首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的:从玉米根际和土壤中分离具有高产吲哚乙酸较强的泌氨能力的巴西固氮螺菌。方法:分别通过半固体NFb培养基、CR培养基、LB培养基分离培养固氮菌株,并经过一系列菌落菌体形态特征、生理生化特性和16S rDNA序列测定等试验对其进行鉴定。结果:经分离纯化获得10株固氮菌,并鉴定均为巴西固氮螺菌(Azospirillum brasilense),其中菌株R7在甘油半固体培养基上能分泌约14mmol/L的氨,在添加了色氨酸的培养基中能够合成58.8μg/ml的吲哚-3-乙酸(IAA)。结论:成功筛选得到一株既高产吲哚乙酸又有较强的泌氨能力的巴西固氮螺菌。  相似文献   

2.
Plants as well as microorganisms, including bacteria and fungi, produce indole-3-acetic acid (IAA). IAA is the most common plant hormone of the auxin class and it regulates various aspects of plant growth and development. Thus, research is underway globally to exploit the potential for developing IAA-producing fungi for promoting plant growth and protection for sustainable agriculture. Phylogenetic evidence suggests that IAA biosynthesis evolved independently in bacteria, microalgae, fungi, and plants. Present studies show that IAA regulates the physiological response and gene expression in these microorganisms. The convergent evolution of IAA production leads to the hypothesis that natural selection might have favored IAA as a widespread physiological code in these microorganisms and their interactions. We summarize recent studies of IAA biosynthetic pathways and discuss the role of IAA in fungal ecology.  相似文献   

3.
大豆等植物体内细胞受热或受其它理化因素(如:重金属离子、乙醇、氨基酸类似物)、以及缺氧、DNA损伤、病毒感染等病理因素刺激后,促发应激反应,启动某些基因表达,能产生各种生理活性物质以及各种酶类,共同调控代谢过程和某些激素的活动,如:吲哚乙酸(IAA)、脱落酸(ABA)等。这些内源IAA和ABA共同作用,调节着大豆的抗逆性,从而影响着大豆的农艺性状。本试验对华北生态型的六个大豆栽培种,进行热激处理;取其第三片展开叶,测其内源IAA和ABA含量。这些品种分别是:早熟17,诱处4号,诱变31,耐阴黑豆、科丰6号和科丰34(Tan.1)。初花期,第一天热激(43~45℃,4h)后,它们的IAA和ABA水平均显著高于对照(30~33℃)(Fig.1)。然而,在连续一天热激后(43~45℃,4h/d),大多数品种的IAA和ABA比第一天减少(Fig.2)。盛花期连续热激处理二天(43~45℃,4h/d),IAA水平一般低于对照(3~33℃),半数品种ABA水平也低于对照(Fig.3)。结荚期连续两天热激后(45℃,4h/d),IAA和ABA含量均显著高于对照(30~33℃)(Fig.4)。  相似文献   

4.
We have identified [1-14C]-oxindole-3-acetic acid as a catabolic product of [1-14C]-indole-3-acetic acid metabolism in Zea mays seedlings. The isolation, and chemical and mass spectral characterization of oxindole-3-acetic acid from corn kernel tissue is described together with data suggesting oxindole-3-acetic acid to be a major catabolic product of indole-3-acetic acid.  相似文献   

5.
Starch phosphorylase was purified from either freshly harvested or stored roots of sweet potato (.Ipomoea batatas (L.) Lam. cv Tain on 65). Both enzyme preparations in their native state showed on polyacrylamide gel electrophoresis a cluster of about six closely located activity bands, which had common antigenic determinants as they were simultaneously probed by monoclonal antibodies. The molecules of enzymes from stored roots were smaller than those from fresh roots. However, the two enzyme preparations had completely fused precipitin lines in double diffusion assays with an antiserum raised against the fresh root preparation. One large subunit and several small ones were found for both enzyme preparations. The small subunits appeared to be the degradation products of the large ones as revealed by peptide mapping and immunoblotting. Immunofluorescence microscopy showed that the enzyme was present in the amyloplasts and cell walls of root storage parenchyma.  相似文献   

6.
A hydroponic experiment was conducted to investigate the effects of indole-3-acetic acid (IAA) on arsenic (As) uptake and antioxidative enzymes in fronds of Pteris cretica var. nervosa (As hyperaccumulator) and Pteris ensiformis (non-hyperaccumulator). Plants were exposed to 2 mg L?1 As(III), As(V) or dimethylarsinic acid (DMA) and IAA concentrations for 14 d. The biomass and total As in the plants significantly increased at 30 mg L?1 IAA. Superoxide dismutase (SOD) activities significantly increased with IAA addition. Catalase (CAT) activities showed a significant increase in P. ensiformis exposed to three As species at 30 or 50 mg L?1 IAA but varied in P. cretica var. nervosa. Peroxidase (POD) activities were unchanged in P. ensiformis except for a significant decrease at 50 mg L?1 IAA under As(III) treatment. However, a significant increase was observed in P. cretica var. nervosa at 10 mg L?1 IAA under As(III) or DMA treatment and at 50 mg L?1 IAA under As(V) treatment. Under DMA stress, malondialdehyde contents in fronds of P. cretica var. nervosa showed a significant decrease at 10 mg L?1 IAA but remained unchanged in P. ensiformis. Therefore, IAA enhanced As uptake and frond POD activity in P. cretica var. nervosa under As stress.  相似文献   

7.
Growth of Codium fragile subsp. tomentosoides (van Goor) Silva in culture depends upon the season of seawater collection. One factor responsible for this variation in growth may be indole-3-acetic acid (IAA). When 10?9 to 10?4 M IAA is added to cultures of Codium fragile, optimum growth is at 10?6 M. The response to exogenous IAA depends upon the time of year when the sea-water is collected. The growth in a range of known IAA concentrations allows the prediction of a seasonal cycle of IAA, or its physiological equivalent, in Rhode Island coastal waters. Such a compound may be an important ecological factor for some algal species.  相似文献   

8.
Auxin production by bacteria associated with orchid roots   总被引:1,自引:0,他引:1  
Bacteria associated with the roots of greenhouse tropical orchids were shown to produce indole-3-acetic acid (IAA) and to excrete it into the culture liquid. The presence and activity of IAA were demonstrated colorimetrically, by thin-layer chromatography, and by biotests. The associated bacteria varied in their ability to excrete indole compounds (1–28 µg/ml nutrient broth). Addition of tryptophan to the growth medium enhanced phytohormone production. Upon addition of 200 µg/ml tryptophan, the bacteria isolated from Dendrobium moschatum roots (Sphingomonas sp. 18, Microbacterium sp. 23, Mycobacterium sp. 1, Bacillus sp. 3, and Rhizobium sp. 5) produced 50.2, 53.1, 92.9, 37.6, and 60.4 µg IAA/ml, respectively, while the bacteria isolated from Acampe papillosa roots (Sphingomonas sp. 42, Rhodococcus sp. 37, Cellulomonas sp. 23, Pseudomonas sp. 24, and Micrococcus luteus) produced 69.4, 49.6, 53.9, 31.0, and 39.2 µg IAA/ml. Auxin production depended on cultivation conditions and on the growth phase of the bacterial cultures. Treatment of kidney bean cuttings with bacterial culture liquid promoted formation of a root brush with a location height 7.4- to 13.4-fold greater than the one in the control samples. The ability of IAA-producing associated bacteria to act as stimulants of the host plant root development is discussed.Translated from Mikrobiologiya, Vol. 74, No. 1, 2005, pp. 55–62.Original Russian Text Copyright © 2005 by Tsavkelova, Cherdyntseva, Netrusov.  相似文献   

9.
Schulz B  Kolukisaoglu HU 《FEBS letters》2006,580(4):1010-1016
The large number of ABC transporters in the Arabidopsis genome was made responsible for known as well as unexpected aspects in plant development. The combination of classical transport experiments with functional genomics approaches helped unravel some of these effects. Yet questions concerning the importance of this large number of ABC transporters in eukaryotic photosynthesizing organisms remain open. Phylogenomic analyses of whole genome sequence data reveal comparable sizes and composition between algae and higher plants within this protein family. Although this indicates the significance of ABC transporters in plants, several other questions remain to be answered.  相似文献   

10.
通过研究大豆胚轴生长及内源吲哚乙酸(IAA)、赤霉素(GAs)、过氧化物酶(POD)和吲哚乙酸氧化酶(IAA oxidase)活性变化对Cd、UV-B辐射和Cd UV-B(复合胁迫)的响应。分析了激素水平、酶活性变化以及胚轴生长变化特性。结果表明,UV—B辐射引起大豆上胚轴伸长减小;但Cd对上胚轴伸长无明显影响;Cd UV—B使上胚轴长度比UV—B作用时明显增加。UVB辐射显著降低了胚轴IAA含量;而GAs含量却显著升高;Cd胁迫下IAA和GAs变化并不明显;但Cd UV—B使IAA含量显著升高,而对GAs无明显影响。UVB辐射使IAA氧化酶和POD活性显著增强,而Cd对这两种酶活性影响并不明显;但Cd UV—B复合胁迫下胚轴的IAA水平较高。尽管UVB辐射引起胚轴中GAs含量显著增加,但研究结果显示IAA含量变化是胁迫下引起胚轴生长改变的更直接原因。研究还表明Cd UV—B时,大大削弱了UV—B辐射下IAA氧化酶活性增强,加之Cd对POD活性的抑制,导致复合胁迫下胚轴的IAA水平较高。证明复合胁迫可以改变单一胁迫下植物激素的调控机制。  相似文献   

11.
12.
The role of endogenous auxin in root initiation   总被引:10,自引:0,他引:10  
This paper describes the process of the formation of adventitious roots. There appears to be good agreement that this consists of four stages, defifferentiation coupled with the formation of a meristematic locus, cell division to form a radially symmetrical cluster of cells, further divisions coupled with organisation into a bilaterally symmetrical meristem and finally growth of cells in the basal part of the meristem which causes its protursion through the epidermis. Evidence for the involvement of auxins in these various stages is reviewed and the extent to which rooting of easy- and hard-to-root species can be accounted for in terms of auxin content discussed. Peaks of IAA occur soon after excision of cuttings in some species and there is some evidence suggesting that this is correlated with changes in peroxidase activity. The possible involvement of cytokinins with auxins is briefly considered.  相似文献   

13.
研究了大豆的生长、生物量、抗氧化酶活性和吲哚乙酸(IAA)氧化酶活性在Cd^2 、UV-B辐射和二者复合胁迫(Cd UV-B)下的变化。结果表明,Cd^2 和UV-B辐射都抑制大豆生长,并显著抑制根的伸长,二者复合后加强了对根伸长的抑制。UV-B辐射显著增强了POD、SOD活性,Cd^2 对POD活性影响不明显,但却拮抗UV-B对POD活性的诱导,SOD活性在各种胁迫下显著增强。虽然Cd%2 对叶片类黄酮含量影响不明显,但对UV-B诱导的类黄酮合成有一定影响。IAA氧化酶活性在复合作用下下降,可能是复合胁迫影响大豆生长的重要因素之一。  相似文献   

14.
一株来自大棚温室甜椒根际的绿针假单胞菌Pseudomonas chlororaphis G-05,可分泌抗生物质吩嗪-1-羧酸,并具有抑制辣椒疫霉的生物防治功效。【目的】为了系统研究该菌株的生物防治功能及抗生物质合成与分泌机制。【方法】首先通过生化法和16S rDNA同源比对法对该菌株进行系统分类的初步鉴定,再根据基因的同源性从G-05基因组DNA中克隆长1.4 kb的gacS基因的部分保守区段,采用抗庆大霉素基因(gentamycin resistance cassette, aacC1)插入失活的策略构建了该基因突变株G-05S。【结果】在King’ s B(KMB)或PPM培养基中,突变株G-05S合成吩嗪-1-羧酸的能力受到明显抑制。然而,突变株G-05S分泌的吲哚乙酸与野生株相比无显著差异。互补实验表明,gacS基因的表达可以使突变株G-05S的吩嗪-1-羧酸的合成恢复到野生株水平。【结论】由此推测,GacS(Global activator sensor )对不同次生代谢物的调控具有特异性。  相似文献   

15.
Lemna gibba plants were incubated aseptically on medium containing labelled 10-7 M indole-3-acetic acid (IAA-1-14C). Most of the radioactivity disappeared from the culture medium during a 24 h light period. A high percentage of the loss was due to photolysis and only a low percentage of the radioactivity was recovered in the plants. Uptake of 14C by the plants was strongly stimulated by light. The radioactivity taken up by the plants was the sum of photosynthetically taken up 14CO2 and 14C taken up in IAA. Analyses with the indolo-α-pyrone fluorescence method revealed that the free IAA content was almost the same in plants grown in control and in IAA media for 5 h, whereas the amount of IAA which could be liberated by alkaline hydrolysis was doubled by the presence of IAA in the medium.  相似文献   

16.
Dog rose (Rosa canina L.) plants in the bloom stages of flowering were sprayed by indole-3-acetic acid (IAA) in concentrations of 0.06 and 0.60 mM and gibberellic acid (GA3) in concentrations of 0.60 and 1.50 mM. Ascorbic acid, total sugar, reducing sugar and carotenoid contents gradually increased, while the protein content remained unchanged and the content of phenolic substances decreased during hypanthium development. Ascorbic acid, total sugar, reducing sugar and carotenoid contents increased in hypanthium sprayed by GA3 and IAA. However, IAA and GA3 applications (except low concentrations) decreased contents of phenolic substances. IAA and GA applications might be a good way to produce the high quality hypanthium in R. canina.  相似文献   

17.
Colloidal gold-labelled antibody was used to localize indole-3-acetic acid in caps of primary roots of Z. mays cv. Kys. Gold particles accumulated on the nucleus, vacuoles, mitochondria, and some dictyosomes and dictyosome-derived vesicles. This is the first localization of indole-3-acetic acid in dictyosomes and dictyosome-derived vesicles and indicates that dictyosomes and vesicles constitute a pathway for indole-3-acetic acid movement in and secretion from root cap cells. Our findings provide cytochemical evidence to support the hypothesis that indole-3-acetic acid plays an important role in root gravitropism.  相似文献   

18.
Abstract

The effect of Azospirillum brasilense Sp245 on the micropropagation of three fruit rootstocks: Mr.S 2/5 plum (Prunus cerasifera×P. spinosa), GF 677 hybrid (Prunus persica×P. amigdalus), and MM 106 apple (Northen Spy×M1) was assessed. Rooted shoots were treated with 3×107 of Sp245 cells during transplantation from in vitro cultures to the acclimatization phase. After 60 days, growth parameters were positively affected by Sp245 inoculum. In the case of Mr.S 2/5, an increase in rootstock stem length and node number by 37% and 42%, respectively, compared to the control was noted. In the case of GF 677, the bacterial inoculum increased stem length and node number by up to the 75% and 65%, respectively, compared to the control. The inoculum did not exert on MM 106 for both parameters suggesting that the effects of Sp245 could depend on a specific clone-microbe association. In all cases, however, a higher vigor, consistent with a wider leaf area, was present in the inoculated plantlets demonstrating that the use of Azospirillum can significantly contribute to optimize plant performance during the phase of adaptation of plants to post-vitrum conditions.  相似文献   

19.
Jasmonic acid was identified from Mimosa pudica L. plants by mass spectrometry, high performance liquid chromatography and thin layer chromatography. Effects of authentic jasmonic acid on pulvinule movement and transpiration of the pinnae were compared with those of abscisic acid. Jasmonic acid and abscisic acid each at 10−5 M inhibited both auxin- and light-induced opening of the pulvinules. A closure-inducing activity of jasmonic acid at 10−4 M was greater than that of abscisic acid at 10−4 M. Pinnae transpiration was reduced by 10−5 M abscisic acid but not by 10−4 M jasmonic acid.  相似文献   

20.
The large diversity of organisms inhabiting various environmental niches on our planet are engaged in a lively exchange of biomolecules, including nutrients, hormones, and vitamins. In a quest to survive, organisms that we define as pathogens employ innovative methods to extract valuable resources from their host leading to an infection. One such instance is where plant-associated bacterial pathogens synthesize and deploy hormones or their molecular mimics to manipulate the physiology of the host plant. This commentary describes one such specific example—the mechanism of the enzyme AldA, an aldehyde dehydrogenase (ALDH) from the bacterial plant pathogen Pseudomonas syringae which produces the plant auxin hormone indole-3-acetic acid (IAA) by oxidizing the substrate indole-3-acetaldehyde (IAAld) using the cofactor nicotinamide adenine dinucleotide (NAD+) (Bioscience Reports (2020) 40(12), https://doi.org/10.1042/BSR20202959). Using mutagenesis, enzyme kinetics, and structural analysis, Zhang et al. established that the progress of the reaction hinges on the formation of two distinct conformations of NAD(H) during the reaction course. Additionally, a key mutation in the AldA active site ‘aromatic box’ changes the enzyme’s preference for an aromatic substrate to an aliphatic one. Our commentary concludes that such molecular level investigations help to establish the nature of the dynamics of NAD(H) in ALDH-catalyzed reactions, and further show that the key active site residues control substrate specificity. We also contemplate that insights from the present study can be used to engineer novel ALDH enzymes for environmental, health, and industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号