity and the accumulation of endogenous UDP and GDP. Conversely, addition of [gamma-(32)P]UTP to resting cells resulted in transient formation of [gamma-(32)P]ATP, indicating phosphorylation of endogenous ADP by nucleoside diphosphokinase. The final (32)P-products of [gamma-(32)P]ATP metabolism were [(32)P]orthophosphoric acid and a (32)P-labeled species that was further purified and identified as [(32)P]inorganic pyrophosphate. In C6 cells, the formation of [(32)P]pyrophosphate from [gamma-(32)P]ATP at steady state exceeded by 3-fold that of [(32)P]orthophosphate. These results illustrate for the first time a constitutive release of ATP and other nucleotides and reveal the existence of a complex extracellular metabolic pathway for released nucleotides. In addition to the existence of an ecto-ATPase activity, our results suggest a major scavenger role of ecto-ATP pyrophosphatase and a transphosphorylating activity of nucleoside diphosphokinase.  相似文献   

12.
Protein phosphorylation by inorganic pyrophosphate in yeast mitochondria.   总被引:1,自引:0,他引:1  
Inorganic pyrophosphate can function as phosphate donor in protein phosphorylation reactions in yeast mitochondria. It was shown that, when PPi substitutes for ATP as inhibitor of the pyruvate dehydrogenase reaction, maximal activity is reached after a lag-period of 30-60 minutes. 32P-labeling of peptides shows that [32P]PPi gives about 25% of the labeling obtained by [gamma-32P]ATP in the protein kinase reaction. The PPi dependent phosphorylation is increased several fold by the presence of cold ATP.  相似文献   

13.
M A Shia  P F Pilch 《Biochemistry》1983,22(4):717-721
In the presence of adenosine 5'-[gamma-32P]triphosphate ([gamma-32P]ATP) and a partially purified human placental insulin receptor preparation, insulin stimulates the phosphorylation of an Mr 94000 protein in a time- and dose-dependent manner. Half-maximal stimulation of 32P incorporation occurs at (2-3) X 10(-9) M insulin, a concentration identical with the Kd for insulin binding in this preparation. Immunoprecipitations with monoclonal anti-insulin receptor antibody demonstrate that the Mr 94000 protein kinase substrate is a component of the insulin receptor, the beta subunit. If the partially purified, soluble placental receptor preparation is immunoprecipitated and then exposed to [gamma-32P]ATP and insulin, phosphorylation of the Mr 94000 protein is maintained. The photoincorporation of 8-azido[alpha-32P]ATP into placental insulin receptor preparations was carried out to identify the ATP binding site responsible for the protein kinase activity. Photoincorporation into numerous proteins was observed, including both subunits of the insulin receptor. However, when photolabeling was performed in the presence of excess adenosine 5'-(beta, gamma-imidotriphosphate), a nonhydrolyzable ATP derivative, the beta subunit of the insulin receptor was the only species protected from label incorporation. These data indicate that the beta subunit of the insulin receptor has insulin-dependent protein kinase activity. Phosphotyrosine formation is the primary result of this activity in placental insulin receptor preparations.  相似文献   

14.
A simplified method is described for the enzymatic synthesis and purification of [alpha-32P]ribo- and deoxyribonucleoside triphosphates. The products are obtained at greater than 97% radiochemical purity with yields of 50--70% (relative to 32Pi) by a two-step elution from DEAE-Sephadex. All reactions are done in one vessel as there is no need for intermediate product purifications. This method is therefore suitable for the synthesis of these radioactive compounds on a relatively large scale. The sequential steps of the method involve first the synthesis of [gamma-32P]ATP and the subsequent phosphorylation of nucleoside 3' monophosphate with T4 polynucleotide kinase to yield nucleoside 3', [5'-32P]diphosphate. Hexokinase is used after the T4 reaction to remove any remaining [gamma-32P]ATP. Nucleoside 3',[5'-32P]diphosphate is treated with nuclease P-1 to produce the nucleoside [5'-32P]monophosphate which is phosphorylated to the [alpha-32P]nucleoside triphosphate with pyruvate kinase and nucleoside monophosphate kinase. Adenosine triphosphate used as the phosphate donor for [alpha-32P]deoxynucleoside triphosphate syntheses is readily removed in a second purification step involving affinity chromatography on boronate-polyacrylamide. [alpha-32P]Ribonucleoside triphosphates can be similarly purified when deoxyadenosine triphosphate is used as the phosphate donor.  相似文献   

15.
Pluronic P85 (poly(oxyethylene)-poly(oxypropylene) block copolymer) was used for in vitro delivery of [gamma-32P]ATP into intact Jurkat cells. Negatively charged ATP molecules are not able to penetrate cell plasma membrane. Hence, exogenous [gamma-32P]ATP added to a cell culture does not participate in phosphorylation of intracellular proteins. The addition to cells of [gamma-32P]ATP solubilized in positively charged (containing dodecylamine) pluronic micelles results in considerable increase of protein phosphorylation. In this case the treatment of intact cells with alkaline phosphatase (resulting in dephosphorylation of external proteins) causes no essential decrease of [32P]-incorporation in cell proteins. That gives an evidence of delivery of solubilized ATP into a cell. Under the experimental conditions used, pluronic micelles neither influence the viability of cells nor permeabilize cell plasma membrane.  相似文献   

16.
Cycle-purified microtubule protein from mammalian brain incorporated [32P]Pi upon incubation with [gamma-32P]GTP under the conditions used to promote assembly. This phosphorylation also occurred in the same proteins when phosphorylated with [gamma-32P]ATP and was only slightly stimulated by cAMP. GTP was a much less effective substrate than ATP. The transfer of phosphoryl groups from [gamma-32P]GTP to endogenous proteins followed a linear time-course and was stimulated by low concentrations of ATP and, more efficiently, by ADP. These data are in agreement with the predictions derived from a mechanism of phosphorylation by which [gamma-32P]GTP does not act as a phosphoryl donor for the protein kinase activity but, instead, only as a repository of high group transfer potential phosphoryl groups used to make [gamma-32P]ATP, from contaminating ADP, by means of the nucleoside diphosphate kinase activity. Using 100 mM fluoride, which suppressed protein phosphorylation without inhibiting the nucleoside diphosphate kinase activity, formation of [gamma-32P]ATP was detected. Fluoride was also able to protect microtubules from a slow depolymerization which was found to occur during long-term incubation of microtubules. This indicates that the phosphorylation observed in the presence of GTP is sufficient to destabilize microtubules.  相似文献   

17.
The specific activity of the gamma-32P position of ATP was measured in various tissue preparations by two methods. One employed HPLC and the enzymatic conversion of ATP to glucose 6-phosphate and ADP. The other was based on the phosphorylation of histone by catalytic subunit of cAMP-dependent protein kinase (Hawkins, P.T., Michell, R.H. and Kirk, C.J. (1983) Biochem. J. 210, 717-720). The HPLC method also allowed the incorporation of 32P into the (alpha + beta)-positions of ATP to be determined. In rat epididymal fat-pad pieces and fat-cell preparations the specific activity of [gamma-32P]ATP attained a steady-state value after 1-2 h incubation in medium containing 0.2 mM [32P]phosphate. Addition of insulin or the beta-agonist isoprenaline increased this value by 5-10% within 15 min. Under these conditions the steady-state specific activity of [gamma-32P]ATP was 30-40% of the initial specific activity of the medium [32P]phosphate. However, if allowance was made for the change in medium phosphate specific activity during incubations the equilibration of the gamma-phosphate position of ATP with medium phosphate was greater than 80% in both preparations. The change in medium phosphate specific activity was a combination of the expected equilibration of [32P]phosphate with exchangeable intracellular phosphate pools plus the net release of substantial amounts of tissue phosphate. At external phosphate concentrations of less than 0.6 mM the loss of tissue phosphate to the medium was the major factor in the change in medium phosphate specific activity. It is concluded that little advantage is gained in employing external phosphate concentrations of less than 0.6 mM in experiments concerned with the incorporation of phosphate into proteins and other intracellular constituents. Indeed, a low external phosphate concentration may cause depletion of important intracellular phosphorus-containing components.  相似文献   

18.
1. The patterns of phosphopolypeptides produced by endogenous phosphorylation in vitro of rough- and smooth-membrane fractions of the microsomal fraction of mouse liver were studied by radioautographic analysis of sodium dodecyl sulphate/polyacrylamide-gel electrophoretograms. 2. A minimum of 17 polypeptides of both rough- and smooth-microsomal-membrane fractions were phosphorylated by using [gamma-(32)P]-ATP as the phosphate donor; only minor differences in phosphorylation pattern between the two membrane fractions were detected. 3. Phosphorylation in vitro by [gamma-(32)P]ATP was markedly stimulated by Mg(2+), but not by cyclic AMP, cyclic GMP or Ca(2+). The phosphorylation of certain polypeptides was preferentially stimulated by Mg(2+). Addition of cyclic AMP resulted in a decrease in the amount of (32)P detected in one polypeptide of mol.wt. approx. 56000, present in both the rough- and smooth-membrane fractions. 4. [gamma-(32)P]GTP was found to be a relatively poor donor of (32)P as compared with [gamma-(32)P]ATP. However, incubation of rough- and smooth-membrane fractions with this compound resulted in the phosphorylation of one polypeptide of mol.wt. approx. 96000 that was scarcely or not at all phosphorylated by [gamma-(32)P]ATP. 5. Under the conditions of incubation used, appreciable incorporation of (32)P from [gamma-(32)P]ATP occurred into products migrating at the front of the electrophoretograms; these products were identified as being principally comprised of 1-phosphatidylinositol 4-phosphate. Incorporation of (32)P into this lipid was also markedly stimulated by Mg(2+). 6. The overall results show that a considerable number of polypeptides of the rough- and smooth-microsomal-membrane fractions of mouse liver may be phosphorylated in vitro and indicate that the enzymes responsible are principally non-cyclic AMP-dependent protein kinases.  相似文献   

19.
The binding of ATP radiolabeled in the adenine ring or in the gamma- or alpha-phosphate to F1-ATPase in complex with the endogenous inhibitor protein was measured in bovine heart submitochondrial particles by filtration in Sephadex centrifuge columns or by Millipore filtration techniques. These particles had 0.44 +/- 0.05 nmol of F1 mg-1 as determined by the method of Ferguson et al. [(1976) Biochem. J. 153, 347]. By incubation of the particles with 50 microM ATP, and low magnesium concentrations (less than 0.1 microM MgATP), it was possible to observe that 3.5 mol of [gamma-32P]ATP was tightly bound per mole of F1 before the completion of one catalytic cycle. With [gamma-32P]ITP, only one tight binding site was detected. Half-maximal binding of adenine nucleotides took place with about 10 microM. All the bound radioactive nucleotides were released from the enzyme after a chase with cold ATP or ADP; 1.5 sites exchanged with a rate constant of 2.8 s-1 and 2 with a rate constant of 0.45 s-1. Only one of the tightly bound adenine nucleotides was released by 1 mM ITP; the rate constant was 3.2 s-1. It was also observed that two of the bound [gamma-32P]ATP were slowly hydrolyzed after removal of medium ATP; when the same experiment was repeated with [alpha-32P]ATP, all the label remained bound to F1, suggesting that ADP remained bound after completion of ATP hydrolysis. Particles in which the natural ATPase inhibitor protein had been released bound tightly only one adenine nucleotide per enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In an in vitro incubation, 8-azidoguanosine 5'-[gamma-32P]triphosphate ( [gamma-32P]-8-azido-GTP) labeled bleached rhodopsin independent of ultraviolet light. Characterization of this labeling indicated that rhodopsin was phosphorylated with [gamma-32P]-8-azido-GTP as a phosphate donor. At low concentrations, ATP increased this labeling activity 5-fold. In the same incubation, [gamma-32P]-8-azido-GTP also labeled G alpha (Mr 40 000). This labeling was ultraviolet light dependent. G beta (Mr 35 000) was also labeled dependent for the most part upon ultraviolet light, but a smaller component of labeling appeared to result from phosphorylation. Differential labeling of G alpha and G beta was found to vary intricately with experimental conditions, especially prebleaching of rhodopsin, tonicity of the medium, and the presence or absence of 2-mercaptoethanol. Affinity labeling of G alpha and G beta by [gamma-32P]-8-azido-GTP in competition with ATP or GTP was kinetically complex, consistent with possible multiple binding sites for GTP on both subunits. Independent evidence for two or more binding sites on G alpha has been offered by other laboratories, and recently, at least one binding site on G beta and its analogues among the N proteins of adenylate cyclases has been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号